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Abstract. Face sketch synthesis (FSS) is considered as an image-to-image translation problem, where a face sketch is generated from an 

input face photo. FSS plays a vital role in video/image surveillance-based law enforcement. In this paper, motivated by the recent success of 

generative adversarial networks (GAN), we consider conditional GAN (cGAN) to approach the problem of face sketch synthesis. However, 

despite the powerful cGAN model’s ability to generate fine textures, low-quality inputs characterized by the facial sketches drawn by artists 

cannot offer realistic and faithful details and have unknown degradation due to the drawing process, while high-quality references are inacces- 

sible or even unexistent. In this context, we propose an approach based on Generative Reference Prior (GRP) to improve the synthesized face 

sketch perception. Our proposed model, that we call cGAN-GRP, leverages diverse and rich priors encapsulated in a pre-trained face GAN 

for generating high-quality facial sketch synthesis. Extensive experiments on publicly available face databases using facial sketch recognition 

rate and image quality assessment metrics as criteria demonstrate the effectiveness of our proposed model compared to several state-of-the-art
methods.
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1. INTRODUCTION

In security and law enforcement, police agencies can quickly
identify potential suspects by automatically retrieving the sus-
pect’s photos from the mugshot database [1]. Actually, the face
photo of criminal suspects may not be available, and the face
sketch of the likely suspect, drawn by expert artists based on
the description of eyewitnesses, is an alternative way to assist
in face sketch matching applications [2]. In addition to security
applications, Face Sketch Synthesis (FSS) can be used in di-
verse digital entertainment applications. Face sketches are be-
coming more and more popular amongst social network users
and smartphones, where face sketch is utilized as profile pho-
tos or avatars. However, face sketch synthesis and recognition
may yield in challenging problems due to the significant dis-
crepancy in texture and structure between the facial photo and
facial sketch.

FSS techniques have been classified into two groups,
namely data-driven and model-driven strategies [3]. Data-
driven strategies synthesize facial sketch patches using a lin-
ear combination of similar training photo-sketch pairs. Model-
driven strategies are generally based on the trained model,
which can directly synthesize facial sketches from facial pho-
tos after learning an offline mapping function between two het-
erogeneous modalities.

Data-driven models synthesize a facial sketch of a test photo
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by linearly combining candidate facial sketch patches chosen
from the training facial photo-sketch pairs. For instance, Tang
and Wang [4] proposed synthesizing facial sketches using the
principal component analysis technique to get the coefficients
used in the synthesis process. However, the linear hypothesis
restricted the capability to characterize the non-linear aspect
between facial photos and sketches. Liu et al. [5] introduced
a method via Locally Linear Embedding (LLE) to synthesize
face sketches from face photos while the K-Nearest Neigh-
bor (K-NN) is used to search similar neighbors at the image
patch level. Zhang et al. [6] synthesized face sketches using
similarity and prior knowledge between different facial image
patches. Regarding the similarity between neighboring facial
image patches, Wang and Tang [2] employed Markov Random
Fields (MRF) in the FSS process and then utilized belief prop-
agation to generate facial sketches. Zhou and al. [7] introduced
a combination of K-neighbour patches into the MRF architec-
ture named Markov Weight Fields (MWF), to resolve their de-
formation issue. Song et al. [8] proposed a fast synthesized
method using Spatial Sketch Denoising (SSD) problem.

Deep learning, on the other hand, has recently been gain-
ing interest and has been extensively applied to related prob-
lems such as image style transfer, image super-resolution, im-
age classification, and image fusion [9, 10, 11, 12]. For the
particular issue at hand, Zhang et al. [13] designed a model us-
ing a Convolutional Neural Network (CNN) to learn the end-
to-end facial photo-to-facial sketch mapping. More recently,
inspired by their significant contributions to different image-
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Fig. 1. Facial sketches synthesized by Cycle-GAN, cGAN and the pro-
posed cGAN-GRP method. (Zoom in for the best view)

to-image translation problems [14], GANs have proven to be
the most performing among model-driven FSS methods . Dif-
ferent facial sketch synthesis approaches based on GANs have
been proposed, demonstrating significant improvements. For
instance, Zhu et al. [15] developed an unpaired GAN-based
method named Cycle-GAN for transferring images between
different modalities using unpaired data. However, the gen-
erated face sketches contain some noise. Wang et al. [16]
introduced a back-projection based on a data-driven technique
to improve GAN-based FSS. Bi et al. [17] developed a multi-
layer pyramid framework to extract the multi-scale data and
train a multi-scale conditional GAN to learn the mapping func-
tion. Zhu et al. [18] employed knowledge transfer for learn-
ing the facial photo and sketch features separately by learn-
ing two models simultaneously. Zhang et al. [19] presented
a dual-transfer facial photo-sketch synthesis model that syn-
thesized more recognizable facial structures while preserving
high matching accuracy.

Although the facial sketch generated by the conditional
GAN-based method preserves fine texture, as shown in Fig.1,
noise and blur accompanying the fine texture usually appear
in the generated sketches as a result of the pixel-to-pixel map-
ping. To enhance the perceptual quality of the generated facial
sketches, we propose a model based on the Generative Refer-
ence Prior, that is widely-used in blind restoration and image
super-resolution, to reduce the appearance of noise and blur-
ring in the synthesized face sketch [20, 21, 22]. Our proposed
cGAN-GRP model exploits extra and various prior information
incorporated in a pre-trained facial GAN (such as StyleGAN2
[23]) to restore textures and structures as close to the real ones
as possible, thus achieving a higher perceptual quality. Our
contribution in this paper is threefold. First, we have adopted
the conditional GAN for generating the facial sketch from the
facial photo. Second, we have proposed improving the percep-
tual quality of synthesized facial sketches using the Genera-
tive Reference Prior approach. Third, the proposed synthesis
method strategy is benchmarked and compared favorably to the
state-of-the-art synthesis methods, demonstrating a significant
performance improvement.

2. PROPOSED METHOD

We describe below the overall architecture of our proposed
cGAN-GRP approach along with a problem formulation, and
details of each module of the proposed cGAN-GRP frame-
work. Our proposed cGAN-GRP architecture combines two
GAN models, namely the conditional GAN model for face
sketch synthesis (cGAN) and Generative Reference Prior
(GRP), to enhance the perceptual quality of the synthesized
face sketch. The overall cGAN-GRP framework is depicted in
Fig.2.

A. Conditional GAN model for the face sketch synthesis

We briefly describe the notations used to represent the cGAN
for synthesized facial sketch. Depending on the M training
facial sketch-photo pairs, the purpose is to produce the output
s, generated face sketch, from an observable facial image t.

As shown in Fig.2 (cGAN model part), conditional Gener-
ative Adversarial Networks (cGAN) are a type of generative
network that attempt to train a non-linear mapping function
from the observable facial image t and a random noise vector
z to create a sketch x, cGAN : {t,z} 7→ x instead of {z} 7→ x as
Generative Adversarial Networks (GANs) do.

The generator G attempts to produce f ake face sketches that
are unable to be differentiated by the discriminator D against
the real sketches painted by professional artists. Simultane-
ously, the discriminator D attempts to differentiate the f ake
of the generator G among the real, as depicted in Fig.2. The
conditional generative adversarial network objective [14] is ex-
pressed as follows:

G ∗ = argmin
G

max
D

LcGAN(G ,D)+λLL1(G ), (1)

where LcGAN is the cGAN loss, LL1(G ) is the regularization
loss, and λ is utilized to make a balance within the LcGAN lose
and the LL1(G ) loss. The LcGAN has the following definition:

LcGAN(G ,D) = Et,x∼Pdata(t,x)[logD(t,x)]+

Et∼Pdata(t),z∼Pz(z)[log(1−D(t,G (t,z)))],
(2)

and the LL1(G ) is expressed as follows:

LL1(G ) = Et,x∼Pdata(t,x),z∼Pz(z)[∥(x−G (t,z))∥] (3)

The discriminator D in the cGAN model is exactly a clas-
sifier. Its aim is to learn to differentiate the real data from the
fake data generated by G . Any network appropriate to the fa-
cial image data could be used. For the discriminator, in our
case, the PatchGAN [24] is utilized as the convolutional clas-
sifier. We adopt an architecture based on U-Net [25] as the
generator G .

B. Generative Reference Prior model

As shown in Fig. 1 and Fig.6, noise and blur attached to fine
texture appear in the generated sketches by cGAN due to the
pixel-to-pixel mapping on the one hand and the low-quality
facial sketches drawn by artists and the unknown degradation
caused by the drawing process on the other hand. To solve
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Fig. 2. Overview of cGAN-GRP framework. The framework combines two models, conditional GAN (cGAN) and Generative Reference Prior
(GRP). The GRP model composes of a blur and noise removal module (such as U-Net) and a pre-trained face GAN (such as StyleGAN2) as a
generative prior module.

this issue, we propose a new framework based on the Genera-
tive Reference Prior, which significantly reduces the noise and
blurring in the synthesized face sketch. Our proposed GRP
model takes advantage of extra and various prior information
incorporated in a pre-trained facial StyleGAN2 to reconstruct
realistic textures and structures, aiming to achieve a higher per-
ceptual quality.

Given an input face photo (here, the synthesized facial
sketch x by the cGAN model), the Generative Reference Prior
aims to assess a high-perceptual quality of the facial photo
(here, the enhanced synthesized facial sketch ŷ) that resembles
the high-quality ground truth photo ŷ as closely as possible in
terms of texture and structure, and realness.

Our proposed GRP is composed of two sub-models: the blur
and noise removal module (such as U-Net[25]) and the gener-
ative prior module (such as StyleGAN2 [23]). These two sub-
modules are mapped by a code and several intermediate layers
of Spatial Feature Transform (SFT) [26]. More details of these
components are provided hereafter.

Blur and noise removal module is implemented as a U-Net
architecture aiming to eliminate complicated degradation and
obtain two features: multi-spatial FSpat features and the latent
Flat features. The U-Net formulation is as follows:

Flat ,FSpat =U-Net(x), (4)

Flat maps the test photo into the latent code in the pre-trained
StyleGAN2, whereas FSpat modulates StyleGAN2 features.

Generative prior module a pre-trained GAN model, such
as StyleGAN2, encapsulates a learned distribution of facial
features within its convolutional weights, known as the gen-
erative prior [27, 28]. We take advantage of these pre-trained
facial GANs to generate diverse and rich facial details. One

common method for exploiting generative priors involves map-
ping the input image to its most similar latent codes, denoted
as Z, and subsequently producing the corresponding output us-
ing a pre-trained GAN [27, 28, 29]. Alternatively, intermediate
convolutional features (FGAN) of the closest face can be gener-
ated, as they offer more detail and can be adjusted by input
features to enhance fidelity [22]. In our task, using the latter
method, given the latent features Flat of the input photo (result
of the U-Net, Eq.(4)), the first step is to map it to interme-
diate latent codes W , i.e., the intermediate space transformed
from Z with several Multi-Layer Perceptron (MLP) [29]. Sub-
sequently, the latent codes W generate GAN features for every
resolution scale by passing through every convolution layer in
the pre-trained StyleGAN2. the formulas are as follows:

W = MLP(Flat),

FGAN = StyleGAN(W ).
(5)

Multi-spatial features FSpat are utilized to adjust the pre-
trained facial GAN features FGAN to perform realistic results
and faithful details while maintaining high fidelity. Specifi-
cally, we generate two transformation parameters (α , β ) from
the input FSpat by several intermediate convolutional layers at
each resolution scale. Hereafter, the vector FGAN is scaled and
shifted to produce the modulation (α , β ). The formulas are
expressed as follows:

α,β =Convolu(FSpat),

Fout put = SFT (FGAN | α,β ) = α ⊙FGAN +β .
(6)

Consequently, SFT has the advantages of directly incorporat-
ing prior information and effective modulation of input images,
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performing the best balance between texture faithfulness and
fidelity to produce the final sketch ŷ.

C. Objective functions

The objective functions for training our GRP consist of i) re-
construction loss, ii) adversarial loss, and iii) identity preserv-
ing loss.

C.1. Reconstruction Loss : To restrict the output sketch ŷ to
be as similar as possible to the ground-truth facial photo y, we
use the perceptual loss [30] and the most utilized L1 loss as the
reconstruction loss function Lreco, expressed below:

Lreco = λL1 ∥ŷ− y∥1 +λperc ∥ψ(ŷ)−ψ(y)∥1 , (7)

where ψ denotes the pre-trained VGG-19 model [31]. λL1 and
λperc are loss weights of L1 and Lreco, respectively.

C.2. Adversarial Loss: We use this loss function Ladve to
boost our GRP to generate realistic textures and structure. As
in StyleGAN2 [23], we adopt the logistic loss [32], described
as follows:

Lreco =−λadveEŷ so f t plus(D(ŷ)), (8)

where the loss weight is denoted by λ and the discriminator is
represented by D .

C.3. Identity-Preserving Loss: We consider this loss func-
tion in the GRP architecture to encourage preserving identity.
Similar to perceptual loss [30], we utilize the pre-trained Ar-
cFace [33] network for its ability to capture the principal fea-
tures required for discrimination. The identity-preserving loss
Lide is described as follows:

Lide = λide ∥υ(ŷ)−υ(y)∥1 , (9)

where υ symbolises the pre-trained ArcFace [33] and λide
indicates the loss weight.

C.4. Overall objective loss: The overall objective of GRP
model is a sum of the aforementioned losses:

Ltotal = Lreco +Ladve +Lide. (10)

The setting of loss weights are as follows: λl1 = 0.1, λperc = 1,
λadve = 0.1 and λide = 10.

Fig. 3. Some facial image examples and their sketches from the CUFS
database. These three photo-sketch pairs are from the XM2VTS,
CUHK Student, and AR datasets, respectively.

3. EXPERIMENTAL RESULTS AND ANALYSIS

A. Settings

A.1. Dataset: Our proposed method has been validated on
the public University of Hong Kong (CUHK) Face Sketch
Database (CUFS) [2]. In CUFS Database, there are 606 facial
images and their associated facial sketches penciled by expert
artists. These facial photos are collected from three datasets,
including the CUHK Student database [4], the XM2VTS
database [34], and the AR database [35], which yields 188,
295, and 123 face photo-sketch pairs, respectively. Fig.3 de-
picts some facial photos and sketches from this database. Fol-
lowing the standard settings [36, 37, 16], we utilize 268 photos
and their sketches to train the model and the rest (338 samples)
for testing.

A.2. Implementation details: The cGAN-GRP architecture
combines two networks, the cGAN network (Fig.2 part cGAN
model) for synthesized facial sketch and the Generative Ref-
erence Prior model (Fig.2 part GRP model). For the cGAN
model, we have adopted the source codes from here1 to syn-
thesize the face sketch in our scenario keeping the same experi-
mental parameters and settings, and then we trained the model
on the CUFS database. While for the GRP model, we have
used the pre-trained model from here2, where the model has
been trained on the FFHQ dataset [38].

A.3. Criteria: We considered three widely-used performance
indices as criteria for quantitative evaluation, namely, the
“Learned Perceptual Image Patch Similarity (LPIPS)” [39]
metric, the “Structure Co-occurrence Texture (Scoot)” [40]
metric, and the face sketch matching rate by employing the
“Null-space Linear Discriminant Analysis (NLDA)” [41]. The
two former criteria, LPIPS and Scoot, are full-reference im-
age quality assessment metrics to objectively assess the facial
sketch synthesis quality. The facial sketches made by the pro-
fessional artist are taken as reference photos, and even the ref-
erence sketches have been enhanced using the GPR model and
retaken as a reference for our approach to restoring unknown
degradation due to the drawing process, as shown in Fig.4. The
generated sketches are used as distorted photos. Lower LPIPS
scores demonstrate that the approach synthesizes better facial
sketches in terms of perceptual quality. Higher Scoot values
generally demonstrate the best similarities between a gener-
ated face sketch and its related target facial sketch.

The latter criterion, face sketch matching rate, is an alter-
nate way to assess the capability of synthesized facial sketch
methods quantitatively [42, 36, 43]. Such a higher sketch
recognition rate (NLDA rate) indicates better-synthesized fa-
cial sketch quality and a more effective sketch generation ap-
proach [44, 45] without losing its identity. To accomplish the
face sketch recognition experiments using the NLDA method,
we randomly selected 150 synthesized facial sketches and their
associated facial sketches painted by the professional artists for

1https://github.com/phillipi/pix2pix.
2https://github.com/TencentARC/GFPGAN.
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training. The remaining 188 synthesized facial sketches are
used as the gallery test. By randomly partitioning the data, we
repeat the process 20 times.

Fig. 4. High-quality synthesized sketch and the improved hand-drawn
face sketch using the proposed cGAN-GRP and GRP models , respec-
tively. The photo and its corresponding hand-drawn sketch are from the
CUFS database.

A.4. Comparison with the state-of-the arts: For evaluating
the effectiveness of the proposed strategy, we considered vari-
ous state of the art methods for comparison, including LLE[5],
SSD[8], MRF[2], MWF[7], Cycle-GAN[15], BP-GAN[16]
and GAN[14]. The LLE, MWF, MRF, and SSD techniques
are considered data-driven approaches, while the BP-GAN,
cGAN, Cycle-GAN, and our proposed cGAN-GRP are model-
driven.

B. Results and discussion

B.1. Quantitative evaluation: Fig.5 provides the statistics of
LPIPS and Scoot values on the CUFS database as boxplots,
and Table 1 shows the quantitative evaluation metrics for each
approach used for comparison. The best results are highlighted
in bold font. The results from Table 1 and Fig.5 demon-
strate that our proposed cGAN-GRP attains the best values
of LPIPS and Scoot while preserving the higher face sketch
matching accuracy. Specifically, cGAN-GRP significantly in-
creases the previous state-of-the-art Scoot by a considerable
margin, 54.33%, achieved by cGAN method, to 63.39%. Be-
sides, cGAN-GRP reduces the prior best state-of-the-art LPIPS
from 22.49% to 21.57%. Such low LPIPS scores mean that
the synthesized sketch by cGAN-GRP is more natural in terms
of perceptual quality and appearance. In addition, the higher
Scoot scores mean that the synthesized facial sketch by cGAN-
GRP is more similar to those sketched by expert artists regard-
ing textures and structures. In terms of face sketch matching,
cGAN-GRP increases the accuracy from 95.53% to 95.66% as
shown in Table 1.

According to these criteria, our cGAN-GRP demonstrates
significant superiority over existing approaches and attains the

(a)

(b)
Fig. 5. Scoot and LPIPS values of the different compared face sketch
synthesis methods on the CUFS database, represented as box-plot
curves, respectively.

Table 1. The quantitative evaluation metrics for each compared ap-
proach on the CUFS database. The best results are in bold. ↓ means
that the lower is the best, while ↑ means that the higher is the best.

FSS methods
Criteria Scoot (%)

↑
LPIPS(%)

↓
NLDA(%)

↑

Data-driven
methods

LLE 92.3131.7347.55
SSD 92.3636.1345.16
MRF 87.524.9450.44
MWF 93.3528.9147.85

Model-driven
(GAN-based)

methods

BP-GAN 95.131.2946.44
Cycle-GAN 86.0630.0750.04

cGAN 95.5322.4954.33
cGAN-GRP 95.6621.5763.39

best performance. Thus, our cGAN-GRP improves the per-
ceptual quality of synthesized sketches while preserving high
fidelity.
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Fig. 6. Synthesized facial sketch examples by the different compared methods on the CUFS database. The input facial photos are in the first
column, and from the second to the last are their corresponding synthesized sketches by LLE, SSD, MRF, MWF, Cycle-GAN, BP-GAN, cGAN,
and the proposed cGAN-GRP methods, respectively. These facial photos are selected from the CUHK Student, AR, and XM2VTS datasets,
respectively.

B.2. Qualitative evaluation: Fig.6 shows some synthesized
facial sketches by the different techniques on the CUFS
database. First, it can be illustrated from Fig.6 that model-
driven (BP-GAN, cGAN, Cycle-GAN, and our proposed
cGAN-GRP) strategies generate finer details better than data-
driven strategies, which include LLE, MWF, MRF, and SSD
techniques. These outcomes explain the advantage of an
adversarial process like the GAN model used for image-to-
image translation problems. The data-driven approaches fail
to provide fine details due to the existing nonlinear aspects
between facial photos and facial sketches penciled by pro-
fessional artists, including shape exaggeration, lighting vari-
ations, and different races. This justifies the blur and noise ap-
pearing on the generated face sketches using data-driven meth-
ods. Second, although the GAN-based methods, such as BP-
GAN, cGAN, and Cycle-GAN, produce fine texture details,
there is still some noise present among the facial parts, and the
synthesized outcomes do not exhibit a net appearance, as de-
picted in Fig.6. In contrast, the synthesized facial sketches us-
ing the proposed cGAN-GRP framework demonstrate a more
realistic appearance and faithful details, as well as less noise.
This is particularly more perceptible around the mouth, hair,
and eye regions. Such superiority confirms the effectiveness of
our proposed cGAN-GRP technique.

Our both quantitative and qualitative evaluations confirm
that our cGAN-GRP outperforms previous SOTA methods and
is capable of synthesizing high-quality face sketches within
preserving high fidelity and identity .

4. CONCLUSION

In this work, we adopted the conditional GAN for facial sketch
synthesis. Then, we proposed enhancing the perceptual qual-
ity of synthesized facial sketches using the Generative Refer-
ence Prior strategy. Extensive experiment showed that despite
the GAN-based approaches effectively maintaining texture and
structure details, they also generate some noise and blur around
the facial part, and some generated outputs are unclear. Our
proposed cGAN-GRP model significantly reduces the noise,
enhances the quality of the facial sketches, and provides more
faithful and realistic details. Both quantitative and qualitative
evaluations demonstrated that our proposed cGAN-GRP out-
performs the current FSS techniques. In the proposed frame-
work, the GRF and cGAN models have been separated. In the
future, we plan to integrate the GRP into the cGAN architec-
ture and generalize the proposed framework to other heteroge-
neous face recognition applications.
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