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Selection of clusters based on internal indices
in multi-clustering collaborative filtering

recommender system
Urszula Kużelewska

Abstract—The successful application of a multi-clustering-
based neighborhood approach to recommender systems has
led to increased recommendation accuracy and the elimina-
tion of divergence related to differences in clustering methods
traditionally used. The Multi-Clustering Collaborative Filtering
algorithm was developed to achieve this, as described in the
author’s previous papers. However, utilizing multiple clusters
poses challenges regarding memory consumption and scalability.
Not all partitionings are equally advantageous, making selecting
clusters for the recommender system’s input crucial without
compromising recommendation accuracy.

This article presents a solution for selecting clustering schemes
based on internal indices evaluation. This method can be
employed for preparing input data in collaborative filtering
recommender systems. The study’s results confirm the positive
impact of scheme selection on the overall recommendation
performance, as it typically improves after the selection process.
Furthermore, a smaller number of clustering schemes used as
input for the recommender system enhances scalability and
reduces memory consumption. The findings are compared with
baseline recommenders’ outcomes to validate the effectiveness of
the proposed approach.

Keywords—multi-clustering; collaborative filtering; evaluation
of clustering schemes

I. INTRODUCTION

RECOMMENDER systems (RSs) emerged as a response
to the accelerated expansion of the Internet and, conse-

quently, a large increase in distributed data. They are electronic
applications to help users reach the information or resource
they are interested in, quickly and conveniently. Usually, their
outcome is collected in the form of a list of recommender
items, typically ranked, which is presented to users [1], [2].

Recommender systems are universal enough to be applied to
various problems from different domains. The most common
are internet stores, with the originator, Amazon, as well as
music and movie services, e.g, LastFM or Netflix with their
original recommenders: respectively, Audioscrobbler [3] and
Cinematch [4]. Other examples are: internet news servers [5],
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travel attractions or hotels [6], resources for e-learning [7],
food [8] and photos [9].

Considering the type of input data and base methods used to
generate recommendations, recommender systems are divided
into content-based, collaborative filtering (CF) and knowledge-
based [10]. Content-based approach (also called content-based
filtering) utilizes attribute (characteristic) vectors of items
created from text. The text is connected to the items, e.g., it
comes from their description, including all additional informa-
tion, such as a title or an author. Knowledge-based methods
are better for one-time users, e.g., in stores selling cameras
(people do not often buy cameras). The approach uses both
technical attributes of the items as well as user preferences.
The attributes are often weighted.

Collaborative filtering techniques are a very attractive so-
lution in the domain of RSs [11], [2]. They search for
similarities among users (user-user approach) or items (item-
item approach). The system considers users’ historical data,
including their search records, internet browsing history, and
rated items. Collected data are furtherly used for searching
similarity among users, with an underlining supposition that
users with comparable activity select the same items. As a
consequence, recommenders are able to evaluate the level
of interest of those users on different items which are new
to them [12]. Collaborative filtering methods are particularly
recognized for generating accurate recommendations [13].

Although many novel techniques, which are complex and
sophisticated, to generate proposition lists were proposed by
researchers, there is still a demand to design a comprehensive
recommender system that is accurate, scalable, and time
efficient [12]. Moreover, they involve coping with high data
sparsity regardless of its size. It is expressed by both vertical
and horizontal scalability. Vertical scalability corresponds with
providing recommendation lists in real-time despite data size,
whereas horizontal scalability is related to data sparsity [10].

Clustering algorithms are attractive tools for addressing
the vertical scalability problem [14]. They identify groups of
similar items (or users) that can contribute to recommender
systems for a priori identification of neighbourhood objects
related to a target one (e.g., a target user is a user to whom
recommendations are generated). Clustering algorithms, on the
other hand, have their weak points as well. First of all, most
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of them have input parameters, which different values highly
influence the final results. Moreover, the outcomes can differ
even though the values remain the same. It is related to the
way how they work - their purpose is not to find a globally
optimal partition but a local one, starting with different initial
points [15]. Different clustering schemes affect the accuracy
of recommendations generated by recommender systems due
to changes in the neighbourhood range of target objects.

The challenges identified above can be accompanied by new
methods based on clustering. They are described as multiple
clusterings, multi-clustering, or ensemble clustering [16], [17].
They can vary in detail; however, their common idea is to
implement multiple runs of clustering algorithms or to apply
multiple applications of a partitioning process on different
input data. In [17], the authors used a general expression
of multiple clusterings and divided the algorithms into the
following types: ensemble clustering, clustering with multiple
criteria, distributed clustering and three-way clustering.

The Multi-Clustering Collaborative Filtering algorithm, as
described in [18], operates with multiple clustering schemes
instead of relying on a single one. These schemes are gen-
erated through multiple runs of a clustering method, each
using different values of an input parameter. Such an operation
fulfils the ensemble clustering purpose, which is ”to find a
combined clustering result based on multiple clusterings of
the dataset” [17]. The clustering method utilized in this study
is k − means, which is a widely used and comprehensive
partitioning solution. It was employed with varying values for
the number of clusters to generate different clustering schemes
for the Multi-Clustering Collaborative Filtering algorithm.

The first experiments, which were described in [18], vali-
dated M − CCF against baseline predictors: an item-based
and a single-clustering recommender systems. The item-based
approach (IBCF ) identifies neighbourhood using k Nearest
Neighbours algorithm and the single-clustering techniques
(SCCF ) utilize only one partitioning scheme for this pur-
pose. The advantage of M − CCF was gained in terms
of recommendation quality. Unfortunately, other aspects of
performance worsen, specifically the time it took to generate
recommendations, especially when compared to the solution
using only one clustering scheme as input. It is related to
an additional amount of time required to select one of the
clustering schemes. Moreover, retaining multiple clustering
schemes as input results in high memory consumption, which
negatively impacts the algorithm’s scalability.

The first idea of selecting the clusters that M − CCF
includes as a data model was presented in [19]. This paper
extends the experiments to include a larger dataset, comparing
the results against the abundance and parameters of the dataset,
and allowing generalization of the conclusions.

Indicating the particularly effective clustering schemes re-
duces the number of clusters to forward on M−CCF ′s input.
As selection tools, internal indices were used, to measure
the level of compactness and separability of the clustering
schemes. It was decided to measure the systems’ accuracy as
it is an elementary indicator for comparing their performance.
Although there are many other indices, such as diversity,

serendipity, and novelty, they are used to evaluate systems’
general performance, as a supplement to accuracy.

Our main contributions are as follows:
• Selection of clusters to forward to M−CCF input is ben-

eficial for its performance in terms of recommendation
accuracy and coverage, measured respectively by RMSE
and Coverage.

• Criteria based on internal indices to assess the quality of
clustering schemes is an appropriate approach to identify
valuable clusters, regardless of data size or density, and
thus to provide selected clusters to M − CCF input.

The article is structured as follows: the following sec-
tion provides an overview of the neighborhood identification
problem using clustering algorithms within the context of
Recommender Systems. This section also explores various
existing solutions along with their respective advantages and
disadvantages.

Moving on, Section III presents the proposed multi-
clustering algorithm, named M − CCF , in comparison to
alternative clustering techniques. Subsequently, Section IV
focuses on the cluster selection procedure.

The subsequent section presents the results obtained from
conducted experiments, comparing the multi-clustering ap-
proach with baseline algorithms. The baseline algorithms
include a standard item-based collaborative filtering method
based on the kNN technique (IBCF ), and a system employ-
ing a single-clustering scheme (SCCF ).

Finally, the last section concludes the paper, summarizing
the findings and implications of the study.

II. BACKGROUND AND RELATED WORK

Although many new, often complex, solutions are proposed,
the approaches based on neighbourhood determination are still
intensively developed and often outperform other algorithms
[20], [21].

A baseline method for neighbourhood identification is k
Nearest Neighbours (kNN ). It works as follows: it searches
for the most similar k users (or items) to the target one
and determines them as the target neighbourhood. It must be
admitted, that all user-user or item-item similarities must be
calculated for this purpose. Nonetheless, the processing time
is reduced due to further calculations being performed on a
smaller neighborhood size. This reduction in size is a result
of employing multiple clustering schemes and selecting only
relevant clusters for processing. This method is a reference
approach used to neighbourhood calculation in recommender
systems based on collaborative filtering [13]. An example
application is [22], a genetic-based recommender system, in
which the neighbourhood was hybridized with the latent factor
models. Experiments with this technique and M − CCF are
described in [23].

The algorithm based on k Nearest Neighbours is an at-
tractive solution due to its simplicity and reasonably accurate
results. Nevertheless, it has certain disadvantages, as well. The
main disadvantages are: low scalability and susceptibility to
data sparsity issues [12].
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The answer to these challenges can be clustering algorithms
due to the way of neighbourhood identification. This process
is executed once for all data and in an offline mode. As a
result, all cluster members belong to one neighbourhood area.

Although clustering algorithms improve the efficiency of
the neighbourhood identification process, they introduce other
problems to solve. They are the following: a considerable de-
crease in prediction accuracy and diversity in recommendation
results. The second issue is related to the fact that many popu-
lar clustering methods are non-deterministic and therefore their
results, which are clustering schemes, can diverge from each
other notwithstanding the same values of input parameters.
The following section, Section II-A includes an explanation
of this phenomenon and its impact on recommendations.

The multi-clustering approach, instead of one partitioning
scheme, performs on a set of clusterings, therefore the most
relevant can be selected in order to model the neighbourhood.
Hence, the negative effect of non-determinism can be elim-
inated. Section III describes M − CCF algorithm with the
advantages of the multi-clustering application. This algorithm
works as the item-item approach, therefore the items are
clustered.

A. Clustering Approach to Neighbourhood Identification

Generally, several problems need to be considered to
achieve high-quality clustering. First of all, a final partitioning
is determined by the values of parameters given to the algo-
rithms’ input. It means that the discovery of optimal values
of these parameters is essential but demanding. Moreover,
evaluating clusters to select for the recommendation process is
also challenging. Furthermore, some partitioning schemes may
be more appropriate for some particular applications, whereas
others operate more excellently in other solutions [24]. The
additional problem of using clusters in recommender systems
is decreasing prediction accuracy. It results from incorrect
neighbourhood identification of the data located on the borders
of groups. In these circumstances, the objects from other
groups located close to the border data may appear to be more
similar to the active user. This occurs due to the influence
of neighboring clusters and the selection process, potentially
affecting the perceived similarity between the user and certain
items. It is discussed in detail in [18].

Indeed, a selection procedure for the clustering algorithm
is crucial. It plays a vital role in determining the most
relevant and effective clustering schemes to be utilized in the
recommender system. Simplicity and high scalability make
k−means one of the most popular clustering techniques [15],
particularly useful in collaborative filtering recommender sys-
tems. A variant of k−means algorithm, bisecting k−means,
was proposed for privacy-preserving applications [25]. The
authors in [26] applied k − means for items clustering in a
movie recommender with online learning automata-based user
profiling. As a result, the final accuracy of recommendations
increased. Another method, ClustKNN [27] was used to handle
large-scale RS applications. Two-stage clustering was applied
in [28] to implement a concept of so called RatingBubbles.

They appear when users and items are grouped into ho-
mogeneous clusters. An interesting algorithm, BICE, was
proposed in [29]. It uses a bio-inspired ensemble clustering
method exploiting Mussels Wandering Optimization (MWO)
and Particle Swarm Optimization for travel recommendations.
In [30], a biclustering approach, with clusters’ overlap, is used
for neighbourhood formation. The authors obtained a strong
partial similarity with active users’ preferences. One of the
recent solutions [31] applies hierarchical clustering to extract
clusters from a hierarchy of candidates automatically. It can be
applied as a preprocessing step in an arbitrary recommender
system. The method does not require critical parameters, such
as a number of clusters and directly minimizes data sparsity
within the groups. Bi-MARS algorithm [32] was particularly
efficient for the precise neighbourhood identification of a target
user. The authors employed a bi-clustering approach by cre-
ating a lattice of bi-clusters to find the closest neighbourhood
of similar users. The algorithm benefited prediction accuracy
and was both vertically as well as horizontally scalable.

Nevertheless, the k − means solution, as well as many
other clustering methods, do not always guarantee clustering
convergence. Moreover, they require input parameters to be
given, e.g., a number of clusters, as well. Typically, different
initialization points affect the different results of partitioning
[33].

III. PRESENTATION OF M-CCF ALGORITHM

The proposed method performs on several types of clus-
tering schemes that are delivered for M − CCF algorithm’s
input. It is implemented in the following way (for the original
version, with one type of a clustering scheme, check in [18],
[23]).
Step I. Multiple clustering
The first stage of the M − CCF algorithm is to identify
clusters in the input data. In the experiments presented below,
the items were clustered - it is explained in the following
section. The process is repeated several times and all
outcomes (for comparison - in a traditional single-clustering,
only one partitioning is generated) are saved in order to
transfer them to M − CCF . In the experiments described in
this paper, k−means was selected as a clustering algorithm,
which was executed for k = 5, 20, 50, 100 to generate the
schemes (denoted by C set) for one M − CCF RS system.
This is illustrated in Figure 1 presenting both versions of
M − CCF . On the left side the old version is illustrated -
several clustering schemes, but with the same value of k, are
transferred to the RS. The right side presents the new variant
of M − CCF , which was used in the experiments described
below - several clusterings are sent to the algorithm as well,
however, the value of k was diverse.

Step II. Building M-CCF RS system
It is an essential concern to have accurate neighbourhood
modelling for all data objects. It is performed by iterating
every input object and identifying the most appropriate group
from C set for it. In the case of items clustering, every item
needs to have the most appropriate cluster identified. The
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Fig. 1. Comparison of different inputs in M − CCF algorithm

term the most appropriate is related to the cluster whose
center object is the most similar to the particular input data.
Then, when all input objects have their associated clusters,
traditional separate CF systems are built on these clusters,
which provide input data sets for them. Consequently,
M − CCF system is built - an aggregate of recommender
algorithms created on particular clusters.

Step III. Recommendation generation
First of all, a relevant RS from M − CCF is selected, when
recommendations for a target user are generated. It also utilizes
the similarity between the target user’s and cluster centers’
ratings. Then, the process of recommendation generation is
executed as it is implemented in the traditional collaborative
filtering approach. However, searching for similar items is re-
stricted to the group connected to the particular recommender
in M − CCF algorithm.It means that if a target user needs
to evaluate a particular item’s rating, the item’s similarity to
other items is searched only within the cluster to which the
particular item belongs.

In this case, when a neighbourhood is represented by a
single-clustering scheme, the items or users located on the
border of clusters have fewer neighbours in their nearby area
than the ones located in the middle of a group. Moreover,
if the clusters are located close to one another, it may occur
that more similar neighbours are the ones belonging to the
other clusters.The multi-clustering avoids such situations, as
it recognizes clusters where particular users or items are
very close to its center. A more detailed description of this
phenomenon is presented in [18], [23].

A major advantage of M − CCF algorithm is the better
quality of an active user’s neighbourhood modelling, therefore
resulting in high precision of recommendations, including
sparse cases. However, multiple clustering schemes to keep
on the recommender system’s input require more memory and
additional time for the step of appropriate cluster identification.
Moreover, some schemes are not used in the recommendation
process as long as they do not contain the optimal location of
objects. It is worth examining whether the selection procedure
is viable and whether the criteria based on internal indices’
value improve the performance of M − CCF .

IV. CLUSTER SELECTION TECHNIQUES

Each clustering algorithm is distinguished by its own
strengths and weaknesses. On a particular data set, different
methods or the same algorithms with different input parameter
values usually lead to various results. To address this issue,
a concept of cluster ensemble or clustering aggregation
emerged to integrate several partitonings into a final outcome
[34]. One of the approaches to this concept that generates
a set of base clustering schemes is to run a single clustering
algorithm with different initial sets of parameters several times
[35]. Then, a cluster selection procedure can be applied to
determine the relevant ones to a particular problem.

Cluster ensembles are widely used in data mining tasks,
including recommendation generation. In [35] a recommender
system is proposed, which uses k − means-based method
called KMCE, to select a final result from many base
clustering schemes. It evaluates the local credibility of each
cluster label, building the relation between clusters, and
generating the final outcome. The authors used Rand index
as one of the evaluation criteria. Recommendation accuracy
was raised in [14] by applying a combination of PCA and
k−means methods. The authors used Dunn index to evaluate
clusterings. In [36], the authors used k − means and, to
avoid convergence in clustering results, applied a procedure
of initial centroid selection, which discovered underlying data
correlation structures. They compared the proposed solution to
base one, where cluster centers are randomly initialised. As a
result, recommendation accuracy and coverage were improved.

Evaluation of clustering algorithms’ performance is not
trivial due to the lack of group labels and precisely formulated
objectives. In some cases, if the labels can be delivered for
evaluation, it is possible to use them in so-called external
indices, e.g. Rand index, Fowlkes-Mallows score [15]. If they
are unavailable, the only option is to use internal measures
exploiting similarity among data objects [15]. In the experi-
ments described below, the following measures were applied:
Silhouette (SH) [37], Davies-Bouldin (DB) [38] and Calinski-
Harabasz (CH) [39].

The Silhouette Coefficient contains 2 main components: a
and b, which are defined by (1):

SH = ∀yi∈Y SH(yi), SH(yi) =
a(yi)− b(yi)

max(a(yi), b(yi))

a(yi) =
1

∥Ci∥ − 1

∑
j∈Ci,i̸=j

d(yi, yj)

b(yi) = min
k ̸=i

1

∥Ck∥
∑
j∈Ck

d(yi, yj)

(1)

The component a(yi) calculates an average distance be-
tween yi (data point belonging to the dataset Y ) object and
all other objects in the same cluster Ci, whereas b(yi) is
an average distance between yi object as well, but all other
objects in the nearest cluster Ck.

The range of SH is [-1,1], with naturally correct clusters
was identified by higher values. It better works on separable
clusters, otherwise its scores are around 0.
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The Davies-Bouldin coefficient is described by (2):

DB =
1

∥C∥
∑

Ci,Cj∈C

max
i̸=j

diamCi + diamCj

D(Ci, Cj)

diamCi
= ∀k∈Ci

d(ci, k), diamCj
= ∀m∈Cj

d(cj ,m),

D(Ci, Cj) = d(ci, cj)

(2)

The components diamC stand for a cluster diameter, which
is an average distance between the cluster center cj and
all other cluster’s points, whereas D is a distance between
clusters, calculated by the distance between their centers (ci,
cj). The required value is around 0 that is related to well
separable clusters.

This index quantifies the average dispersion between clus-
ters and within clusters, providing valuable insights into the
quality of the clustering solution. A lower value suggests better
separability and more distinct clusters, which is desirable
in clustering analysis. When the Calinski-Harabasz index
approaches 0, it indicates that the clusters are well-defined and
the items within each cluster share common characteristics,
making them distinguishable from items in other clusters. That
means it is suitable for separable and convex clusters. It is
calculated as follows (3):

CH =
Sep(C)

Coh(C)
, Sep =

∑
Ci∈C ∥Ci∥ · d(ci − c)

∥C∥ − 1
,

Coh =

∑
Ci∈C

∑
j∈Ci

d(yj , ci)∑
Ci∈C(∥C∥ − ∥Ci∥)

(3)

CH value is related to similarity of objects to their own clus-
ters (cohesion - Coh) compared to other clusters (separation
- Sep). The d(ci − c) component in Sep calculates distance
between the cluster center ci and the global centroid c. The
d(yj − ci) component in Coh calculates distance among the
cluster center ci and the other cluster points yj . The highest
values of CH mean better result partitions.

The indices described above were applied to evaluate clus-
tering schemes generated by k−means algorithm in order to
eliminate the useless ones. The detailed idea and a procedure
of application of this index in the process of clusters’ selection
are described in Section V-A.

V. EXPERIMENTS

The experiments were performed with the purpose to verify
whether the selection of clusters based on internal indices is
efficient in M − CCF recommender system. In other words,
whether the performance of M −CCF is improved when the
schemes negatively evaluated by the indices are removed from
the input data.

The experiments were divided into 2 phases: clustering with
clusters’ evaluation and generating recommendations with a
measurement of their accuracy. In the first phase, k−means
was taken as it is the most common clustering algorithm and
was successfully deployed in the previous version of M −
CCF approach [18]. The final accuracy is evaluated against
both SCCF and IBCF recommender systems.

Two subsets of the MovieLens dataset [40] were taken for
this purpose. Originally, the data contained 25 million ratings,
however, in the experiments, randomly selected samples were
taken. The subsets are presented in Table I: the small one,
consisted of 100 000 ratings (100k) and a big one composed
of 1 million ratings (1M). Both datasets were split into training
and testing parts in the proportion of about 100 to 1. Note,
that the small set is more sparse than the big one - it contains
a smaller number of ratings per item: 9.06 in comparison with
60.49.

A. Clustering and Evaluation of Clustering Schemes

The clustering process was executed several times with the
following values of k: 5, 20, 50 and 100. The numbers were
selected during many experiments as having the most impact
on the recommendation accuracy. Furthermore, it used various
distance measures: cosine-based, Euclidean, CityBlock and
Tanimoto-based. It was decided to cluster the items (movies) -
for this reason, an item-item recommender system was selected
to use in the following phase. The opposite version - users’
clustering - was also examined. However, the problem arose in
the groups’ content. They were composed of one great cluster
that contained about 50% of data, and many very small ones
with many users remained nonclustered.

Every run of k − means was repeated 6 times, and each
result (a clustering scheme) was evaluated regarding compact-
ness and separability. The following indices were taken for this
purpose: Silhouette (S), Davies-Bouldin (DB) and Calinski-
Harabasz (CH). The implementation in Python’s Scikit Learn
library was applied [41]. Figures 2 and 3 present evaluation
results on the small and big datasets respectively, for each of
the 6 schemes. The best clustering schemes were utilized as
input sets for M −CCF algorithm in the second phase of the
experiments.

During the evaluation of clustering schemes, the values
of internal indices were analysed. Both indices, Silhouette
and Calinski-Harabasz, indicate the best scheme with the
highest values, with Silhouette not exceeding 1. Whereas,
Davies-Bouldin index’s desired value is the lowest, around 0.
Although all of them can detect well separable and compact
clusters, the evaluation process was not a straightforward task.
In numerous cases, the evaluation values of particular indices
were not considerably diversified to imply an appropriate
result, and additionally, the indices were not consistent. In
the definitive selection, the following rules were applied: the
importance of a level of difference in every particular index’s
value and voting of the indices in the case of inconsistency.

Figure 2 presents evaluation results on the 100k dataset. The
left top graph’s data was clustered with cosine-based distance.
The solid line (identically on all graphs) denotes an assessment
of 5 groups and has a clear appointment of all indices with the
2nd and 5th scheme as the best results. The dashed line denotes
the evaluation of 20 groups and both Calinski-Harabasz and
Silhouette indices indicate their 5th scheme as the best result,
whereas the Davies-Bouldin index has the lowest value for
the 6th clustering, but the difference between the 5th and
6th result is very slight. Both evaluation lines - CH and S



108 U. KUŻELEWSKA

- for 50 group schemes (dotted lines) are rather flat, which
means they were not able to distinguish any result opposed
to DB, which indicates its 5th clustering as the best one. A
similar situation is observed in the case of 100 group schemes
(dash-dotted lines) in which all indices’ graphs are rather equal
with extremely slight fluctuations on both schemes: the 2nd
and 4th. Finally, the following schemes were selected for a
recommendation phase: the 2nd, the 5th (5 groups), the 5th,
the 6th (20 groups), and the 5th (50 groups).

The right top graph in the same figure (Figure 2) presents
analogous results, however, a distance measure during the
clustering process was Euclidean. These schemes are more
difficult to select due to the lack of very distinct points on the
evaluation graphs. However, in order to do further research
in this space complete, some schemes were selected in this
case, as well: the 3rd, the 5th (5 groups), the 2nd, the 4th (20
groups), the 6th (50 groups), the 1st, the 2nd, the 3rd (100
groups) due to slightly better indices’ performance.

Corresponding results, but for a CityBlock distance as a
clustering metric, are shown on the left bottom graph in the
same figure. The results were evaluated unambiguously for the
5 group clusterings, with the 3rd and 4th schemes specified
as the best. In the following case, the results of the 20 group
clusterings were rather clear with the 1st and 3rd schemes
selected. For the 50 group clusterings, only the 1st scheme
was taken, however, the values of indices were not very
unambiguous. The final case, the set of 100 group clusterings,
was evaluated unanimously and the following schemes were
chosen: the 3rd, the 5th.

Figure 3 shows evaluation graphs for clusters obtained on
the big dataset - 1M . In the case of a cosine-based clustering
metric, the following schemes were selected. When k−means
had k = 5, the best clusterings were the 1st and the 6th.
Indeed, the Silhouette index was the lowest for the 6th scheme,
but considering its nearly flat line and distinct values of the
remaining indices, it was finally chosen for further research.
The other k values were unclear due to small differences in
index values and a lack of consensus onindex votes. However,
the following cases were selected: the 3rd, the 6th (20 groups),
the 1st (50 groups), and the 2nd (100 groups).

Evaluation in the Euclidean distance case was particularly
interesting due to the high values of both indices S and CH .
For 5 group schemes, S was from the interval [0.84-0.85],
whereas CH from [350-432]. Ultimately, the 6th value was
taken as it had the highest values. For 20 group schemes,
the Silhouette index was slightly lower [0.81,0.82], but for all
schemes, its values were rather equal. For this reason, the 2nd
result was selected as the best due to the optimal values of the
remaining indices. Similar procedures and reasons for option
were performed for 50 group schemes - the 1st partitions were
denoted as the best. The last set of results was completely
different: values of S were near 0, and DB was 2 times
higher than the previous ones. Calinski-Harabasz index was
quite high - about 130 - however its values were equal. For
this reason, it was decided not to take any scheme for k = 100.

Changing a clustering distance metric to CityBlock gener-
ated similar results to the previous one: both indices Silhouette

Fig. 2. Evaluation of clustering schemes on 100k dataset
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Fig. 3. Evaluation of clustering schemes on 1M dataset

and Calinski-Harabasz were high, and the Davies-Bouldin
index was low. This advantage was present in all schemes
for every value of k. Finally, the following clusterings were
selected: the 1st (5 groups), the 3rd (20 groups), the 6th (50
and 100 groups) due to optimal values of both indices, DB
and CH; S was equally distributed in the compared results.

In the last case, with the Tanimoto distance during cluster-
ing, was not as good as the previous cases: DB was rather
high, S was near 0. Only the Calinski-Harabasz index was a
bit valuable. Hence, only this one was taken into consideration
and the following schemes were selected: the 4th (5 groups),
the 4th (20 groups), the 1st (50 groups), and the 2nd, the 6th
(100 groups).

B. Evaluation of Recommendations

The best clustering schemes were forwarded to M −CCF
recommender system, which was used to estimate missing
ratings in the testing part of the datasets and then the calculated
values were examined in contrast to the original ones in order
to determine a difference in precision. Attention was paid, de-
spite the accuracy, to the completeness of the recommendation
lists generated by the systems

During this phase, the results obtained with the Multi-
Clustering Collaborative Filtering algorithm (M-CCF) were
compared against two baseline recommenders: the classical
item-item memory-based approach (IBCF) and a system that
utilized a single-clustering (SCCF) for neighborhood model-
ing.

The evaluation focused on assessing the accuracy and com-
pleteness of the recommendation lists generated by each sys-
tem. Evaluation criteria were related to the following standard
main metrics:

• Root Mean Squared Error (RMSE) described by (4) a
baseline way to measure the error in model evaluation
studies. It is a square root of an arithmetic mean of the
squares of the predictions between the model and the
observations (represented respectively, as rreal(xij) and
rest(xij) for user xi and a particular item j). The rating
rreal is a real user’s rating, which is an integer number
from interval [2,3,4,5]. The lower value of RMSE refers
to a better prediction ability.

RMSE =

√∑n
i=1

∑k
j=1 (rreal(xij)− rest(xij))

2

n · k
rreal ∈ [2, 3, 4, 5], rest ∈ R+

(4)

• Coefficient of Determination (R2) described by (5) [42]
is an indicator that allows assessment of prediction using
a simple linear regression. It measures a reproduction
quality of real ratings by their estimated values. This is
the value to be maximized towards 1 - the higher value of
R2 means the more the cloud of points narrows around
the regression line.
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R2 = 1−
∑n

i=1

∑k
j=1 (rreal(xij)− rest(xij))

2∑n
i=1

∑k
j=1 (rreal(xij)− r(xi))

2

rreal ∈ [2, 3, 4, 5], rest ∈ R+

r(xi) =
1

k

k∑
j=1

rreal(xij), rreal ∈ [2, 3, 4, 5]

(5)

• Coverage described by (6) measures the system’s re-
sponsiveness to a required length of a recommendation
list. It is a portion of generated predictions to the needed
length. If a system covered all positions in the recommen-
dation list, its Coverage is 100%. During the evaluation
process, there were cases in which the estimation of
ratings was not possible. It often occurs in both SCCF
and M −CCF when the item for which the calculations
are performed, is not present in the same cluster to which
the already rated items belong. In every experiment, it
was assumed that both RMSE and R2 are significant if
the value of Coverage is greater than 90%.

Coverage =

∑N
i=1

∑k
j=1 rest(xij)

N
· 100%, rest ∈ R+

(6)

The symbols in the equations, as well as the method of
calculation, are characterised in detail below. In all equations
R stands for the set of positive real numbers, n is a number
of users taken for evaluation, k is a number of ratings to
be estimated and a number of required recommendations is
denoted as N .

The performance of the compared approaches was evaluated
in the following way. Before the clustering step, the whole
input dataset was split into two parts: training and testing. The
testing part’s size was about 10% of the original data - detailed
information is presented in Table I. The two last columns
contain ratings\user and ratings\item ratio, respectively. In
this step, the evaluation process remains consistent across all
the experiments presented in the paper. The same test data is
used throughout the evaluation, ensuring that the comparison
between different recommender systems is more objective and
fair. During the evaluation, the ratings from the test data are
temporarily removed, simulating a real-world scenario where
the recommender systems need to predict these missing values.

TABLE I
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset No. of No. of No. of r\u r\i
ratings users items ratio ratio

tr
ai

ni
ng

small - 100k 99 835 549 11 024 181.85 9.06
big - 1M 991 116 5 430 16 384 182.52 60.49

te
st

small - 100k 1 176 110 969 10.69 1.21
big - 1M 8 962 1088 3840 8.24 2.33

In the evaluation process, the values of ratings from the test
part were removed and estimated by the recommender sys-
tems. Although the test set itself remained constant during the
experiments, the values to remove and estimate were selected
randomly every time. The difference between the original and
the calculated value was taken for RMSE calculation.

The purpose was to establish whether clustering evaluation
indices are helpful in identifying the most valuable clusters,
in order to increase the precision of recommendation lists,
furthermore reducing the consumption of memory in M −
CCF algorithm.

This part of the experiments started from systems’ evalua-
tion on the small dataset, which contained 10 times fewer users
and ratings with a slight difference in items’ number. Tables II
and III report the results - RMSE and R2 respectively - for
all the configurations, Cosine-based, LogLikelihood, Pearson
correlation, both Euclidean and CityBlock distance-based and
Tanimoto coefficient were used to calculate affinity between
items. In both tables mentioned above, the column with
Pearson correlation is missing due to the value of Coverage
being below 90% in every case.

To have a compact view of the obtained results, without
reduction of the general concept to confirm, in the experiments
only selected results are reported, which were generated by
both SCCF and M − CCF recommender systems with
remaining all IBCF outcomes presented. The configurations
chosen for the experiments were carefully selected to represent
both the best-performing settings and the most common or
widely used configurations in terms of accuracy. The examples
which were omitted had either similar or worse values and
would not affect the general conclusions.

The tables contain an evaluation of IBCF in the first row
and selected configurations of SCCF and M−CCF systems
that are formatted in the following way:

• SCCF-distance-x - x clusters generated by k −means
using cosine-based (cos) or Euclidean (eu) distance,

• M-CCF-distance-x-[y]-[z] - clusters generated by k −
means with k = x, y, z (y and z are optional) in 6 runs,
using one of the following distance measures: cosine-
based (cos), Euclidean (eu), CityBlock (cb) or Tanimoto
(tan),

• M-CCF-distance-x-[y]-[z]-s - clusters generated by k−
means on the conditions described above, however, the
procedure of clustering schemes was applied.

In the case of IBCF algorithm the results are not very
good: RMSE ranges from 0.91 to 0.94, R2 varies from 0.61
to 0.76 with quite high Coverage from 95% to 99%. SCCF
method obtained better values in some configurations: for
data split into 5 groups for both clustering metrics: Euclidean
and cosine-based: RMSE ranges from 0.88 to 0.93 with
Coverage comparable to the previous results. In the case of
the SCCF method, rather than using just one configuration,
a range of values is presented.

It refers to the characteristic of k − means clustering
algorithm, which often generates different results even if the
values of its input parameters remain the same. Hence, it
was launched 6 times and every particular clustering scheme
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TABLE II
RMSE AND COVERAGE OF THE ALGORITHMS ON 100K DATASET. THE BEST VALUES ARE IN BOLD.

Algorithm Similarity Measure
Cosine-based LogLikelihood Euclidean CityBlock Tanimoto

IBCF 0.94 (95%) 0.94(95%) 0.92(95%) 0.94 (99%) 0.91 (95%)
SCCF-cos-5 0.93-0.95 (95%) 0.93-0.94(95%) 0.91-0.93(95%) 0.92-0.94 (95%) 0.91-0.92 (95%)
SCCF-cos-20 0.94-1.00 (93%) 0.93-0.99(93%) 0.93-0.98(93%) 0.93-0.99 (93%) 0.92-0.98 (93%)
SCCF-cos-50 0.98-1.00 (91%) 0.98-1.00(95%) 0.97-0.99(97%) 0.97-0.99 (98%) 0.96-0.99 (98%)
SCCF-cos-100 - 0.96-1.03(94%) 0.95-1.02(97%) 0.96-1.02 (97%) 0.95-1.02 (98%)
SCCF-eu-5 0.90-0.91 (95%) 0.90-0.91(97%) 0.89-0.90(98%) 0.90-0.91 (99%) 0.88-0.89 (99%)
SCCF-eu-20 1.00-1.08 (93%) 0.99-1.08(96%) 0.99-1.08(98%) 1.00-1.10 (98%) 0.99-1.02 (98%)
SCCF-eu-50 - 1.00-1.03(95%) 1.02-1.03(97%) 1.03-1.05 (98%) 1.00-1.02 (98%)
SCCF-eu-100 - 0.99-1.00(94%) 0.99-1.02(96%) 1.02-1.03 (97%) 0.99-1.02 (97%)
M-CCF-eu-5 0.91 (95%) 0.91 (95%) 0.88 (95%) 0.91 (95%) 0.90 (95%)
M-CCF-eu-5-20 0.94 (93%) 0.98 (92%) 0.92 (93%) 1.01 (94%) 0.99 (92%)
M-CCF-eu-5-20-s 0.94 (93%) 0.98 (92%) 0.93 (93%) 1.01 (94%) 0.98 (92%)
M-CCF-cos-5-20-50 0.96 (91%) - 0.94 (90%) - -
M-CCF-cos-5-20-50-s 0.93 (92%) 0.99 (90%) 0.91 (91%) 1.00 (91%) 0.98 (90%)
M-CCF-cb-5-20-50 0.95 (90%) 0.95 (90%) 0.93 (90%) 0.96 (90%) 0.93 (90%)
M-CCF-cb-5-20-50-s 0.94 (93%) 0.94 (93%) 0.92 (93%) 0.95 (93%) 0.93 (93%)
M-CCF-tan-5-20-50 0.97 (90%) - - - -
M-CCF-tan-5-20-50-s 0.96 (91%) 0.96 (90%) 0.93 (91%) 0.96 (90%) 0.95 (90%)

TABLE III
R2 AND COVERAGE OF THE ALGORITHMS ON 100K DATASET. THE BEST VALUES ARE IN BOLD.

Algorithm Similarity Measure
Cosine-based LogLikelihood Euclidean CityBlock Tanimoto

IBCF 0.76 (95%) 0.73(95%) 0.69(95%) 0.61 (99%) 0.69 (95%)
SCCF-cos-5 0.74-0.77 (95%) 0.75-0.77(95%) 0.73-0.74(94%) 0.72-0.76 (95%) 0.73-0.74 (95%)
SCCF-cos-20 0.70-0.76 (93%) 0.70-0.77(93%) 0.70-0.75(93%) 0.67-0.76 (93%) 0.67-0.74 (93%)
SCCF-cos-50 0.72-0.76 (91%) 0.71-0.75(91%) 0.72-0.76(91%) 0.71-0.77 (91%) 0.68-0.75 (90%)
SCCF-cos-100 - - - - -
SCCF-eu-5 0.68-0.71 (95%) 0.69-0.73(95%) 0.67-0.70(95%) 0.67-0.70 (95%) 0.70-0.71 (95%)
SCCF-eu-20 0.72-0.73 (93%) 0.72-0.73(93%) 0.72-0.73(93%) 0.72-0.73 (94%) 0.72-0.73 (93%)
SCCF-eu-50 - - - 0.71-0.72 (92%) -
SCCF-eu-100 - - - - -
M-CCF-eu-5 0.70 (95%) 0.74 (95%) 0.67 (95%) 0.67 (95%) 0.67 (95%)
M-CCF-eu-5-20 0.68 (93%) 0.71 (92%) 0.68 (93%) 0.70 (94%) 0.70 (92%)
M-CCF-eu-5-20-s 0.74 (94%) 0.74 (93%) 0.68 (93%) 0.74 (94%) 0.74 (93%)
M-CCF-cos-5-20-50 0.73 (91%) - 0.71 (90%) - -
M-CCF-cos-5-20-50-s 0.74 (92%) 0.71 (90%) 0.73 (91%) 0.72 (91%) 0.71 (90%)
M-CCF-cb-5-20-50 0.75 (90%) 0.77 (90%) 0.71 (90%) 0.77 (90%) 0.75 (90%)
M-CCF-cb-5-20-50-s 0.78 (93%) 0.77 (93%) 0.72 (93%) 0.76 (93%) 0.75 (93%)
M-CCF-tan-5-20-50 0.75 (90%) - - - -
M-CCF-tan-5-20-50-s 0.75 (91%) 0.75 (90%) 0.73 (91%) 0.75 (90%) 0.75 (90%)

was evaluated individually and for this reason, the results are
presented in a range. It also points out that the scheme selected
for the recommendation process is not guaranteed optimal.

If the Coverage was below 90% the result was not dis-
played in the tables - instead, there is a mark ’-’. In the case
of M − CCF algorithm, the outcomes are comparable or
frequently better. For instance, the configuration M −CCF −
eu− 5 and Euclidean-based similarity obtained RMSE=0.88
and the configuration M − CCF − cos − 5 − 20 − 50 − s

and the same similarity obtained RMSE=0.91. The best
values of R2 (R2 = 0.78) measure were for the configuration
M − CCF − cb− 5− 20− 50− s. It must be admitted that
the values of Coverage, although over 90%, are slightly lower
than in the previous cases. The most important issue is that this
experiment shows that the cluster schemes selection in terms
of compactness and separability, for M − CCF algorithm
contributed mostly towards the performance of the model -
usually, the values of both metrics RMSE and R2 as well as
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Coverage were improved. As an example, the configuration
M −CCF − cos− 5− 20− 50− s can be presented, which
RMSE value decline was 0.03, whereas R2 increased by 0.02
with simultaneous progress in Coverage.

The following experiment aimed to evaluate the systems
on the big dataset, which contained 1 million ratings. Tables
IV and V report the results - RMSE and R2 respectively.
Similarity and clustering distance measures were the same as
in the previous tests. Their configurations with schemes and a
number of clusters were the same as well.

The results obtained by IBCF algorithm were comparable
to the previous outcomes on the small dataset. Only a slight
decline was observed in R2 values. In the case of SCCF , an
improvement is visible - the values of RMSE are lower for
nearly all similarity measures examined, and the Coverage is
higher. The narrowing spread of values can be noted as well.
A greater density of ratings in the data positively impacts the
results.

The experiments and evaluation have revealed that the
multi-clustering approach (M−CCF ) shows greater progress
compared to the single-clustering approach (SCCF ) and the

TABLE IV
RMSE AND COVERAGE OF THE ALGORITHMS ON 1M DATASET. THE BEST VALUES ARE IN BOLD.

Algorithm Similarity Measure
Cosine-based LogLikelihood Pearson corr. Euclidean CityBlock Tanimoto

IBCF 0.95 (99%) 0.95(99%) 0.92(98%) 0.93(99%) 0.94 (99%) 0.91 (99%)
SCCF-cos-5 0.94(98%) 0.94(99%) - 0.93(99%) 0.93(99%) 0.91(99%)
SCCF-cos-20 - - - - - -
SCCF-cos-50 0.90-0.91(96%) 0.90-0.91(98%) - 0.90-0.91(99%) 0.89-0.91(99%) 0.89-0.90(99%)
SCCF-cos-100 0.91(94%) 0.91(97%) - 0.90(98%) 0.90(99%) 0.90-0.91(99%)
SCCF-eu-5 0.94-0.95 (98%) 0.94-0.95(99%) - 0.92-0.93(99%) 0.93-0.94 (99%) 0.91-0.92 (99%)
SCCF-eu-20 0.94-0.95 (97%) 0.94-0.95(98%) - 0.93-0.94(99%) 0.93-0.94 (99%) 0.91-0.92 (99%)
SCCF-eu-50 0.95(96%) 0.95(96%) - 0.93-0.94(99%) 0.94(99%) 0.92(99%)
SCCF-eu-100 0.91-0.92(93%) 0.91-0.92(96%) - 0.90-0.91(98%) 0.91(98%) 0.90(98%)
M-CCF-eu-5-20-50 0.95 (93%) 0.95 (94%) 0.92(92%) 0.93 (93%) 0.95 (94%) 0.92 (93%)
M-CCF-eu-5-20-50-s 0.94 (96%) 0.94 (96%) 0.91(95%) 0.93 (96%) 0.94 (96%) 0.91 (96%)
M-CCF-cos-5-20-50-100 0.87 (92%) 0.90(91%) 0.90(91%) 0.86 (92%) 0.90(91%) 0.89 (91%)
M-CCF-cos-5-20-50-100-s 0.88 (94%) 0.90 (93%) 0.90(92%) 0.87 (94%) 0.90 (93%) 0.89 (93%)
M-CCF-cb-5-20-50 0.95 (93%) 0.95 (93%) 0.93(92%) 0.93 (93%) 0.95 (93%) 0.92 (93%)
M-CCF-cb-5-20-50-s 0.94 (95%) 0.95 (95%) 0.92(93%) 0.93 (95%) 0.94 (95%) 0.92 (95%)
M-CCF-tan-5-20-50-100 0.93 (96%) 0.94 (96%) 0.90(95%) 0.92 (96%) 0.93 (96%) 0.91 (96%)
M-CCF-tan-5-20-50-100-s 0.93 (97%) 0.94 (96%) 0.90(95%) 0.92 (96%) 0.93 (96%) 0.91 (96%)

TABLE V
R2 AND COVERAGE OF THE ALGORITHMS ON 1M DATASET. THE BEST VALUES ARE IN BOLD.

Algorithm Similarity Measure
Cosine-based LogLikelihood Pearson corr. Euclidean CityBlock Tanimoto

IBCF 0.66(99%) 0.68(99%) 0.63(98%) 0.59(99%) 0.64 (99%) 0.64 (99%)
SCCF-cos-5 0.68(98%) 0.69(98%) 0.63(98%) 0.65-0.66(98%) 0.65-0.67(98%) 0.66(98%)
SCCF-cos-20 - - - - - -
SCCF-cos-50 0.66(96%) 0.66(96%) 0.64(95%) 0.65-0.66(96%) 0.66(96%) 0.65(99%)
SCCF-cos-100 0.64-0.65(94%) 0.64-0.65(94%) 0.62-0.64(93%) 0.64-0.65(94%) 0.63-0.64(94%) 0.63-0.64(95%)
SCCF-eu-5 0.67-0.68 (98%) 0.67(98%) 0.63-0.64(98%) 0.63-0.64(98%) 0.66 (98%) 0.63(98%)
SCCF-eu-20 0.68-0.69(97%) 0.67-0.68(97%) 0.63-0.65(97%) 0.66-0.67(97%) 0.67 (97%) 0.65(97%)
SCCF-eu-50 0.68-0.69(96%) 0.68-0.69(96%) 0.64-0.65(95%) 0.67-0.68(96%) 0.67(96%) 0.65(96%)
SCCF-eu-100 0.64(93%) 0.64-0.65(93%) 0.64-0.65(91%) 0.64-0.65(93%) 0.64-0.65(93%) 0.63-0.64(93%)
M-CCF-eu-5-20-50 0.67 (93%) 0.67 (94%) 0.62(92%) 0.65 (93%) 0.65 (94%) 0.63 (93%)
M-CCF-eu-5-20-50-s 0.69 (96%) 0.69 (96%) 0.64(95%) 0.68 (96%) 0.68 (96%) 0.65 (96%)
M-CCF-cos-5-20-50-100 0.63 (92%) 0.62(91%) 0.62(91%) 0.61 (92%) 0.62(91%) 0.61 (91%)
M-CCF-cos-5-20-50-100-s 0.64 (94%) 0.66 (93%) 0.63(92%) 0.63 (94%) 0.65 (93%) 0.65 (93%)
M-CCF-cb-5-20-50 0.68 (93%) 0.68 (93%) 0.63(92%) 0.66 (93%) 0.67 (93%) 0.65 (93%)
M-CCF-cb-5-20-50-s 0.67 (95%) 0.67 (95%) 0.63(93%) 0.65 (95%) 0.66 (95%) 0.64 (95%)
M-CCF-tan-5-20-50-100 0.68 (96%) 0.68 (96%) 0.62(95%) 0.65 (96%) 0.67 (96%) 0.64 (96%)
M-CCF-tan-5-20-50-100-s 0.68 (96%) 0.69 (96%) 0.62(95%) 0.65 (96%) 0.67 (96%) 0.64 (96%)
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classical item-item memory-based approach (IBCF ). The val-
ues of RMSE are considerably lower than in the experiments
on the small dataset. The lowest value is 0.87 (for both
similarity measures cosine-based and Euclidean), and it is the
best result in all experiments described in this paper. Denser
data were also beneficial, with Coverage values which are
higher than analogous outcomes obtained on the small dataset.

Comparison between the two versions of M −CCF algo-
rithm: without and with the selection of clustering schemes,
shows that this step also improves the system’s performance,
however, the progress is not as great as was observed for
100k dataset. It can result from the fact that the clusters were
evaluated well by the clustering indices, but any significant
differences in their values were not observed.

Taking into consideration all the experiments presented in
this article, it can be observed that the reduction in a number
of clustering schemes did not negatively affect M − CCF
method - its performance was not declined, or it declined
slightly. Furthermore, in numerous cases, the cluster selection
procedure not only proved beneficial to the M−CCF method
without cluster selection but also improved the performance
of both the IBCF and SCCF approaches. The recommenda-
tions generated by the selected clusters were more accurate and
comprehensive compared to the recommendations provided by
the unselected clusters.

VI. CONCLUSIONS

In this paper, a recommender system that is based on multi-
clustering to model the neighbourhood of a target user, with
internal indices-based clustering scheme selection was pre-
sented. The concept of M−CCF algorithm is to store multiple
clustering schemes on its input and dynamically matching
every item that takes part in the recommendation generation
process with the most appropriate cluster. As it advances
in accuracy, it faces substantial challenges around memory
consumption and time efficiency compared to recommender
systems in which the neighbourhood of objects is identified
by single-clustering schemes.

Clustering algorithms are not generally deterministic and
thus may generate different clustering schemes even for the
same value of an input parameter. Similarly, the results
obtained by k − means can be either similar or different
from each other. Similar partitionings are redundant and do
not contribute to the recommendation phase. The internal
indices evaluate clustering schemes in terms of compactness
and separability that allows making the selection of clustering
schemes to forward for M − CCF input.

An exclusive set of partitions definitely benefits memory
usage by M−CCF algorithm and, moreover, often its perfor-
mance - RMSE and Coverage. The results of the executed
experiments confirmed that the performance of M − CCF
algorithm is often better when it works on a reduced set of
input clusters. It was especially noticeable when the size of
data was great (a dataset with 1 million ratings) - RMSE was
lower and Coverage higher. Additionally, the technique still
becomes free from the negative impact on the precision pro-
vided by the selection of an inappropriate clustering scheme

as it occurs in the case of recommender systems in which
the neighbourhood of objects is identified by single-clustering
schemes.

The upcoming experiments will aim to verify the effec-
tiveness of the proposed approach on larger datasets, such as
those containing 10 million ratings. This evaluation on more
substantial datasets will assess the scalability and performance
of the Multi-Clustering Collaborative Filtering (M-CCF) al-
gorithm in handling real-world, extensive datasets, thereby
ensuring its practical applicability.

Additionally, the impact of different types of clustering al-
gorithms will be investigated on the overall performance of the
recommender system. By comparing the results obtained using
various clustering algorithms, the study will identify the most
suitable clustering technique that enhances recommendation
accuracy and completeness.

Moreover, instead of relying on the output of a single
clustering algorithm, the experiments will explore using a
mixture of clustering schemes as input for the recommender
system. This approach aims to assess whether combining
multiple clustering methods can further improve recommen-
dation quality and provide more diverse and personalized
recommendations for users.

The evaluation will not be limited to accuracy alone; other
characteristics of M − CCF , such as diversity, serendipity,
and novelty, will also be measured. These aspects of the
recommendations are crucial in providing users with novel
and unexpected suggestions, contributing to an enriched user
experience and engagement.

Overall, these comprehensive experiments will provide a
deeper understanding of M−CCF ’s performance, scalability,
and adaptability, paving the way for its practical implementa-
tion in real-world, large-scale recommender systems.
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