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This work aims to further compensate for the weaknesses of feature sparsity and insufficient discrimina-
tive acoustic features in existing short-duration speaker recognition. To address this issue, we propose the
Bark-scaled Gauss and the linear filter bank superposition cepstral coefficients (BGLCC), and the multi-
dimensional central difference (MDCD) acoustic feature extracted method. The Bark-scaled Gauss filter bank
focuses on low-frequency information, while linear filtering is uniformly distributed, therefore, the filter su-
perposition can obtain more discriminative and richer acoustic features of short-duration audio signals. In
addition, the multi-dimensional central difference method captures better dynamics features of speakers for
improving the performance of short utterance speaker verification. Extensive experiments are conducted on
short-duration text-independent speaker verification datasets generated from the VoxCeleb, SITW, and NIST
SRE corpora, respectively, which contain speech samples of diverse lengths, and different scenarios. The results
demonstrate that the proposed method outperforms the existing acoustic feature extraction approach by at
least 10% in the test set. The ablation experiments further illustrate that our proposed approaches can achieve
substantial improvement over prior methods.
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1. Introduction

Speaker recognition, as one of the most popular bio-
metric technologies (Wu et al., 2016) today has been
widely used in many fields such as access control, foren-
sic evidence provision, security, and telephone banking
user authentication (Vogt et al., 2010). The purpose
of speaker recognition is to recognize the claimed iden-
tity of the speaker, which includes speaker verification
and speaker identification (Campbell, 1997). One of
its main purposes is to determine whether the test
sound from the speaker is acceptable. After decades
of development, the technology of speaker verification
has been extensively studied, and the recognition sys-
tem has achieved relatively satisfactory performance,
provided that the enrollment and test voices are long
enough and the signal-to-noise ratio (SNR) is large
enough (Zinchenko et al., 2017; Greenberg et al.,
2013; Kinnunen, Li, 2010).

However, in some application scenarios, it is not
easy to collect a suitable speech. The current speaker
verification system has a significant decrease of the
recognition rate in a short utterance environment
(Nosratighods et al., 2010). A short-duration speech
means that the speech contains insufficient acoustic
characteristics. Obtaining enough speech data is diffi-
cult for many real-world applications and users are re-
luctant to provide sufficient voice data, especially dur-
ing the testing phase asking the user to speak for a long
time, for instance in phone banking. In other cases, it
is very difficult to collect enough data, e.g., in foren-
sic applications, in the security field. The performance
degradation caused by insufficient data is called the
short-duration issue.

Current speaker recognition systems have achieved
great success and performed well when the enrollment
and test data are sufficiently long; hence, the traditio-
nal acoustic feature extraction methods are designed
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based on long-duration speech, and the long-duration
speech feature extraction filter arrangement method
mainly focuses on the low-frequency domain, this
makes high-frequency domain features more sparse in
the short duration speech, and high-frequency domain
information best represents timbre and detail (Huang,
Pun, 2020). At the same time, the traditional acoustics
features include fewer dynamic features of speakers, as
a result, fewer acoustic features are extracted that can
be discriminated for speaker recognition. Research on
the more challenging short-duration text-independent
speaker recognition of discriminative feature compen-
sation has been more in demand lately, which is also
our focus in this work.

Although the traditional speaker model has obvi-
ous feature specificity, because the number of features
is too few, it is still susceptible to noise interference,
and awful recognition performance. The acoustic fea-
ture extraction design should address how to extract
the high discriminative embeddings more effectively
in short-duration audio speaker recognition. There-
fore, how improving the effectiveness of discriminative
acoustic feature extraction, in short utterance speaker
environment, is an urgent problem to be solved.

To address the problems, the solution is proposed
in this paper. In the Bark-scaled Gauss filter bank
acoustic feature extraction method the filter bank dis-
tribution puts more emphasis on the low-frequency
bands, which portray the low-frequency spectrum of
speech in great detail. In comparison, the Bark-scaled
Gauss filter distribution less emphasizes the high-
frequency bands, so some helpful information is eas-
ily lost from the high-frequency domain. However, the
details of the high frequency can enhance the informa-
tion of one’s timbre. To enhance the valuable infor-
mation on the high-frequency, the Bark-scaled Gauss
and linear filter bank superposition cepstrum coeffi-
cients (BGLCC) are proposed to portray more precise
high-frequency details. The filter bank of the conven-
tional acoustic feature extraction method puts more
emphasis on the low-frequency band. In contrast, the
linear triangle filter is uniformly distributed, which can
remedy the weakness of the sparse high-frequency in-
formation and insufficient acoustic feature extraction
brought by the uneven distribution of a single filter,
thus, integrating the advantages of both and construct-
ing new hybrid feature parameters is a way to enhance
the feature sparsity problem.

Moreover, aiming to capture better dynamics fea-
tures of speakers, we propose multi-dimensional cen-
tral difference (MDCD) features based on the BGLCC
features matrix, simultaneously, to improve the per-
formance of short utterance speaker recognition. The
MDCD are multi-dimensional central difference fea-
tures in the time-frequency plane. Different speakers
speak the same word or sentence in different ways.
The proposed MDCD feature concatenate information

about the speaker from four different dimensions, this
can explain why it performs significantly better than
traditionally used speech features in speaker recog-
nition tasks under various conditions. Therefore, the
MDCD features can further compensate for the limited
and sparse dynamic acoustic characteristics of short-
duration audio signals based on extracting dynamic
speaker features.

1.1. Related works

To enhance the efficiency of performance of short-
duration audio speaker recognition algorithms, some
approaches have been presented by previous research
studies. In terms of front-end acoustic feature ex-
traction, the vast majority of existing acoustic fea-
ture extraction is based on some form of the short-
term frequency spectrum to implement short utter-
ance speaker recognition algorithms like Mel-frequency
cepstral coefficients (MFCCs) (Herrera-Camacho
et al., 2019; Paseddula, Gangashetty, 2018) linear
prediction cepstral coefficients (LPCCs) (Yang et al.,
2019; Atal, 1974) and constant Q cepstral coefficients
(CQCC) (Todisco et al., 2017), acoustic features.
For instance, by judiciously combining MFCC and
LPCC for short-duration audio signal speaker recog-
nition (Chowdhury, Ross, 2020), the hypothesis is
that MFCC and LPC capture two different aspects
of speech, namely, speech perception and speech pro-
duction. By using the model method, there is speaker
recognition based on GMM-UBM from MFCC features
in the limited enrollment and test data (Omar, Pele-
canos, 2010). Another work is the I-vector approach
and factor analysis subspace estimation introduced by
(Kenny et al., 2005; Dehak et al., 2010) to reduce
the number of redundant model parameters, resulting
in more accurate speaker models. Some approaches at-
tempt to increase performance by selecting segments
with better discriminability based on speaker features
(Nosratighods et al., 2010) GMM and the CNN
hybrid method (Liu et al., 2018), the method is an
initial alignment method for short utterance feature,
which can improve the effect of short utterance speaker
recognition. In their work, front-end feature extraction
methods are based on Fourier transform Mel-triangle
filtering and linear prediction cepstral coefficients for
model training and testing as well as model inference.

With further developments in deep learning, vari-
ous methods for speaker recognition or short utterance
speaker recognition have been proposed, by Povey
et al. (2018), the factorized time delay neural net-
work (F-TDNN) has been proposed which divides the
parameter matrix of TDNN into smaller matrices to
increase the training effectiveness and the extended
time delay neural networks (E-TDNN) was proposed
in (Snyder et al., 2019), E-TDNN is based on its
broader and deeper network structure, thus allow-
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ing more information to be learned, they both im-
prove speaker recognition performance significantly.
In (Villalba et al., 2020), based on F-TDNN and
E-TDNN, the best results were obtained for speaker
evaluation in SRE18 and in the field. In addition,
a focus on aggregation information, channel atten-
tion, and propagation method were proposed (Des-
planques et al., 2020), called TDNN-based speaker
verification (ECAPA-TDNN), which further improves
the robustness of speaker recognition. After years of de-
velopment, the performance of short utterance speaker
recognition has improved considerably, but it is still
unsatisfactory in some complex scenarios.

Most of the aforementioned methods would bene-
fit from the optimization model, enhance data charac-
teristics and extract more discriminative features for
speaker recognition. With 5∼10 seconds of speech du-
ration, they all improve speaker recognition perfor-
mance when audio speech becomes shorter, but they
still face significant challenges.

Generally speaking, there are two types of speech
recognition features, namely linear prediction cepstral
coefficients (LPCCs) and Mel-frequency cepstral coeffi-
cients (MFCCs), but when used in a short-duration en-
vironment, they suffer from a drop in performance. As
we know, there is no reasonably good short-duration
speaker verification model. Unfortunately, there is no
better feature extraction method to obtain sufficient
and discriminative speaker information models from
short-duration speech signals, there are no better train-
ing methods.

1.2. Contribution

To compensate for the problems of difficult short-
utterance discriminative feature capture and insuf-
ficient discriminative acoustic features, we propose
a filter superposition-based multi-dimensional central
difference discriminative acoustic feature extraction
method for feature compensation and enhancement of
short-duration speech speaker recognition. The pro-
posed method can significantly improve the perfor-
mance and accuracy of the the short-duration speech
speaker recognition system.

The contributions of this paper:
– we propose the Bark-scaled Gauss and linear fil-

ter bank superposition acoustic feature extraction
method, which compensates for the weakness of
the sparse filter and the sparse feature in the high-
frequency information for a short utterance fea-
ture, this can improve the performance of short
utterance speaker recognition by providing rich
timbre information;

– we propose the multi-dimensional central differ-
ence method for capturing the dynamic features
of speakers, which is used to simulate real speech
and enhance the diversity of acoustic features with
limited speech data.

1.3. Organization

This paper is organized as follows. Section 2 de-
tails the proposed filter superposition-based multi-
dimensional central difference discriminative acoustic
feature extraction method. Then we analyze the exper-
iments and results of the proposed method in Sec. 3.
Finally, the conclusion is given in Sec. 4.

2. Proposed method

In this section, which mainly includes the discrim-
inative acoustic feature extraction algorithm, we elab-
orate on the proposed feature extraction technique,
which the design based on the Bark-scaled Gauss and
linear filter banks superposition algorithm and then
the multi-dimensional central difference dynamic fea-
tures extraction method based on the BGLCC features
matrix. In addition, the effect of the introduced fea-
ture extraction of BGLCC and MDCD was achieved
through mathematical analysis.

2.1. BGLCC feature extraction method

The speech signal is performed by a high-pass filter
as pre-emphasis, this filter is equivalent to:

H(z) = 1 − az−1, (1)

where a is a pre-emphasis coefficient, the value is cho-
sen in the interval [0.95, 0.97] and it can increase the
energy of higher frequencies.

The following Hamming window w is used for
smoothing the edge of framed speech signals:

w(k) = [0.54 − 0.46 cos( 2πk

K − 1
)]RK(k), (2)

where K − 1 is the window length, K − 1 equals 256,
0 ≤ k ≤K − 1, RK(k) equals rectangular window.

In speech processing, the Bark-frequency cepstrum
(BFC) affects the speech short-term power spectrum,
which is transformed on the Bark-scale of frequency.
The BFC can be obtained as:

FBark(f) = 13 tan−1 (0.76f
1000

) + 3.5 tan−1 ( f

7500
)
2

. (3)

In contrast to the well-known Mel-scaled triangu-
lar filter, the proposed Bark-scaled Gauss filter struc-
ture has a smoother response and enhances the correla-
tion between adjacent sub-bands. The coefficients are
derived from a type of cepstral representation of the
speech clip. The frequency response of the Bark-scaled
Gauss filter bank can be obtained as:

HBarkb
(k) = 1√

2πσb
e
−[k − f(b)]2

2σ2
b

, (4)
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where σb is the standard deviation, and f(b) is the b-th
filter boundary point (Bark-scaled center frequency),
as defined:

σb =
f(b + 1) − f(b)

α
, (5)

where α is equal to 2.0.
The signal presents 24 critical bands in the band,

which is also the Bark center frequency, and this is the
Bark domain.

Next, the linear triangle filter bank processing de-
tails. The power spectrum is then processed, on the
frequency, by a linear uniform filter bank. In these lin-
ear filter banks, each filter is a triangle filter. The filter
can be defined as:

HLinearl(k)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k < f(l − 1),

k − f(l − 1)
f(l) − f(l − 1) f(l − 1) ≤ k < f(l),

1 k = f(l),

f(l + 1) − k
f(l + 1) − f(l) f(l) < k ≤ f(l + 1),

0 k > f(l + 1),

(6)

where f(l) is the center frequency, 0 ≤ l < L, and L is
the number of filter banks, and the value of L is 24.
We use more filter bands than usual on account that
the resolution of high-frequency domains is essential
for the timbre. Finally, we get the linear filter features.

The raw speech signal x(n) is preprocessed to ob-
tain xw(n). Subsequently, the fast Fourier transform
of the framed speech signal to transform the speech
data from the time domain to the frequency domain,
the mathematical calculation can be written as:

X(i, n) = FFT[xw(i, n)], (7)

𝑥(𝑡) 𝑥(𝑛) 𝑥�(𝑛) 𝑥�(𝑖, 𝑛� 𝐸(𝑖, 𝑘)
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Fig. 1. Structure of the proposed acoustic features extraction method.

where xw(n) indicates that after adding the window
function i is the number of speech frames.

The power spectrum is calculated as:

E(i, n) = ∣X(i, n)∣2 . (8)

Therefore, the Bark-scaled Gauss and linear filter
banks superposition feature extraction is made based
on the power spectrum of the output from the fast
Fourier transform. Thus, the BGLCC power calcula-
tion procedure can be given by:

S(i, t) =
N−1

∑
k=0

E(i, n)[HBarkb
(k) +HLinearl(k)],

0 ≤ b ≤ u, 0 ≤ l ≤ v,

(9)

where t denotes the t-th superposition filter, b denotes
the b-th Bark-scaled Gauss filter, and l denotes the
l-th linear triangle filter, respectively, u is the number
of the Bark-scaled Gauss filter, v is the number of the
linear triangle filter, t, u, v all are 48-channel filter
banks; S(i, t) is equivalent to multiplying the power
spectrum E(i, n) and the superposition of HBarkb

(k),
the Bark-scaled Gauss filter and HLinearl(k) the linear
triangle filter on the frequency domain.

BGLCC(i, t) =
T−1

∑
t=0

log[S(i, t)] cos [πr(2t − 1)
2T

], (10)

where S(i, t) is the BGLCC power, i denotes the i-th
frame, r is the spectral line after discrete cosine trans-
formation, t denotes the t-th superposition filter, T is
the number of superposition filters, and the value of
T is 48.

The Bark-scaled Gauss and linear filter bank su-
perposition features (BGLCC) are processed as shown
in Fig. 1.
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2.2. MDCD dynamic feature extraction method

The proposed multi-dimensional central difference
dynamic feature extraction method was applied to
the different dimensions of the BGLCC time-frequency
matrix, where the horizontal dimension is the time do-
main axis and the vertical is the frequency domain axis
dimension and it captures speech time-domain rele-
vance and speech high-low-frequency correlation of the
speaker. Similarly, the central difference of linear re-
gression is applied to the time-frequency matrix prin-
cipal diagonal and counter diagonal, therefore it can
capture the voiceprint of the speaker.

The process of the proposed method is shown in
Fig. 1; MDCD dynamic feature extraction of differ-
ent dimensions on the BGLCC time-frequency matrix.
First, a series of pre-processing is performed on a frame
of the speech signal, which converts the input sig-
nal from a time-domain speech signal to a frequency-
domain speech signal. Next, the proposed Bark-scaled
Gauss and linear filter bank features superposition is
applied to divide the spectrum into certain frequency
bands, and the log compression is applied. Then, multi-
dimensional central difference obtains four different
types of features based on the BGLCC time-frequency
matrix, which are calculated as in Eqs. (11)–(14):
time-domain:

Th =M t
t,f =

Mt+1,f − 2Mt,f +Mt−1,f

h2
, (11)

frequency-domain:

Fh =Mf
t,f =

Mt,f+1 − 2Mt,f +Mt,f−1

h2
, (12)

counter-diagonal domain:

Ph =MP
t,f =

Mt+1,f+1 − 2Mt,f +Mt−1,f−1

h2
, (13)

principal-diagonal domain:

Ch =MC
t,f =

Mt+1,f−1 − 2Mt,f +Mt−1,f+1

h2
. (14)

In these equations, the value of h is 2, as the central
difference of linear regression has been applied. Here,
t stands for the time domain axis and f stands for
the frequency domain axis.M is the point along which
different dimensions of the axis have been applied.

The time domain’s central difference and the fre-
quency domain’s central difference can better capture
the contour of the speaker formants. By doing the ma-
trix principal diagonal’s central difference and matrix
counter diagonal’s central difference, speaker informa-
tion about the uttering text phoneme of each speaker
can be captured. Thus, the different dimensions of the
time-frequency spectrum central difference can be re-
garded as multi-dimensional dynamic speaker informa-
tion of each speaker and this explains the excellent re-
sults of the proposed MDCD features. To reduce the

computationally derived high-dimensional MDCD fea-
tures, we compress and decorrelate them by DCT.

It was our goal to perform speaker verification
through the proposed BGLCC-MDCD as acoustic fea-
tures, and use 34-layer ResNet as the backbone model,
to perform the short-duration speaker verification. The
detailed configuration is listed in Table 1.

Table 1. Detailed configuration of the backbone model
of 34-layer ResNet. The input size is T × 64.

Layer Structure Output shape
Conv0 CNN (7× 7, 32), stride 2 T × 64 × 32

Conv1 ((3 × 3,32)
(3 × 3,32)) × 3, stride 2 T /2 × 32 × 32

Conv2 ((3 × 3,64)
(3 × 3,64)) × 4, stride 2 T /2 × 16 × 64

Conv3 ((3 × 3,128)
(3 × 3,128)) × 6, stride 2 T /2 × 8 × 128

Conv4 ((3 × 3,256)
(3 × 3,256)) × 3, stride 2 T /2 × 4 × 256

3. Experiments and analysis

3.1. Experiments

The short-duration speaker verification experi-
ments presented in this paper are conducted using
the three well-known speaker recognition datasets with
different scenarios: VoxCeleb (Nagrani et al., 2017;
Chung et al., 2018), Speaker in the Wild (SITW)
(McLaren et al., 2016), and the NIST SRE 2010
(Martin, Greenberg, 2010) to evaluate our pro-
posed algorithm.

The short-duration text-independent dataset is
generated from the VoxCeleb, SITW, and NIST SRE
corpus, respectively. After removing silence frames us-
ing an energy-based VAD, the speech utterances are
chopped into short segments (ranging from 0.25 to
10 seconds). This is to illustrate the efficiency of the
work of our proposed method under short-duration au-
dio conditions.

The three different scenarios of speech datasets:
VoxCeleb, SITW, and NIST SRE corpus aim to evalu-
ate the generalizability of the methods across a range
of different audio lengths of scenarios. We focus on
conducting speaker verification trials on voice samples
of different speech lengths, which are used to investi-
gate the effect of testing speech sample length changes
and to validate the efficiency of the presented method
on the performance of the speaker verification method.
One thing to keep in mind is that in all of our tests,
we assume that there is only one speaker in each voice
sample and that there is no overlapping voice from sev-
eral speakers in any of the training or testing speeches.
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3.2. Corpus description

3.2.1. VoxCeleb and SITW corpus

VoxCeleb is a large open-source speaker recogni-
tion dataset with over a million utterances, 7000 speak-
ers, and 2000 hours of audio. The average duration of
utterances in the VoxCeleb dataset is 8 seconds, and
the majority of utterances have a duration of fewer
than 10 seconds. The audio sampling rate is 16kHz.
VoxCeleb includes two sub-datasets, VoxCeleb-1 and
VoxCeleb-2. The SITW dataset contains open-source
media recordings of 299 public celebrities. The SITW
dataset is used to generate the short-duration text-
independent dataset. SITW speech segments range in
length from 6 seconds to 180 seconds, where the ma-
jority are long utterances. As a result, the two datasets
can be used to assess the performance of our proposed
architectures on utterances of varying lengths as well
as the model’s generalizability.

Each of the three datasets, VoxCeleb-1, VoxCeleb-2,
and SITW, is divided into two parts: development and
testing (evaluation). The training set consists of
1 092 009 utterances and 5994 speakers from the
VoxCeleb-2 development part (VoxCeleb2-Dev). The
remaining datasets were treated as test sets, with two
parts: the VoxCeleb-1 dataset and the SITW evalua-
tion (SITW-Eval) set. There are 4706 utterances and
37 611 trials in the VoxCeleb-1. There are 1202 ut-
terances and 721 788 trials in the SITW evaluation
(SITW-Eval).

3.2.2. NIST SRE corpus

The NIST SRE corpus was used to generate the
short-duration text-independent dataset. The SRE04-
08, Switchboard II phase 2, 3, and Switchboard Cellu-
lar Part 1, Part 2 comprise the training set. The final
training set includes 4000 speakers with 40 short utter-
ances each. Similarly, the enrollment and test sets are
derived from NIST SRE 2010. The enrollment speech
includes 150 male and 150 female speakers, each of
whom is enrolled by five utterances. The 4500 utter-
ances in the enrollment speech data are used to test
from the same 300 speakers. The trial list that was
generated contains 392 660 trials. The website GitHub
provides access to the trial list and the comprehensive
segmentation files.

3.3. Feature extraction

All experiments use a 64-dimensional input feature
from a 25 ms window with a 10 ms frameshift. The
experiments evaluate using features: LPCC, MFCC,
MFCC-LPCC, the proposed BGCC, BGLCC, and
BGLCC-MDCD. The 64-dimensional features were
extracted for LPCCs, with 32 for linear regression
along the time axis and 32 along the frequency

axis. The MFCCs used 64-dimensional features, and
the 64-dimensional MFCC-LPCC features contain
32-dimensional MFCC and LPCC features, respec-
tively. The use of delta 1/2 inputs is also a 64-
dimensional feature. For the proposed acoustic feature,
BGCC, BGLCC, the 64-dimensional feature vector
has been extracted, BGCC-MDCD, BGLCC-MDCD,
which contain 16 time-domain features, 16 frequency-
domain features, 16 counter-diagonal domain features,
16 principal-diagonal domain features, respectively.

3.4. Loss function

In (Schroff et al., 2015), the triplet loss was ini-
tially proposed to learn discriminatory image embed-
ding. The embeddings need to satisfy the following re-
lationship for model training to be successful. The co-
sine triplet embedded Loss (Zhang et al., 2018) for
training the model is:

∥f(sai ) − f(spi )∥
2

2
+ αmargin < ∥f(sai ) − f(sni )∥

2
2 ,

∀(f(sai ), f(spi ), f(s
n
i )) ∈ τ,

(15)

L =
N

∑
i

[∥f(sai ) − f(spi )∥
2

2
− ∥f(sai ) − f(sni )∥

2
2 + αmargin].

(16)
The cosine triplet embedding the loss function

L is used here, where τ is the batch of triplet, with
(sai , s

p
i , s

n
i ) is a triplet. N is the batch size. Samples of

speech from a specific “a” are sai , the anchor sample,
and spi , the positive sample with the same person. The
negative sample, sni , is a sample of speech from another
person “b”, so that a ≠ b. The αmargin is a user-tunable
hyper-parameter at the value of 0.25 that determines
the minimum distance between negative and positive
speech samples.

3.5. Implementation and reproducibility

The proposed discriminative acoustic feature
method uses the PyTorch (Paszke et al., 2017) toolkit
to conduct the experiment, and training using the
Triplet-loss (Schroff et al., 2015). The initial learn-
ing rate is 0.001 and lasts for 200 epochs. The exper-
iment embeds the cosine triplet loss, and the value of
the αmargin hyper-parameter is 0.25, which is the best
trade-off. The network is optimized using the Adam
optimizer with a minibatch size of 32 and softmax as
a classifier. The fully connected layers after the statis-
tic pooling layer have 512 nodes. The training was done
on a single Nvidia A100 GPU.

3.6. Evaluation metrics

We use the following metrics to evaluate the model
performance: the Equal Error Rate (EER, in %), and

https://github.com/wsstriving/DEL_Segments.git
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the minimum detection cost function at the prior prob-
ability of specifying the targeted speaker of (Min-
DCF*100), which is a standard-setting (Nagrani
et al., 2017), and partial AUC (pAUC) with α = 0
and β = 0.05, the pAUC represents the partial area
under the ROC curve, it meets the evaluation require-
ment of real-world applications that work on differ-
ent parts of ROC curves. It is a supplement evalu-
ation metric to the existing metrics. The pAUC is
defined by two false positive rate (FPR) parameters:
α and β, which is a detailed calculation (Bai et al.,
2020). The pAUCMetric evaluates the similarity be-
tween two speaker features by the squared Maha-
lanobis distance.

3.7. Results and analysis

3.7.1. Overall performance

Performance comparison of different acoustic fea-
tures. Table 2 and Fig. 2 show the performance of our
proposed acoustic features and the compared acous-
tic features on VoxCeleb-1, SITW, and NIST SRE
2010 datasets, respectively. Table 2 lists the results
in terms of EER, Min-DCF, and pAUC, Fig. 2 plots
the detection error trade-off (DET) curves of different
acoustic features under 10 s speech length that include
no dynamic features, using delta 1/2 dynamic fea-
tures and using MDCD dynamic features. The acous-
tic feature extraction level for the short-duration au-
dio signal, contains three conventional baseline fea-
tures, which are MFCC, LPCC, MFCC-LPCC, and
our proposed BGCC and BGLCC acoustic features.
The speech length ranges from 0.25 to 10 seconds, in-
cluding 3 segments.

From Table 2, on VoxCeleb-1, SITW, and NIST
SRE 2010 datasets, it can be observed that BGLCC-
MDCD acoustic feature significantly outperforms
MFCC, LPCC, and MFCC-LPCC in terms of EER,
Min-DCF, and pAUC, and BGLCC-MDCD acoustic
feature achieves better performance in short-duration
speaker verification.

Across the LPCC experiment in Table 2, on the
VoxCeleb-1 dataset, compared to LPCC features,
the proposed BGLCC features improve by 15.0%, com-
pared to LPCC-delta1/2 features, BGLCC-MDCD fea-
tures improve 19.0%, under 2 s duration speech length
in terms of EER.

Across the MFCC experiment in Table 2, on the
VoxCeleb-1 dataset, compared to MFCC features,
the proposed BGLCC features improve by 10.6%, com-
pared to MFCC-delta1/2 features, BGLCC-MDCD
features improve 15.0%, under 2 s duration speech
length in terms of EER.

Across the MFCC-LPCC experiment in Table 2,
on the VoxCeleb-1 dataset, compared to MFCC-LPCC
features, the proposed BGLCC features improve by
9.1%, compared to MFCC-LPCC-delta1/2 features,

BGLCC-MDCD features improve 13.3%, under 2 s du-
ration speech length in terms of EER.

At the same time, on the other speech with differ-
ent lengths from VoxCeleb-1, SITW, and NIST SRE
2010 datasets, the proposed BGLCC-MDCD acous-
tic features for short-duration speaker verification
achieve better performance, compared with conven-
tional MFCC, LPCC, and MFCC-LPCC fusion acous-
tic features. The comparison of the performance of the
baseline is shown in Table 2.

In order to visualize the effectiveness of our pro-
posed acoustic features on the different length speech,
we plot detection error trade-off (DET) curves for all
comparable features, as illustrated in Fig. 2. The per-
formance advantage of proposed BGLCC and MDCD
can also be seen from the DET curves in Fig. 2. For
example, the results of experiment 1 present the DET
curves of the LPCC acoustic feature under three con-
ditions: no dynamic features, using delta 1/2 dynamic
features, and using our MDCD dynamic features, un-
der 10 s speech length on the VoxCeleb-1 dataset; the
results of experiment 2 present the DET curves of
the LPCC acoustic feature under three conditions: no
dynamic features, using delta 1/2 dynamic features,
and using our MDCD dynamic features, under 10 s
speech length on the SITW dataset; the results of
experiment 3 present the DET curves of the LPCC
acoustic feature under three conditions: no dynamic
features, using delta 1/2 dynamic features, and using
our MDCD dynamic features, under 10 s speech length
on the NIST SRE 2010 dataset.

Similarly, experiments 4–6 represent the DET
curves of the MFCC acoustic feature under three con-
ditions, on VoxCeleb-1, SITW, and NIST SRE 2010
datasets, respectively; experiments 7–9 represent the
DET curves of the MFCC-LPCC acoustic feature un-
der three conditions, on VoxCeleb-1, SITW, and NIST
SRE 2010 datasets, respectively; experiments 10–12
represent the DET curves of the BGCC acoustic fea-
ture under three conditions, on VoxCeleb-1, SITW,
and NIST SRE 2010 datasets, respectively; and ex-
periments 13–15 represent the DET curves of the
BGLCC acoustic feature under three conditions, on
VoxCeleb-1, SITW, and NIST SRE 2010 datasets, re-
spectively.

The experimental results also show the lower DET
curves achieved using our proposed MDCD dynamic
features, compared to no dynamic features, and using
delta 1/2 dynamic features on VoxCeleb-1, SITW, and
NIST SRE 2010 datasets.

The proposed MDCD dynamic acoustic feature
achieves lower EER, Min-DCF, and highest pAUC
than delta 1/2, thus demonstrating that the proposed
multi-dimensional central difference dynamic features
perform better and are more effective than single-
dimensional dynamic features. The results of that com-
parison are listed in Table 2.
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Table 2. Comparison results of different acoustic features and proposed acoustic features under varying audio lengths
using the ResNet-34 network on VoxCeleb-1, SITW, and NIST SRE 2010 datasets.

Features Delta2 MDCD Duration
[s]

VoxCeleb-1 SITW NIST SRE 2010
EER
[%]

MinDCF pAUC
[%]

EER
[%]

MinDCF pAUC
[%]

EER
[%]

MinDCF pAUC
[%]

LPCC

– –
0.25

11.19 32.94 75.38 13.22 36.31 70.52 12.01 34.17 74.43√
– 11.18 32.92 75.39 13.20 36.29 70.54 12.00 34.15 74.44

–
√

11.13 32.83 75.46 13.15 36.24 70.66 11.95 34.09 74.54
– –

2
3.17 17.99 95.38 5.53 23.41 92.37 4.48 23.03 93.45√

– 3.16 17.98 95.39 5.52 23.40 92.40 4.46 23.01 93.47
–

√
3.11 17.92 95.46 5.47 23.35 92.46 4.40 22.95 93.58

– –
10

1.61 10.33 98.01 3.60 19.17 94.96 2.54 12.10 96.73√
– 1.60 10.32 98.03 3.58 19.16 94.98 2.52 12.09 96.75

–
√

1.54 10.27 98.10 3.53 19.10 95.04 2.46 12.02 96.84

MFCC

– –
0.25

11.04 32.52 75.74 12.52 35.83 72.23 11.50 32.93 75.01√
– 11.02 32.51 75.75 12.51 35.82 72.26 11.48 32.92 75.03

–
√

10.98 32.47 75.79 12.45 35.74 72.44 11.44 32.86 75.12
– –

2
3.01 17.90 95.40 4.46 23.01 93.53 3.33 18.07 95.27√

– 3.00 17.88 95.41 4.45 23.00 93.54 3.32 18.05 95.28
–

√
2.95 17.84 95.60 4.40 22.95 93.58 3.27 17.99 95.31

– –
10

1.37 10.12 98.34 3.24 17.96 95.32 2.11 10.83 97.62√
– 1.37 10.11 98.35 3.23 17.95 95.33 2.10 10.81 97.64

–
√

1.36 10.04 98.40 3.19 17.66 95.51 2.05 10.75 97.74

MFCC-LPCC

– –
0.25

10.97 32.47 75.82 12.42 35.73 72.47 11.41 32.82 75.17√
– 10.96 32.46 75.83 12.41 35.72 72.49 11.40 32.81 75.19

–
√

10.90 32.42 75.86 12.34 35.70 72.58 11.35 32.75 75.30
– –

2
2.96 17.79 95.44 4.37 21.98 93.73 3.28 18.01 95.30√

– 2.94 17.78 95.45 4.35 21.97 93.74 3.27 17.99 95.31
–

√
2.88 17.71 95.66 4.30 21.92 93.76 3.21 17.92 95.35

– –
10

1.36 9.92 98.36 3.17 17.99 95.38 2.05 10.75 97.72√
– 1.35 9.91 98.38 3.16 17.98 95.39 2.04 10.73 97.74

–
√

1.34 9.82 98.42 3.11 17.92 95.46 1.99 10.70 97.89

BGCC

– –
0.25

10.98 32.47 75.79 12.43 35.74 72.46 11.42 32.84 75.14√
– 10.97 32.46 75.80 12.42 35.73 72.48 11.40 32.83 75.15

–
√

10.91 32.42 75.84 12.35 35.71 72.57 11.36 32.77 75.28
– –

2
2.96 17.79 95.42 4.38 22.00 93.64 3.28 18.01 95.30√

– 2.95 17.78 95.44 4.37 21.98 93.65 3.27 17.99 95.31
–

√
2.90 17.72 95.64 4.31 21.92 93.69 3.23 17.94 95.34

– –
10

1.36 9.93 98.35 3.18 18.01 94.36 2.06 10.77 97.72√
– 1.36 9.92 98.36 3.17 17.99 94.38 2.05 10.75 97.74

–
√

1.35 9.84 98.41 3.13 17.94 95.44 2.00 10.72 97.84

BGLCC

– –
0.25

10.71 31.95 75.84 12.26 34.91 72.57 11.11 32.64 75.34√
– 10.70 31.94 75.85 12.25 34.90 72.58 11.10 32.62 75.36

–
√

10.58 31.42 75.89 12.05 34.62 72.64 10.95 32.22 75.84
– –

2
2.69 17.03 95.63 4.16 21.88 93.73 3.06 17.91 95.35√

– 2.67 17.02 95.64 4.15 21.87 93.74 3.05 17.91 95.36
–

√
2.55 16.95 95.72 3.99 21.02 93.78 2.86 17.57 95.72

– –
10

1.34 9.82 98.42 2.96 17.79 95.42 1.87 10.66 97.85√
– 1.34 9.82 98.43 2.95 17.78 95.44 1.85 10.64 97.87

–
√

1.32 9.37 98.48 2.66 16.82 95.94 1.63 10.34 98.00
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a) Experiment 1 b) Experiment 2 c) Experiment 3
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Fig. 2. The DET curves of different acoustic features and different dynamic features for speaker verification under varying
audio lengths using the ResNet-34 model on VoxCeleb-1, SITW, and NIST SRE 2010 datasets. The experiments 1 to
3, the DET curves indicate, that on VoxCeleb-1, SITW, and NIST SRE 2010, under 10 s speech length, the LPCC uses
no dynamic features, delta 1/2 dynamic features, and MDCD dynamic features, respectively. Similarly, experiments: 4–6
represent the MFCC method, 7–9 represent the MFCC-LPCC method, 10–12 represent the BGCC method, and 13–15

represent the BGLCC method.
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At the same time, in the experiments comparing
the different attributes of source information combina-
tion for short-duration speaker recognition (Das et al.,
2016), the proposed multi-source discriminative acous-
tic feature achieves consistent performance benefits
across short-duration speech dataset experiments.

3.7.2. Ablation experiments

To evaluate each component of the BGLCC-MDCD
feature, we conducted several ablation experiments
on VoxCeleb-1, SITW, and NIST SRE 2010 datasets,
where the results are shown in Tables 2 and 3, and
Figs. 2 and 3.

First, we evaluate the effectiveness of our proposed
enhancement of discriminative acoustic features. Ta-
ble 2 lists the EER, Min-DCF, and pAUC results of
different features on VoxCeleb-1, SITW, and NIST
SRE 2010 datasets. From Table 2, it can be obser-

Table 3. Ablation study for different multi-dimensional dynamic features based on BGLCC under varying audio lengths
using the ResNet-34 network on VoxCeleb-1, SITW, and NIST SRE 2010 datasets.

Methods Duration
[s]

VoxCeleb-1 SITW NIST SRE 2010
EER
[%]

MinDCF pAUC
[%]

EER
[%]

MinDCF pAUC
[%]

EER
[%]

MinDCF pAUC
[%]

MDCD-Th

0.25 10.67 31.90 75.88 12.19 34.80 72.62 11.04 32.29 75.43
2 2.65 16.99 95.68 4.08 21.72 93.81 3.01 17.89 95.42
10 1.32 9.71 98.46 2.91 15.69 95.96 1.83 10.62 97.89

MDCD-Fh

0.25 10.68 31.91 75.87 12.21 34.82 72.61 11.05 32.31 75.42
2 2.66 17.00 95.67 4.10 21.81 93.79 3.02 17.88 95.40
10 1.33 9.72 98.44 2.92 17.70 95.94 1.84 10.63 97.88

MDCD-Ph

0.25 10.70 31.94 75.85 12.25 34.85 72.59 11.09 32.34 75.38
2 2.68 17.02 95.65 4.14 21.84 93.76 3.05 17.90 95.37
10 1.35 9.82 98.42 2.95 17.73 95.37 1.86 10.65 97.86

MDCD-Ch

0.25 10.69 31.93 75.86 12.23 34.84 72.60 11.07 32.32 75.39
2 2.67 17.01 95.66 4.12 21.83 93.77 3.04 17.89 95.38
10 1.34 9.81 98.43 2.94 17.72 95.38 1.85 10.64 97.87

MDCD
0.25 10.58 31.42 75.89 12.05 34.62 72.64 10.95 32.22 75.84
2 2.55 16.95 95.72 3.99 21.02 93.78 2.86 17.57 95.72
10 1.32 9.37 98.48 2.66 16.82 95.94 1.63 10.34 98.00

a) Experiment (EER, VoxCeleb-1) b) Experiment (EER, SITW) c) Experiment (EER, NIST SRE 2010)
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Fig. 3. DET curves of different dimensional dynamic features on VoxCeleb-1 (a), SITW (b), and NIST SRE 2010 (c)
datasets under 10 s duration speech using the ResNet-34 model.

ved that the proposed acoustic feature vastly outper-
forms the baseline feature, and it is seen from Fig. 2
that the DET curve of using MDCD dynamic features
is lower than that without dynamic features, and us-
ing delta 1/2 dynamic features. The main reason for
the performance improvement is our proposed BGLCC
feature which employs the Bark-scaled Gauss and the
linear filter bank superposition methods, it can remedy
the weakness of the sparse high-frequency information
and insufficient acoustic feature extraction by enhanc-
ing more high-frequency domain information. Simi-
larly, MDCD through four different dimension differ-
ences captures better dynamics features of voiceprints,
and it can further compensate for the limited and
sparse dynamic acoustic features of short-duration au-
dio signals. The experimental results also prove this.

To verify that different multi-dimensional cen-
tral differences can capture dynamic features of the
voiceprint, we conducted several ablation experiments,
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where the results are shown in Table 3 and Fig. 3.
Compared to the diagonal domain, the time-frequency
domain central difference captures better dynamic fea-
tures, and the MDCD achieves the lower EER and
Min-DCF. Figure 3 visualizes the DET curve of each
dimension branch under the 10 s length utterance. The
time-frequency domain performs better than the diago-
nal domain which is since the signal is mainly analyzed
in the time-frequency domain.

Hence, the proposed BGLCC-MDCD discrimina-
tive acoustic features are the key reasons for the per-
formance improvement in short utterance speaker veri-
fication, which: (a) extracts speaker-reliant character-
istics successfully, from the BGLCC features to remedy
the weakness of insufficient acoustic features to solve
the problem of less emphasizes high-frequency infor-
mation from the conventional acoustic feature extrac-
tion filter design; (b) then, the MDCD method can
capture better dynamics features of voiceprints from
short-duration audio signals.

4. Conclusion

In this paper, we propose the Bark-scaled Gauss
and the linear filter bank superposition acoustic fea-
tures extraction methods to enhance high-frequency
domain information of short-duration audio, to deal
with the problem of the high-frequency band feature
sparsity. Compared with traditional acoustic features
such as MFCC, LPCC, etc., our proposed BGLCC fea-
ture extraction method emphasizes a focus on both the
low-high frequency band of speech, which is more help-
ful in extracting more discriminative acoustic features
to compensate the sparsity of the effective informa-
tion. Furthermore, a multi-dimensional central differ-
ence dynamic acoustic feature is proposed following the
BGLCC spectrum characteristics, aiming to capture
more diverse dynamic information. The MDCD fea-
ture concatenate information of the speaker from four
different dimensions, this can explain why it performs
significantly better than traditionally used speech fea-
tures in short utterance speaker verification tasks un-
der various conditions.

The proposed methods are evaluated on well-known
datasets, VoxCeleb-1, SITW, and NIST SRE 2010
corpus. From the experimental results, the proposed
method achieves continuous improvement over tra-
ditional acoustic features in all test sets. The abla-
tion experiments further indicate that the proposed
approaches substantially improve the enhanced dis-
criminant features for speaker verification tasks. Fu-
ture work involves the combination of acoustic feature-
based and model-based compensations for short-
duration speech speaker verification, and to improve
the performance, accuracy, and richness of acoustic fea-
ture extraction in short-duration audio signals.
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