

A R C H I V E S
o f

F O U N D R Y E N G I N E E R I N G
10.24425/afe.2024.149252

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

ISSN (2299-2944)
Volume 2024
Issue 1/2024

58 – 65

8/1

© The Author(s) 2024. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made.

Image Processing Techniques for Crack

Detection in MPI of Springs

M.M. Marciniak

Rzeszow University of Technology, Poland
Corresponding author. E-mail address: m.marciniak@prz.edu.pl

Received 10.11.2023; accepted in revised form 14.01.2024; available online 11.03.2024

Abstract

This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications
like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology
that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough
Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study
identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch
processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and
processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding
after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted
parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for
crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to
spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of
applicability.

Keywords: Non-destructive testing, Magnetic particle inspection, Coil spring, Image processing, Crack detection

1. Introduction

Spring steels find applications in various industries, including
railways, automotive, and machine tools. A classic spring is an
elastic component designed to deform under a load and return to
its original shape once the load is removed. Springs must adhere
to stringent quality, environmental, and flexibility standards and
ensure reliable performance over many years. A comprehensive
understanding of the application and its specific criteria is
essential for designing springs correctly. Expertise in materials
and spring manufacturing technology is required to determine
stress levels accurately and evaluate factors like creep, relaxation,
and fatigue [1]. Different methodologies are employed in various
areas, including the analysis of operational data at different stages

of product development [2], non-destructive evaluation of
samples and semi-products [3], mechanical property assessment
[4], forging and rolling simulation [5], data-driven parametric
analysis, and thermodynamic study [6,7].

The primary risk associated with spring products is material
fatigue, resulting from errors that occur during production or
operation. The appearance of defects on the material surface can
lead to the formation of surface cracks, which propagate under
unfavorable loading conditions, ultimately reducing the fatigue
life and causing failure [1]. This relationship holds true for
springs with surface faults and subsurface inclusions.

In the railway industry, preventing defects in suspension parts
is of utmost importance, primarily for safety and reliability
reasons. Suspension spring fractures (fig. 1) can lead to a
reduction in the load on the boogie wheel, making it susceptible to

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3921-9205

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5 59

flange climb. This situation can result in track collapse and wagon
derailment when the wheel ends up on top of the rail (fig. 2) under
unsatisfactory technical conditions like railway turnout or during
curve passing [8].

Fig. 1. Locomotive bogie spring fracture example [9]

Fig. 2. Forces acting between wheel and rail during flange

climbing [8]

Springs are typically manufactured from high-quality
materials such as 51CrV4, 52CrMoV4, 61SiCr7 due to their
specific properties and features, including high strength, relatively
good resistance to fatigue, and resistance to overheating [7].

Fig. 3. Spring forming from hot rod (hot coiling).

Spring production can be divided into five steps: Coiling:

Wire is coiled around a shaft, which can be done with either cold
or heated wire (fig. 3). Heat Treatment: The coiled spring is
heat-treated to relieve stress and harden the steel. Shot Peening:
The spring undergoes shot peening to strengthen the steel and
prevent metal fatigue.
Setting: The spring is compressed multiple times to ensure it
functions correctly and remains stable at a specific length.

Coating: A protective coating is applied to prevent corrosion
which occurs either locally or throughout the section in the form
of small shallow pits (pitting corrosion). These act as stress raisers
under alternating stress conditions during service.

In the first stage of producing the springs, a preheated rod is
used, which is oil-hardened or, in the case of the design option,
annealed/unhardened. Annealed wire springs, after the coiling
operation, are heat-treated (hardened, tempered) to acquire the
necessary high strength. There are few steel mills operating on the
market specialized enough to manufacture steel meeting the
requirements of springs used in high-speed trains, which are
exposed to great stress levels during operation. The long products
(hot rolled billets, bars, and rods) that are made through a
continuous casting route and subsequently thermo-mechanical
processing seem inconsistent in meeting their quality. Surface
cracks are mainly revealed during inspection after the final stage
of hot rolling at the steel producer's end or before forming at the
customer's site. Moreover, subsurface cracks, which are present in
steel billets, may evolve after forming at the customer's site. This
leads to the subsequent rejection of steel billets.

Quenching cracks are usually caused by an inadvertent use of
the wrong grade of steel for a given heat treatment procedure,
wrong heat coefficient of quenching medium, high hardening
temperature, insufficient soaking period, surface defects such as
seams, laps, clusters of non-metallic inclusions occurring at or
near the surface, sharp grooves, or dents on the surface. In
service, they act as stress raisers resulting in premature failure.
Therefore, the evolution of surface cracks in long steel products
and ready springs is one of the critical problems for producers [6].

The magnetic particle inspection (MPI) is a technique to the
evidence of cracks in or close the surface of ferromagnetic
materials conducted before shot peening. After heat treatment
during inspection spring must be magnetized (fig. 4) [10]. The
lines formed by the magnetization run parallel to the spring
profile surface. Lying crosswise to created magnetic lines surface
defects such a cracks generate opposite magnetic field. The effect
of variable polarity on the surface discontinuity boundaries causes
an accumulation of iron powder in the cavity. This makes it
possible to catch even the smallest defects in the light of an
ultraviolet lamp revealing the dye with which the powder is
sprinkled. Then the springs without defect can be subjected to the
processes of peening, setting, coating like: powder coating oiling,
galvanizing, wet painting with primer paints, passivation,
phosphating.

Fig. 4. MPI station (Bombardier Siegen) [10]

Traditionally, the detection of cracks in coil springs has relied

on manual inspection, which can be time-consuming, labor-

60 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5

intensive, and subject to human error. To address these challenges
and enhance the efficiency and accuracy of quality control,
modern manufacturing processes have increasingly turned to the
integration of vision technology and image processing techniques.

In the pursuit of effective defect detection, a range of image
processing techniques beyond the Canny edge detection method
mentioned in the abstract has been explored. These techniques
have proven to be valuable tools in identifying defects [11,12],
including cracks, on the surface of steel parts. Some of these
techniques include, but are not limited to:

Canny Edge Detection focuses on identifying sharp changes
in pixel intensity, which can often indicate the presence of edges,
including cracks, in an image. The algorithm enhances the
visibility of these edges, making them easier to detect.

Hough Transform (HT) is a powerful tool for detecting
straight lines, which can be crucial in identifying linear defects
like cracks. It is especially effective when combined with edge
detection methods. Gabor Filters are widely used for texture
analysis in image processing. They can be applied to detect
variations in texture that may be associated with surface defects
like cracks. Thresholding methods segment an image into
different regions based on pixel intensity. By setting appropriate
thresholds, one can isolate areas that may contain defects,
including cracks. Deep learning techniques, such as
Convolutional Neural Networks (CNNs), have gained prominence
in defect detection. They can learn and recognize complex
patterns in images, making them suitable for various defect types.

These image processing techniques, when used in
combination or in specific contexts, contribute to the robustness
of defect detection systems. The choice of technique depends on
factors such as the type of defect being targeted, image quality,
and computational resources.

2. Methodology

2.1. Data collection/software

The initial phase of the work encompassed the acquisition of a

comprehensive dataset consisting of spring images. These images
were captured by Logitech Hd Pro Webcam C920 placed on
tripod at a high resolution of 2448x3264 pixels and were stored in
the PNG format. The image capture process was conducted during
the Magnetic Particle Inspection (MPI) procedure using KD
DEUTROFLUX UWS after rod coiling and spring heat treatment,
as indicated in Figure 5. The captured images featured the spring's
surface under varying conditions: some images displayed visible
cracks, while others depicted the surface without any cracks.
Furthermore, the imaging process involved capturing the object
from various angles and under different UV lighting conditions
emanating from a lamp. This was achieved while maintaining a
standardized distance from the object, approximately 150 mm.
Consequently, this approach yielded a diverse set of images that
presented the object from multiple perspectives and exhibited
variations in lighting.

In addition to this image capture procedure, the project
involved the utilization of specific software and hardware tool.

The author selected open-source program Python 3.12.0 and Win
10 Intel Pentium Quad Core 1,6 GHz DDR3L 4GB RAM
hardware. To facilitate the execution of the code, several essential
libraries were imported, including NumPy, a fundamental library
renowned for its support of numerical operations in Python,
including the management of arrays and matrices, as well as an
array of mathematical functions. The image processing tasks were
carried out using OpenCV (cv2), which played a crucial role in
image manipulation and analysis. Furthermore, the Matplotlib
plotting library was employed to create 2D and 3D visualizations,
proving invaluable for data visualization and displaying images
throughout various algorithmic stages, ultimately revealing the
results. Tkinter, a standard GUI library, was also integrated into
the authors' code to facilitate the creation of graphical user
interfaces for desktop applications. Additionally, the Time library
was incorporated to include the "time" module within the
program. This module was instrumental in measuring the
execution time of the proposed image processing solutions,
providing valuable insights into the algorithm's performance.

Fig. 5. MPI coil spring producer test stand a) scheme, b) view

2.2. Image processing methods

The implemented Python code adheres to a well-defined
methodology that comprises several integral steps. These steps
encompass image acquisition, grayscale conversion, edge
detection, boundary extraction, and the superimposition of crack
boundaries onto the original image. To facilitate a comprehensive
understanding of the image processing results, these steps are
effectively visualized using Matplotlib. This code possesses the
capability to conduct in-depth analysis of cracks. Notably, the
example code for image processing involving the Canny filter is
detailed in the appendix A.

The process begins with the user selecting an image from the
designated folder. Following this selection, the image undergoes
conversion to grayscale, a fundamental step aimed at simplifying
subsequent processing. This conversion of the original image is
illustrated in Figure 6a. Grayscale images (fig. 6b) are
characterized by the utilization of a single intensity value for each
pixel, rendering them more manageable for further processing.
The conversion operation is executed through the application of
`cv2.cvtColor`.

During the Edge Detection step, a prominent approach is
applied, on the grayscale image. Methods serves to accurately
pinpoint edges and contours. The results, in the form of edges, are

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5 61

meticulously stored in the "Edge Image" like in Figure 7a were
Prewitt filter was used.

Fig. 6. a) Original image with crack on surface, b) grayscale

image

The edge image obtained in the previous step serves as the
basis for contour detection. Contours in this context represent the
outlines of objects or shapes within the image. To identify these
contours, the cv2.findContours function is employed. In this
process, small contours, which may represent noise or irrelevant
details, are filtered out based on a predefined minimum area
threshold, defined as min_contour_area. This crucial step isolates
significant features that effectively represent the boundaries of the
detected cracks.
Once the contours have been successfully filtered, the code
proceeds to draw them on the output_image in red color to
provide a clear visualization of the “Crack boundaries” (Fig. 7b)..

These identified crack areas are distinctly marked in red,
achieved either by outlining them with lines or filling them as
regions. The processed images, which include the "Original
Image," "Gray Image," "Edge Image," and "Crack Boundaries,"
are presented using Matplotlib. Each image is displayed in a
separate Matplotlib window, each appropriately titled for
enhanced visualization. This strategic choice enables users to
make adjustments to the parameters for subsequent samples at the
program's conclusion, allowing them to optimize the detection of
cracks based on their findings.

The primary objective is to attain the best possible outcome,
ensuring that the cracks are prominently marked and accurately
detected.

Fig. 7. Filtered grey images-"Edge Image" Filters used: a) Prewitt,

c) Sobel, e) Canny, and "Crack Boundaries" in order b), d), f)

Throughout the testing phase, a diverse array of image
enhancement techniques were explored to accentuate crack-like
structures. This comprehensive exploration encompassed the
application of various filters, like: Gaussian, Laplacian, Prewitt
(fig. 7a), Gabor, and Sobel (fig. 7c), Canny (fig. 7e). Canny edge
detection is widely recognized for its effectiveness in identifying
abrupt shifts in intensity within the image. The key parameters for
edge detection, namely threshold_low and threshold_high, are
meticulously configured, taking into consideration the unique
characteristics of the image under analysis. These parameters play
a crucial role in the accuracy of edge detection as shown in Figure
7f influencing pointing lined outside spring contour. Additionally,
reaserch involved the implementation of morphological
operations such as skeletonization, morpho top-hat, and different
edge-preserving techniques.

2.3. Crack detection from a set of images

The subsequent phase encompassed the development of a

program with the capacity for set of image processing.
The program's initiation begins with the importation of

essential libraries, followed by the user's selection of a folder
containing the target images. These images are assumed to be in
formats such as PNG, JPG, JPEG, or BMP.

62 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5

For each image, the program validates the loading process,
ensuring that the image is successfully loaded. If an image is
empty or cannot be loaded, the program seamlessly proceeds to
the subsequent image. Once loaded, the image undergoes
conversion to grayscale.

During the Edge Detection step, a chosen approach is applied,
on the grayscale image. Methods serves to accurately pinpoint
edges and contours. The results, in the form of edges, are
meticulously stored in the "Edge Image” or are filtered once more
time for better results.

Subsequently, the program superimposes the filtered contours
onto a copy of the original image in red. This visualization serves
to accentuate the detected cracks. Additionally, the program
conducts time measurements for each image, storing this data for
future analysis. This data is invaluable for profiling the efficiency
of the algorithm.

If filtered contours are present, signifying the presence of
cracks, the processed image that includes the detected cracks is
displayed using Matplotlib. To conclude, the program calculates
and displays the total execution time for processing all images in
the folder.

2.4. Method selection

In the course of this research aimed at implementing the most
effective image processing methodology for detecting cracks in
the MPI process, several widely employed methods were
systematically examined. Upon converting images to grayscale,
various filters and their respective parameters were explored,
yielding images that revealed the presence of cracks. However,
the outcomes of most filters proved to be unsatisfactory.
Exemplary results are depicted in figure 8.

The bilateral filter, known for its edge-preserving properties
in image processing, endeavors to smooth images while retaining
essential edges. It is engineered to reduce image noise without
compromising the integrity of edges and fine details. As
illustrated in Figure 8a, it is evident that the bilateral filter tends to
preserve features that share characteristics with cracks, such as
coil contours or structural elements.

Skeletonization, a process that iteratively erodes the
boundaries of objects until only one-pixel-wide representations
remain, referred to as skeletons, aims to maintain the core
structure while eliminating the object's thickness. Unfortunately,
skeletonization is susceptible to image noise, manifesting as
clusters of glowing pixels, which are non-crack elements. This
phenomenon leads to erroneous representations, as evident in
Figure 8b. Gabor filter is designed to capture specific spatial
frequency information and orientation characteristics in images.

Figure 8c showcases the results following the application of
the Gabor filter. However, the complex and irregular nature of
cracks on a spring coil renders them ill-suited to description by
simple sinusoidal waveforms, as demonstrated by the mismatch
between the filter's characteristics and the actual cracks.

Two methods were revealed to have potential for true positive
crack detection adopting Canny and Top-hat filter. The first
method employs Canny edge filtering with specific parameters,
notably threshold_low = 300 and threshold_high = 500, for
effectively detecting edges in specified images. This method is

supplemented by a min_contour_length = 250, as elaborated in
Appendix A.

The second method involves binary image creation, image
filtering, and boundary extraction, referred to as the morphology
top-hat method, which is described in Appendix B.

Subsequently, the top-hat filter is applied to the grayscale
image. In essence, this operation computes the disparity between
the input image and its opening, where the opening operation
involves erosion followed by dilation. The result of this operation
is an enhancement of crack-like structures or small bright regions
within the image.

A binary threshold is subsequently applied to the enhanced
image, thereby segregating regions of interest from the
background. In the code, a threshold of 50 is set, implying that
pixel values exceeding 50 are designated as 255 (white), while
values below 50 are denoted as 0 (black). The program then
identifies contours within the binary thresholded image. Contours
effectively delineate the boundaries of connected regions within
the image. The program specifically identifies external contours
while disregarding internal contours, an essential step in detecting
regions that may potentially contain cracks. Contours with an area
smaller than a predefined minimum contour area, herein specified
as 1000, are excluded. This minimum contour area serves as a
threshold that can be adjusted in accordance with the
characteristics of the processed images, effectively filtering out
contours that are considered noise due to their diminutive size.

3. Results

3.1 Time Execution

Time library and written code allows to measure time from
the moment when user picks folder with images and until last
images is completed, program also shows in the window
execution time for each image. Succeeding the analysis of batch
image applications using a set of 41 images (captured as described
in chapter 2.1) including 10 images with visible cracks on the
outer spring (200 M1342 0019 for Standard bogie UIC 517 Axle
load 22.5 t) surface was used., the following conclusions were
derived. Thanks to The morphological Top-hat method exhibited
an average total execution time of 34.81 seconds for processing
all 41 images, which is marginally longer than the execution time
of the Canny edge filter method, averaging 29.12 seconds. This
disparity can be attributed to the additional computational load
introduced by the morphological operation, as it entails extra
thresholding following the top-hat filter. In Figure 9a, we observe
the results of the Canny filter, with edges converted into lines that
delineate the cracks on the original image (fig. 9b). Meanwhile,
the application of thresholding in the morphological method
results in extended lines covering nearly the entire crack area (fig.
9c), enhancing precision, as seen in Figure 9d.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5 63

Fig. 8. Original images after crack marking:

a) Bilateral filter, b) Skeletonization, c) Gabor filter

Fig. 9. a) Canny method after filter and b) draw craks, c)

Morphological Top-hat after filter and threshold and d) draw
cracks

3.2 Accuracy of Crack Detection

During 41 image set check test the Top-hat method identified

12 images as potentially containing cracks, of which 9 were
confirmed by user to exhibit actual cracks, so three images were
inaccurately labeled as containing cracks, yielding false positives
(like fig. 10b). The Canny edge filter method successfully
identified 10 images with cracks, while registering also three false
positives (fig. 10a,c).

In the case of Canny, varying filter parameters fails to yield
comparable results. Increasing the threshold parameters of the
filter allows for the elimination of the undesirable effect of false
edges that are not actual cracks (comparing fig. 7f and fig. 10e).

However, simultaneously, the resulting edge image can be
incomplete, resulting in minimal highlighting of the crack and
corresponding to only a small portion of its length as visible in the
original image (fig 10 e,g) or cracks won’t be pointed on the
image.

This filter experiences challenges, particularly in images with
bright backgrounds where clusters of white pixels may appear.
The appeared in test difficulty of establishing parameters for
consistent crack detection is evident when dealing with images
with pollution in the form of light-reflecting pollen (fig. 10a).

During tests using bath program new approach was made by
the author. After modification in the Top-hat code (min contour
area= 1300) to avoid pointing pollutions the specific false positive
images (like fig. 10b) and after increasing by 10% the brightness
of image (fig. 10f) which was not initially indicated by the
program the Top-hat method started to successfully detect only
images containing visible cracks. After changes in the code for
bath processing all 10 images from 41 images with cracks, where
registered with 0 false positives. Top-hat employed a different
approach compared to the Canny method, offering improved

64 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5

accuracy, as depicted in Figure 10 f,h. This enhancement is
attributable to described earlier thresholding after filtering, which
broadens the edges and allows them to be superimposed on the
original image.

Fig. 10. Original images after crack marking:

a,c,e,f) Canny method; b,d,f,h) Morphological Top-hat

4. Conclusions

This single-image processing program, equipped with the

capability to implement various methods and observe images at
each stage, proved instrumental in identifying suitable parameters
for the Canny and Top-hat methods. Through testing, these

methods were selected from a pool of popular crack detection
techniques.

Additionally, experimentation with different thresholds like
showed chapter 2.2 for Canny edge detection revealed that
parameters such as threshold_low = 300 and threshold_high = 500
were conducive to detecting edges effectively, particularly when
combined with min_contour_length = 250. The experiments
emphasized the significance of adjusting parameters, such as
kernel size and minimum contour area, to align with the unique
characteristics of the images at hand.

Assessing the accuracy of crack detection across the entire
dataset enabled the evaluation of the method's effectiveness in
identifying and delineating cracks within the selected image
folder. Moreover, the batch processing capability streamlined the
workflow, rendering it practical for the analysis of substantial
datasets. In the next phase, these methods can be further tested on
a larger sample of images, emulating the conditions of a vision
system analyzing extensive datasets during standard operations.
Incorporating time measurement facilitated insights into the
computational efficiency of selected methodology.

While the Top-hat method exhibited potential for enhancing
true positive detection it incurred a slightly longer execution time
compared to the Canny edge filter method. This underlines the
trade-off between accuracy and execution speed, necessitating
further optimization to minimize the incidence of false positives
in Canny method. In conclusion, the choice between these two
methods should be contingent on the specific requirements of the
application.

For the tested set of images, the Top-hat method, thanks to its
enhanced accuracy in crack proper indication, constitutes a valid
and efficient approach for detecting cracks in images captured
during MPI. Future work may explore the development of more
advanced techniques for automated crack detection and analysis.

References

[1] Gubeljak, N., Predan, J., Senčič, B. & Chapetti, M. (2014).

Effect of residual stresses and inclusion size on fatigue
resistance of parabolic steel springs. Materials Testing.
56(4), 312-317. DOI:10.3139/120.110567.

[2] Xu, C., Yilong L., Ming Y., Jiabang Y. & Xiang P. (2021).
Effects of the ultra-sonic assisted surface rolling process on
the fatigue crack initiation position distribution and fatigue
life of 51CrV4 spring steel. Materials. 14(10), 2565, 1-19.
DOI:10.3390/ma14102565.

[3] Yun, J.P., Choi, Dc., Jeon, Yj. et al., (2014). Defect
inspection system for steel wire rods produced by hot rolling
process. The International Journal of Advanced
Manufacturing Technology. 70, 1625-1634.
DOI:10.1007/s00170-013-5397-8.

[4] Perichiyappan, S. & Jagadeesha, T. (2021). Modelling and
simulation of primary suspension springs used in Indian
railways. Materials Today: Proceedings. 46(17), 8450-8454.
DOI: 10.1016/j.matpr.2021.03.478.

[5] Kumar, S., Kumar, V., Nandi, R.K. et al. (2008).
Investigation into surface defects arising in hot-rolled SUP
11A grade spring billets. Journal of Failure Analysis and
Prevention. 8(6), 492-497. DOI:10.1007/s11668-008-9169-y.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 4 , I s s u e 1 / 2 0 2 4 , 5 8 - 6 5 65

[6] Filipović, M., Eriksson, C. & Överstam, H. (2006).
Behaviour of surface defects in wire rod rolling. Steel
research international. 77(6), 439-444,
DOI:10.1002/srin.200606411.

[7] Matjeke, V.J., Van Der Merwe, J.W., Mukwevho, G. &
Phasha, M.J. (2019). Thermal characteristics of spring steels
used in railway bogies. SN Applied Sciences. 1, 1548, 1-8.
DOI:10.1007/s42452-019-1546-5.

[8] Nagumo, Y., Tanifuji, K. & Imai, J. (2010). A basic study on
wheel flange climbing using model wheelset. International
Journal of Railway. 3(2), 60-67. DOI:10.1299/kikaic.74.242.

[9] The Rail Safety Inspection Office. (2021). Accident and
incident investigation report: Derailment of the regional
passenger train No. 21209 between Chvalkov and Vcelnicka
operating control points. Retrieved November 7, 2023, from
https://www.dicr.cz/files/uploads/Zpravy/MU/DI_Chvalkov_
Vcelnicka_210715.pdf.

[10] Maass, M., Deutsch, W.A., Bartholomai, F. (2014).
Magnetic Particle Inspection on train components. In 11th
European Conference on Non-Destructive Testing, 6-11
October 2014 (pp. 1-9). Prague, Czech Republic.

[11] Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V.C.S. (2022).
Review on computer vision-based crack detection and
quantification methodologies for civil structures.
Construction and Building Materials. 356, 129238.
DOI:10.1016/j.conbuildmat.2022.129238.

[12] Mohan, A. & Poobal, S. (2018). Crack detection using image
processing: A critical review and analysis. Alexandria
Engineering Journal. 57(2), 787-798.
DOI:10.1016/j.aej.2017.01.020.

Appendix A
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
 plt.figure()
 plt.title(f"Grayscale Image: {image_file}")
 plt.imshow(gray_image, cmap='gray')
 plt.axis("off")
 threshold_low = 300
 threshold_high = 500
 edges = cv2.Canny(gray_image, threshold_low, threshold_high)

 plt.figure()
 plt.title(f"Canny Edge Detection: {image_file}")
 plt.imshow(edges, cmap='gray')
 plt.axis("off")
 output_image = original_image.copy()
 contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
 min_contour_length = 250
 filtered_contours = [contour for contour in contours if
cv2.arcLength(contour, closed=True) > min_contour_length]

Draw the filtered contours on the output image
 cv2.drawContours(output_image, filtered_contours, -1, (0, 0, 255), 10)

Appendix B
 gray_image = cv2.cvtColor(original_image,
cv2.COLOR_BGR2GRAY)
 plt.figure()
 plt.title(f"Grayscale Image: {image_file}")
 plt.imshow(gray_image, cmap='gray')
 plt.axis("off")
 kernel_size = 15
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size,
kernel_size))
 top_hat = cv2.morphologyEx(gray_image, cv2.MORPH_TOPHAT,
kernel)
 plt.figure()
 plt.title(f"Top-Hat Filtered Image: {image_file}")
 plt.imshow(top_hat, cmap='gray')
 plt.axis("off")
 _, binary_image = cv2.threshold(top_hat, 50, 255,
cv2.THRESH_BINARY)
 plt.figure()
 plt.title(f"Thresholded Image: {image_file}")
 plt.imshow(binary_image, cmap='gray')
 plt.axis("off")
 contours, _ = cv2.findContours(binary_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 min_contour_area = 1000
 filtered_contours = [contour for contour in contours if
cv2.contourArea(contour) > min_contour_area]
 output_image = original_image.copy()
 cv2.drawContours(output_image, filtered_contours, -1, (0, 0, 255),
thickness=10)

	Abstract
	1. Introduction
	2. Methodology
	3. Results

