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On observer compensator design for non-autonomous
control semi-linear evolution equations

Fatma BADRI, Hanen DAMAK and Mohamed Ali HAMMAMI

This paper investigates the Luenberger observer design problem for non-autonomous con-
trol semilinear evolution equations with disturbances in Banach spaces. Then, the practical
stabilization problem of the system is solved, yielding a compensator based on the Luenberger
observer by using integral inequalities of the Gronwall type. Sufficient conditions of the con-
troller and observer problem are satisfied, we show that the proposed controller with estimated
state feedback from the proposed practical Luenberger observer will achieve global practical
stabilization. We develop novel ideas and techniques, which present the further development of
mathematical control theory. Furthermore, an example is given to show the applicability of our
theoretical results.
Key words: compensator design, non-autonomous control semilinear evolution equations, prac-
tical stabilization, practical Luenberger observer

1. Introduction

Control theory treats itself with the basic theoretical principles underlying
the analysis of feedback and the design of control systems. It differs from the
more classical study of systems in its emphasis on inputs and outputs. In this
theory, stabilizability and detectability are the qualitative control problems that
play an important role in the systems. The theory was introduced by Curtain
and Zwart [12] for autonomous infinite-dimensional systems. On its develop-
ment, the theory can be generalized into stabilizability and detectability of the
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non-autonomous control systems, see [6] and the reference therein. The theory
of compensator design is a simple extension of the finite-dimensional theory
and has been used as a starting point in many control designs for distributed
parameter systems, see [2, 23]. Alternative direct state-space finite-dimensional
compensator designs can be found in [5, 7]. For extensions to systems with un-
bounded input and output operators (see [8–10]), and for a comparison of various
finite-dimensional control designs (see [11]). On the other hand, the problem of
compensator design for autonomous infinite-dimensional linear systems can be
solved in [12], but if the system contains some nonlinearities, This problem has
been used as a starting point in many control designs for semilinear evolution
equations whose autonomous linear nominal system, and the nonlinearities sat-
isfies conditions, see [1, 14, 15, 17]. In [1], the stabilization problem around a
desired equilibrium profile of a class of infinite-dimensional semilinear systems
is resolved, yielding a compensator based on a Luenberger-like observer. De-
signing observer-based controllers has investigated a certain class of dynamical
systems, see, for instance, [3, 20, 21, 26]. In finite dimensions, one simple way
of designing a compensator is to first construct a state feedback stabilizer and
an observer for the system and then combine the two to design a compensator
using the feedback of the observer instead of the state. This is the so-called sepa-
ration principle, see [4, 16, 18, 19]. There are almost no results on observers and
compensators of control infinite-dimensional systems with the associated nom-
inal system being linear that depends on the time. The evolution operators and
their neighboring areas have expanded into an abstract theory that has become
a necessary discipline in differential equations and functional analysis. In [6],
the authors investigated the stability property for evolution operators in Banach
spaces. Also, in [28] Sutrima et.al obtained some necessary and sufficient condi-
tions for uniform exponential stability of the evolution operator. In recent years,
the theory of robust stability analysis of partial differential equations (PDEs) has
been extensively studied by many researchers in the qualitative theory of control
dynamical systems, see [12, 22, 25]. In various situations, it is difficult to design
a feedback controller ensuring exponential stabilization for infinite-dimensional
systems. For instance, one can only ensure that system trajectories approach a
neighborhood of the origin. For this aim, a more general stability called practical
stability ( [24]) is investigated. This general stability concept has been considered
an interesting topic for further investigation of nonlinear differential equations.
But a lot of differential equations do not possess the exact solution. Under this
case, integral inequalities are significant for investigating the boundedness, sta-
bility, and asymptotic behavior of solutions to dynamical systems. In [13], the
authors gave a new integral inequality and studied the existence, uniqueness, and
stability properties of solutions of ordinary differential equations (ODEs).
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Motivated by the preceding discussion, this paper investigates a novel pro-
cedure for constructing stabilizing compensators for a class of non-autonomous
semilinear evolution equations with disturbances in Banach spaces by using an
estimated feedback controller. A Luenberger-like observer-based controller syn-
thesis based on integral inequalities of the Gronwall type guarantees exponential
convergence of states and the estimation error to the neighborhood of the origin.
We show, how under some assumptions of stabilizability and detectability of the
linear non-autonomous control systems, we can construct a stabilizing feedback
law and a Luenberger observer.

The remainder of the paper is organized as follows. Basic definitions and some
preliminary results are presented in Section 2. Section 4 provides an example
to illustrate the effectiveness of theoretical results. Conclusions are drawn in
Section 5.

2. Preliminaries

Throughout this paper, let 𝑋, 𝑈 and𝑌 be Banach spaces endowed with norms
∥ · ∥𝑋 , ∥ · ∥𝑈 and ∥ · ∥𝑌 , respectively. R+ denotes the set of all non-negative real
numbers. For linear normed spaces 𝑋,𝑌 let 𝐿 (𝑋,𝑌 ) be the space of bounded
linear operators from 𝑋 to 𝑌 and 𝐿 (𝑋) := 𝐿 (𝑋, 𝑋). A norm in these spaces
we denote by ∥ · ∥. 𝐶 (𝑋,𝑌 ) denotes the space of all continuous functions from
𝑋 to 𝑌 .

Also, we define 𝐿𝑝 (R+,R+) as the set of functions positive and integrable with
𝑝-th power on R+ where 𝑝 ­ 1. 𝐿2(0,∞) denotes the space of square integrable
functions on (0,∞).

Consider the following non-autonomous control semilinear evolution equation
with disturbances:

¤𝑥(𝑡) = A(𝑡)𝑥(𝑡) + B(𝑡)𝑢(𝑡) + Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡)), 𝑡 ­ 𝑡0 ,

𝑦(𝑡) = C(𝑡)𝑥(𝑡), 𝑥(𝑡0) = 𝑥0 ,
(1)

where 𝑡 is the time, 𝑡0 is the initial time, 𝑥0 is the initial condition, 𝑥(𝑡) ∈ 𝑋 is the
system state, 𝑢 ∈ 𝐶 (R+,𝑈) is the control input, 𝑦(𝑡) ∈ 𝑌 is the measured output
and 𝑑 (𝑡) ∈ D is a measurable, locally essentially bounded disturbance equipped
with the norm ∥𝑑∥∞ = ess sup

𝑡­𝑡0
∥𝑑 (𝑡)∥. 𝑋, 𝑈,D and𝑌 are assumed to be complex

Banach spaces. The input and output operators are

B ∈ 𝐶 (R+, 𝐿(𝑈, 𝐻)), with sup
𝑡­0

∥B(𝑡)∥ < ∞.
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and
C ∈ 𝐶 (R+, 𝐿(𝐻,𝑌 )), with sup

𝑡­0
∥C(𝑡)∥ < ∞.

The nonlinearitiesΥ : 𝑋×𝑈×D → 𝑋 be nonlinear operator withΥ(𝑡, 0, 𝑢, 𝑑) = 0,
for all 𝑡 ­ 0, all 𝑢 ∈ 𝑈, and all 𝑑 ∈ D . Also,

(A(𝑡) : 𝐷 (A(𝑡)) ⊂ 𝑋 → 𝑋)𝑡­𝑡0
is a family of linear and generally unbounded operators depending on time where
the domain 𝐷 (A(𝑡)) = 𝐷, independent of 𝑡 of the operator A(𝑡) is assumed to
be dense in 𝑋 for all 𝑡 ­ 0 and generates a strongly continuous evolution family
(Γ(𝑡, 𝑠))𝑡­𝑠­0, that is, for all 𝑡 ­ 𝑠 ­ 𝑡0 ­ 0 there exists a bounded linear operator
Γ(𝑡, 𝑠) : 𝑋 → 𝑋 satisfying the following properties:

(i) Γ(𝑠, 𝑠) = 𝐼, Γ(𝑡, 𝑠) = Γ(𝑡, 𝑟)Γ(𝑟, 𝑠) for all 𝑡 ­ 𝑟 ­ 𝑠 ­ 𝑡0.

(ii) (𝑡, 𝑠) ↦→ Γ(𝑡, 𝑠) is strongly continuous for 𝑡 ­ 𝑠 ­ 𝑡0.

(iii) For all 𝑡 ­ 𝑠 ­ 𝑡0 and all 𝜈 ∈ 𝐷 (A(𝑠)), we have

𝜕

𝜕𝑡
Γ(𝑡, 𝑠)𝜈 = A(𝑡)Γ(𝑡, 𝑠)𝜈

and
𝜕

𝜕𝑠
Γ(𝑡, 𝑠)𝜈 = −Γ(𝑡, 𝑠)A(𝑠)𝜈.

We consider mild solutions of (1), i.e. solutions of the integral form

𝜙(𝑡, 𝑡0, 𝑥0, 𝑢, 𝑑) = Γ(𝑡, 𝑡0)𝑥0 +
𝑡∫

𝑡0

Γ(𝑡, 𝑠)
[
B(𝑠)𝑢(𝑠)

+ Υ(𝑡, 𝑥(𝑠), 𝑢(𝑠), 𝑑 (𝑠))
]
d𝑠 (2)

belonging to the class 𝐶 ( [𝑡0, 𝑡𝑚], 𝑋) for some 𝑡𝑚 > 𝑡0, where 𝑡𝑚 is the maximal
existence time of the solution corresponding to (𝑡0, 𝑥0, 𝑢, 𝑑).

Definition 1. We call Υ : R+ × 𝑋 × D → 𝑋 locally Lipschitz continuous in 𝑥,

uniformly in 𝑡, 𝑢, and 𝑑 on bounded intervals if for every 𝑡̃ ­ 0 and constant
𝑟 ­ 0, there is a constant 𝑁 (𝑟, 𝑡̃), such that

∥Υ(𝑡, 𝑥, 𝑢, 𝑑) − Υ(𝑡, 𝑦, 𝑢, 𝑑)∥𝑋 ¬ 𝑁 (𝑟, 𝑡̃)∥𝑥 − 𝑦∥𝑋
holds for all 𝑥, 𝑦 ∈ 𝑋, with ∥𝑥∥𝑋 , ∥𝑦∥𝑋 ¬ 𝑟, all 𝑑 ∈ D with ∥𝑑∥ ¬ 𝑟, all 𝑢 ∈ 𝑈

with ∥𝑢∥𝑈 ¬ 𝑟, and all 𝑡 ∈ [0, 𝑡̃] .

The following assumption will be needed throughout the paper:
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(H1) The nonlinearityΥ(·, ·, ·, ·) is continuous in 𝑡, 𝑢 and 𝑑 and locally Lipschitz
continuous in 𝑥, uniformly in 𝑡, 𝑢, and 𝑑 on bounded intervals.

Well-posedness. Since Assumption (H1) and B is continuous, then it follows
from [27, Theorem 1.4] that for every initial condition 𝑥0 ∈ 𝑋, every input
𝑢 ∈ 𝐶 (R+,𝑈), and every disturbance 𝑑 ∈ D, the system (1) has a unique mild
solution that satisfies the integral equation (2).

Definition 2. We say that a control system (1) is forward complete (FC) if for every
(𝑡0, 𝑥0, 𝑢, 𝑑) ∈ R+ × 𝑋 ×𝑈 × D and for all 𝑡 ­ 𝑡0, the value 𝜙(𝑡, 𝑡0, 𝑥0, 𝑢, 𝑑) ∈ 𝑋

is well-defined.

The corresponding system without nonlinearities is described by

¤𝑥(𝑡) = A(𝑡)𝑥(𝑡) + B(𝑡)𝑢(𝑡), 𝑡 ­ 𝑡0,

𝑦(𝑡) = C(𝑡)𝑥(𝑡), 𝑥(𝑡0) = 𝑥0,
(3)

The mild solutions of (3) is of the integral form

𝑥(𝑡) = Γ(𝑡, 𝑡0)𝑥0 +
𝑡∫

𝑡0

Γ(𝑡, 𝑠)B(𝑠)𝑢(𝑠)d𝑠, (4)

belonging to the class 𝐶 ( [𝑡0,∞), 𝑋).

Remark 1. In the autonomous case, where Γ(𝜃, 𝜏) = 𝑆(𝜃 − 𝜏), 𝜃 ­ 𝜏, is given
by a strongly continuous semigroup on 𝑋 generated by A and the operators
B(𝑡) = B and C(𝑡) = C are both independents of 𝑡, the mild control system (4)
has the form

𝑥(𝑡) = 𝑆(𝑡)𝑥(0) +
𝑡∫

0

𝑆(𝑡 − 𝑠)B(𝑠)𝑢(𝑠)d𝑠.

Let us define a uniformly exponentially stable evolution family is similar to
the one given for semigroups.

Definition 3. [6, Def 3.4 p. 60] The strongly continuous evolution family
{Γ(𝑡, 𝑡0)}𝑡­𝑡0­0 is called uniformly exponentially stable if there exist 𝑐, 𝜔 > 0,
such that

∥Γ(𝑡, 𝑡0)∥ ¬ 𝑐𝑒−𝜔(𝑡−𝑡0) holds for all 𝑡0 ­ 0 and all 𝑡 ­ 𝑡0.

For the convenience of the reader, we recall the definitions of stabilizability
and detectability in a non-autonomous infinite-dimensional setting, see [6, Def 5.2
p. 133] for details.
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Definition 4.
(𝑖) The non-autonomous system (3) is said to be stabilizable if there exists a

feedback operatorK ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)),with sup
𝑡­0

∥K(𝑡)∥ < ∞ and a corre-

sponding uniformly exponentially stable evolution family (ΓBK (𝜃, 𝜏)𝜃­𝜏­0,
such that

ΓBK (𝜃, 𝜏) = Γ(𝜃, 𝜏)𝑥 +
𝜃∫

𝜏

Γ(𝜃, 𝑠)B(𝑠)K(𝑠)ΓBK (𝑠, 𝜏)𝑥d𝑠. (5)

(𝑖𝑖) The non-autonomous system (3) is said to be detectable if there exists a
feedback operator F ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)),with sup

𝑡­0
∥F (𝑡)∥ < ∞ and a corre-

sponding uniformly exponentially stable evolution family (ΓFC (𝜃, 𝜏)𝜃­𝜏­0,
such that

ΓFC (𝜃, 𝜏) = Γ(𝜃, 𝜏)𝑥 +
𝜃∫

𝜏

ΓFC (𝜃, 𝑠)F (𝑠)C(𝑠)Γ(𝑠, 𝜏)𝑥d𝑠. (6)

Remark 2. In the case A(𝑡) = A, B(𝑡) = B and C(𝑡) = C, we have the
system (3) is stabilizable and detectable if there exist operators K ∈ 𝐿 (𝑋,𝑈) and
F ∈ 𝐿 (𝑌, 𝑋), such that the semigroups generated by A + BK and A + FC are
uniformly exponentially stable, see [12, Def 5.2.1 p. 227].

Definition 5. A forward complete system

¤𝑥(𝑡) = 𝐹 (𝑡, 𝑥(𝑡), 𝑑 (𝑡)), 𝑡 ­ 𝑡0 ­ 0, 𝑥(𝑡) ∈ 𝑋, 𝑑 (𝑡) ∈ D,

𝐹 : R+ × 𝑋 × D → 𝑋 is a nonlinear operator that is called globally practically
uniformly exponentially stable if there exist positive scalars 𝜔, 𝑐, 𝜌, such that for
all (𝑡0, 𝑥0, 𝑑) ∈ R+ × 𝑋 × D and all 𝑡 ­ 𝑡0,

∥𝑥(𝑡)∥𝑋 ¬ 𝑐∥𝑥(𝑡0)∥𝑋𝑒−𝜔(𝑡−𝑡0) + 𝜌. (7)

Remark 3. Uniform practical exponential stability given in (7) are said with
growth constants 𝑐, 𝜔,which it is similar to the definition introduced by [16] in the
case of finite-dimensional systems. The inequality (7) indicates that the trajectory
will be ultimately bounded, that is the solution is bounded and approaches toward
a neighborhood of the origin for sufficiently large 𝑡.

Definition 6. A forward complete system (1) is called practically stabilizable if
there exists a continuous feedback control 𝑢 : [𝑡0,∞) → 𝑈, such that the solution
of the system (1) with 𝑢(𝑡) is globally practically uniformly exponentially stable.
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The below lemma of a generalization of the Gronwall-type inequality is used
as a tool for the proof of the main results.

Lemma 1. [13, Lemma 2]
Let 𝜑, 𝛾 and 𝜓 be non-negative piecewise continuous functions on R+ for which
the following inequality holds

𝜑(𝑡) ¬ 𝑎 +
𝑡∫

𝑡0

[
𝜑(𝑠)𝛾(𝑠) + 𝜓(𝑠)

]
d𝑠, ∀ 𝑡 ­ 𝑡0 ­ 0,

where 𝑎 is a non-negative constant. Then,

𝜑(𝑡) ¬ ©­«𝑎 +
𝑡∫

𝑡0

𝜓(𝑠)d𝑠ª®¬ 𝑒
∫ 𝑡

𝑡0
𝛾(𝑠)d 𝑠

, ∀𝑡 ­ 𝑡0 ­ 0.

3. Main results

3.1. Practical stabilization

We aim to design a feedback controller, such that system (1) is globally
practically uniformly exponentially stable in Banach spaces using a generalization
of the Gronwall-type inequality which is different to the semilinear system without
disturbance where A(𝑡) = 𝐴 is the generator of 𝐶0-semigroup, B(𝑡) = B ∈
𝐿 (𝑈, 𝑋) and C(𝑡) = C ∈ 𝐿 (𝑋,𝑌 ) in [15, Theorem 3.1]. To make the control
objective feasible, the following assumptions are posed on the system (1):
(H2) There exist𝜔 and 𝜉 piecewise continuous functions, positives and satisfying

for all 𝑡 ­ 0, all 𝑥, 𝑦 ∈ 𝑋, all 𝑢 ∈ 𝑈, and all 𝑑 ∈ D,

∥Υ(𝑡, 𝑥, 𝑢, 𝑑) − Υ(𝑡, 𝑦, 𝑢, 𝑑)∥𝑋 ¬ 𝜔(𝑡)∥𝑥 − 𝑦∥𝑋 + 𝜉 (𝑡), (8)

where 𝜔 ∈ 𝐿1(R+,R+) and

either 𝜉 ∈ 𝐿𝑝 (R+, R+), for some 𝑝 ∈ [1,∞) or lim
𝑡→∞

𝜉 (𝑡) = 0. (9)

(H3) The non-autonomous system (3) is stabilizable, there exists a feedback
operator K ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)), with sup

𝑡­0
∥K(𝑡)∥ < ∞ and nonnegative

constants 𝑐1 and 𝜆1, such that

∥ΓBK (𝑡, 𝑡0)∥ ¬ 𝑐1𝑒
−𝜆1 (𝑡−𝑡0) , ∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0, (10)

where ΓBK is an evolution operator given by (5).
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It is indicate in [13, Lemma 3], that if the function 𝜉 (𝑡) satisfies (9), then

lim
𝑡→∞

𝑒−𝜆𝑡
𝑡∫

0

𝑒𝜆𝑠𝜉 (𝑠)d𝑠 = 0,

where 𝜆 is a positive constant.
Next, we are interested in a suitable feedback controller of the form:

𝑢(𝑡) = K(𝑡)𝑥, (11)

where K(𝑡) is a known operator given by (H3).

Theorem 1. Let assumptions (H1), (H2) and (H3) be satisfied. Then, the non-
autonomous infinite-dimensional closed-loop system (1)–(11) is globally uni-
formly practically exponentially stable.

Proof. Since 𝐵 is continuous and 𝑢 is continuous, and Υ satisfies (H1) and (H2),
then according to the results of Pazy [27, Theorem 1.4], there is a unique maximal
global mild solution 𝑥(·) = 𝜙(·, 𝑡0, 𝑥0, 𝑢, 𝑑) ∈ 𝐶 ( [𝑡0,∞), 𝑋) of system (1) for any
data (𝑡0, 𝑥0, 𝑢, 𝑑) ∈ R+ × 𝑋 ×𝑈 × D .

This mild solution of the closed-loop system is given by:

𝑥(𝑡) = ΓBK (𝑡, 𝑡0)𝑥0 +
𝑡∫

𝑡0

ΓBK (𝑡, 𝑠)Υ(𝑠, 𝑥(𝑠), 𝑢(𝑠), 𝑑 (𝑠))d𝑠. (12)

Then, the solution (12) satisfies the following norm:

∥𝑥(𝑡)∥𝑋 ¬ ∥ΓBK (𝑡, 𝑡0)∥ ∥𝑥0∥𝑋

+
𝑡∫

𝑡0

∥ΓBK (𝑡, 𝑠)∥ ∥Υ(𝑠, 𝑥(𝑠), 𝑢(𝑠), 𝑑 (𝑠))∥𝑋 d𝑠. (13)

Using (H3), inequality (13) gives

𝜈(𝑡) ¬ 𝑐1𝜈(𝑡0) +
𝑡∫

𝑡0

[
𝑐1𝜔(𝑠)𝜈(𝑠) + 𝑐1𝑒

𝜆1𝑠𝜉 (𝑠)
]

d𝑠,

where
𝜈(𝑡) = 𝑒𝜆1𝑡 ∥𝑥(𝑡)∥𝑋 . (14)
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Utilizing Lemma 1, we find for all 𝑡0 ­ 0, and all 𝑡 ­ 𝑡0,

𝜈(𝑡) ¬ ©­«𝑐1𝜈(𝑡0) +
𝑡∫

𝑡0

𝑐1𝑒
𝜆1𝑠𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐1

∫ 𝑡

𝑡0
𝜔(𝑠)d 𝑠

.

Thus, by (14), we have the estimation

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0)𝑒
𝑐1

∫ 𝑡

𝑡0
𝜔(𝑠)d 𝑠 + 𝑐1𝑒

−𝜆1𝑡 ©­«
𝑡∫

𝑡0

𝑒𝜆1𝑠𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐1
∫ 𝑡

𝑡0
𝜔(𝑠)d 𝑠

.

Using 𝜔 ∈ 𝐿1(R+,R+), one can get

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0)𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠 + 𝑐1𝑒
−𝜆1𝑡 ©­«

𝑡∫
0

𝑒𝜆1𝑠𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐1
∫ ∞
𝑡0

𝜔(𝑠)d 𝑠
.

Since

lim
𝑡→∞

𝑒−𝜆1𝑡

𝑡∫
0

𝑒𝜆1𝑠𝜉 (𝑠)d𝑠 = 0,

then there exists 𝜅 > 0, such that

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1𝜅𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠
, ∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0.

Therefore, the non-autonomous infinite-dimensional closed-loop system (1)–(11)
is globally uniformly practically exponentially stable. 2

3.2. Practical Luenberger observer design

In the previous subsection, we considered the problem of stabilizing by state
feedback (11). This assumes that one can measure the whole state, which is
not possible for an infinite-dimensional system. The problem that is naturally
arises how to stabilize the system using only partial information about the state.
A fundamental question is how to design a compensator. One answer we present
here is to utilize the measurement (partial information to estimate the full state
(the construction of an observer) and to use feedback on the estimated state. To
deal with the problem of estimating the full state, the following assumption is
posed on the system (1):
(H4) The non-autonomous system (3) is detectable, there exists a feedback opera-

tor F ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)), with sup
𝑡­0

∥F (𝑡)∥ < ∞ and there exist nonnegative



14 F. BADRI, H. DAMAK, M.A. HAMMAMI

constants 𝑐2 and 𝜆2, such that

∥ΓFC (𝑡, 𝑡0)∥ ¬ 𝑐2𝑒
−𝜆2 (𝑡−𝑡0) , ∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0, (15)

where ΓFC is an evolution operator given by (6).
Consider the following Luenberger observer:

¤̂𝑥(𝑡) = A(𝑡)𝑥(𝑡) + B(𝑡)𝑢(𝑡) + Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡))
+ F (𝑡) ( 𝑦̂(𝑡) − 𝑦(𝑡)), 𝑡 ­ 0,

𝑦̂(𝑡) = C(𝑡)𝑥(𝑡),
(16)

where 𝑥 is the Luenberger observer with output injection F ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)),
with sup

𝑡­0
∥F (𝑡)∥ < ∞ and 𝑦(𝑡) = C(𝑡)𝑥(𝑡).

Define estimation error 𝑒 as 𝑒 = 𝑥 − 𝑥, which is commanded by

¤𝑒(𝑡) = ¤̂𝑥(𝑡) − ¤𝑥(𝑡) = (A(𝑡) + F (𝑡)C(𝑡)) 𝑒(𝑡) + Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡))
− Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡)), (17)

where 𝑒0 = 𝑥0 − 𝑥0.
The next result gives sufficient conditions under which the state estimation er-
ror is globally uniformly practically exponentially stable, the so-called practical
exponential observer.

Theorem 2. Let assumptions (H1), (H2) and (H4) be satisfied. Then, the sys-
tem (16) is a practical exponential Luenberger observer for the system (1).

Proof. First, note that equation (17) has a unique global mild solution on [𝑡0,∞)
by applying the results of Pazy [27] for every initial state estimation 𝑒0 ∈ 𝑋,

every initial time 𝑡0 ­ 0, and every disturbance 𝑑 ∈ D .

This mild solution of the system (17) is given by:

𝑒(𝑡) = ΓFC (𝑡, 𝑡0)𝑒0 +
𝑡∫

𝑡0

ΓFC (𝑡, 𝑠)Υ̃(𝑡, 𝑒(𝑠), 𝑢(𝑠), 𝑑 (𝑠))d𝑠, (18)

where
Υ̃(𝑡, 𝑒, 𝑢, 𝑑) = Υ(𝑡, 𝑥, 𝑢, 𝑑) − Υ(𝑡, 𝑥, 𝑢, 𝑑)

and 𝑒0 = 𝑥0 − 𝑥0. Then,

∥𝑒(𝑡)∥𝑋 ¬


ΓFC (𝑡, 𝑡0)



∥𝑒0∥𝑋

+
𝑡∫

𝑡0



ΓFC (𝑡, 𝑠)


 


Υ̃(𝑡, 𝑒(𝑠), 𝑢(𝑠), 𝑑 (𝑠))





𝑋

d𝑠. (19)
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From (H4), inequality (19) becomes

∥𝑒(𝑡)∥𝑋 ¬ 𝑐2∥𝑒0∥𝑋𝑒−𝜆2 (𝑡−𝑡0) + 𝑐2

𝑡∫
𝑡0

𝑒−𝜆2 (𝑡−𝑠) [𝜔(𝑠)∥𝑒(𝑠)∥𝑋 + 𝜉 (𝑠)] d𝑠,

∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0.

Dividing both sides by 𝑒𝜆2𝑡 , one can get

∥𝑒(𝑡)∥𝑋𝑒𝜆2𝑡 ¬ 𝑐2∥𝑒0∥𝑋𝑒𝜆2𝑡0 + 𝑐2

𝑡∫
𝑡0

𝑒𝜆2𝑠 [𝜔(𝑠)∥𝑒(𝑠)∥𝑋 + 𝜉 (𝑠)] d𝑠,

∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0.

Using Lemma 1, we obtain

∥𝑒(𝑡)∥𝑋𝑒𝜆2𝑡 ¬ ©­«𝑐2∥𝑒0∥𝑋𝑒𝜆2𝑡0 + 𝑐2

𝑡∫
𝑡0

𝑒𝜆2𝑠𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐2
∫ 𝑡

𝑡0
𝜔(𝑠)d 𝑠

, ∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0.

One gets,

∥𝑒(𝑡)∥ ¬ 𝑐2∥𝑒0∥𝑒−𝜆2 (𝑡−𝑡0)𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠 + ©­«𝑐2

𝑡∫
𝑡0

𝑒−𝜆2 (𝑡−𝑠)𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠,

∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0.

Since

lim
𝑡→∞

𝑒−𝜆2𝑡

𝑡∫
0

𝑒𝜆2𝑠𝜉 (𝑠)d𝑠 = 0,

then, there exists 𝜅̂ > 0, such that

∥𝑒(𝑡)∥𝑋 ¬ 𝑐2𝑒
𝑐2

∫ ∞
0 𝜔(𝑠)d 𝑠∥𝑒0∥𝑋𝑒−𝜆2 (𝑡−𝑡0) + 𝑐2 𝜅̂𝑒

𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠,

∀𝑡0 ­ 0, ∀𝑡 ­ 𝑡0. (20)

Thus, the error equation (17) is globally uniformly practically exponentially sta-
ble. Hence, the system (16) is a global uniform practical exponential Luenberger
observer for the system (1). 2

3.3. The compensator design

We observe that the practical Luenberger observer (16) gives a good estimate
of the state of (1) provided that the non-autonomous system (3) is detectable.
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If we knew the state 𝑥(𝑡), then in order to practical stabilize the system we would
apply the feedback (11). But, we only have partial information of the state 𝑥(𝑡)
through the measurement 𝑦(𝑡) = C(𝑡)𝑥(𝑡). In the following theorem, we shall
show that the feedback

𝑢(𝑡) = K(𝑡)𝑥(𝑡) (21)

based on the estimated state has the same effect, provided that the estimation
error converges toward a neighborhood of the origin, as 𝑡 → ∞.

Theorem 3. Assume that (H1), (H2), (H3) and (H4) hold.
If K ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)), with sup

𝑡­0
∥K(𝑡)∥ < ∞ and F ∈ 𝐶 (R+, 𝐿(𝑋,𝑈)), with

sup
𝑡­0

∥F (𝑡)∥ < ∞ are such that ΓBK (𝜃, 𝜏)𝜃­𝜏­0, and ΓFC (𝜃, 𝜏)𝜃­𝜏­0, are uni-

formly exponentially stable evolution family given by (5) and (6). Then, the con-
troller (21), where 𝑥 is the practical Luenberger observer with output injection
F (𝑡), practically stabilizes the closed-loop system. The stabilizing compensator
is given by

¤̂𝑥(𝑡) =
(
A(𝑡) + F (𝑡)C(𝑡)

)
𝑥(𝑡) + B(𝑡)𝑢(𝑡)

+ Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡)) − F (𝑡)𝑦(𝑡),
𝑢(𝑡) = K(𝑡)𝑥(𝑡).

(22)

Proof. Combining the abstract differential equations, we see that the closed-loop
system is given by the dynamics of the extended state 𝑥𝑒 (𝑡) = (𝑥(𝑡), 𝑒(𝑡))𝑇 ∈
𝑋 × 𝑋,

¤𝑥𝑒 (𝑡) = 𝐴(𝑡)𝑥𝑒 (𝑡) + 𝐹 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡)), (23)

where

𝐴(𝑡) =
(A(𝑡) + B(𝑡)K(𝑡) F (𝑡)C(𝑡)

0 A(𝑡) + F (𝑡)C(𝑡)

)
and

𝐹 (𝑡, 𝑥, 𝑢, 𝑑) =
(

Υ(𝑡, 𝑥, 𝑢, 𝑑)
Υ(𝑡, 𝑥, 𝑢, 𝑑) − Υ(𝑡, 𝑥 − 𝑒, 𝑢, 𝑑)

)
.

Let 𝑥𝑒 (𝑡) = (𝑥(𝑡), 𝑒(𝑡)) be the solution of the system (23) with the initial
condition 𝑥0

𝑒 (𝑡) = (𝑥0, 𝑒0) = (𝑥(𝑡0), 𝑒(𝑡0)) ∈ 𝑋 × 𝑋 and disturbance 𝑑 ∈ D .

We can see that equation (23) has a unique mild solution 𝑥𝑒 (𝑡) which is defined
on [𝑡0,∞).

Since the component 𝑒(𝑡) satisfies the estimation (20), due of the non-
autonomous system (3) is detectable with (H2) (Proposition 2), it suffices to
demonstrate that the component 𝑥(𝑡) has the same property.
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The solution of the closed-loop system:

¤̂𝑥(𝑡) =
(
A(𝑡) + B(𝑡)K(𝑡)

)
𝑥(𝑡) + Υ(𝑡, 𝑥, 𝑢, 𝑑) + F (𝑡)C(𝑡)𝑒

is given by:

𝑥(𝑡) = ΓBK (𝑡, 𝑡0)𝑥0 +
𝑡∫

𝑡0

ΓBK (𝑡, 𝑠)
(
Υ(𝑡, 𝑥, 𝑢, 𝑑) + F (𝑡)C(𝑡)𝑒(𝑡)

)
d𝑠.

Thus,

∥𝑥(𝑡)∥𝑋 ¬ ∥ΓBK (𝑡, 𝑡0)∥∥𝑥0∥𝑋 +
𝑡∫

𝑡0

∥ΓBK (𝑡, 𝑠)∥
(
∥Υ(𝑡, 𝑥, 𝑢, 𝑑)∥𝑋

+ ∥F (𝑡)C(𝑡)∥∥𝑒(𝑠)∥𝑋
)
d𝑠.

Using assumptions (H2) and (H3), we obtain

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1 ∥𝑥0∥𝑋 𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1

𝑡∫
𝑡0

𝑒−𝜆1 (𝑡−𝑠)
(
𝜔(𝑠)∥𝑥(𝑡)∥𝑋 + 𝜉 (𝑠)

+ ∥F (𝑡)C(𝑡)∥∥𝑒(𝑠)∥𝑋
)
d𝑠. (24)

From the proof of Proposition 2, one has for all 𝑡0 ­ 0 and all 𝑡 ­ 𝑡0,

∥𝑒(𝑡)∥𝑋 ¬ 𝑐2∥𝑒0∥𝑋𝑒−𝜆2 (𝑡−𝑡0)𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠

+ ©­«𝑐2

𝑡∫
𝑡0

𝑒−𝜆2 (𝑡−𝑠)𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠 . (25)

Hence, from (24) and (25), one gets that

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1

𝑡∫
𝑡0

𝑒−𝜆1 (𝑡−𝑠)
(
𝜔(𝑠)∥𝑥(𝑡)∥𝑋 + 𝜉 (𝑠)

+ 𝑐̃ℓ

𝑐2∥𝑒0∥𝑋𝑒−𝜆2 (𝑠−𝑡0)𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠+ ©­«𝑐2

𝑡∫
𝑡0

𝑒−𝜆2 (𝑠−𝜏)𝜉 (𝜏)d𝜏ª®¬ 𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠

ª®¬ d𝑠,
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where 𝑐̃ = sup
𝑡­0

∥C(𝑡)∥ and ℓ = sup
𝑡­0

∥F (𝑡)∥. Let,

𝜉 (𝑠) = 𝜉 (𝑠) + 𝑐̃ℓ

𝑐2∥𝑒0∥𝑋𝑒−𝜆2 (𝑠−𝑡0)𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠

+ ©­«𝑐2

𝑡∫
𝑡0

𝑒−𝜆2 (𝑠−𝜏)𝜉 (𝜏)d𝜏ª®¬ 𝑒𝑐2
∫ ∞
0 𝜔(𝑠)d 𝑠

 , 𝑠 ­ 0.

It yields,

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1

𝑡∫
𝑡0

𝑒𝜆1 (𝑡−𝑠) [
𝜔(𝑠)∥𝑥(𝑡)∥𝑋 + 𝜉 (𝑠)

]
d𝑠.

Applying Lemma 1, we get

∥𝑥(𝑡)∥𝑋𝑒𝜆1𝑡 ¬ ©­«𝑐1∥𝑥0∥𝑋𝑒𝜆1𝑡0 + 𝑐1

𝑡∫
𝑡0

𝑒𝜆1𝑠𝜉 (𝑠)d𝑠ª®¬ 𝑒𝑐1
∫ 𝑡

𝑡0
𝜔(𝑠)d 𝑠

.

It follows that,

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠
𝑡∫

𝑡0

𝑒−𝜆1 (𝑡−𝑠)𝜉 (𝑠)d𝑠.

From (H2), since
lim
𝑡→∞

𝜉 (𝑡) = 0,

then

lim
𝑡→∞

𝑒−𝜆1𝑡

𝑡∫
0

𝑒𝜆1𝑠𝜉 (𝑠)d𝑠 = 0.

Hence, there exists 𝜎 > 0, such that

∥𝑥(𝑡)∥𝑋 ¬ 𝑐1𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠∥𝑥0∥𝑋𝑒−𝜆1 (𝑡−𝑡0) + 𝑐1𝜎𝑒
𝑐1

∫ ∞
𝑡0

𝜔(𝑠)d 𝑠
.

Therefore, the cascade system (23) is globally uniformly practically exponentially
stable. 2

Remark 4. One can see that the theorem 3 generalizes the one given in [15,
Theorem 3.3] for a class of control semilinear evolution equations in Hilbert
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spaces without disturbances where the associated nominal part is an autonomous
linear system.

4. Example

In this section, we present an example to illustrate the effectiveness and
advantages of the main results.

Example 1. Let 𝑋 be the space of all bounded continuous real function on [0,∞)
with the supremum norm and 𝑌 = 𝑈 = 𝐿2(0,∞).
Consider a class of control system in the form (1) on the Banach space 𝑋 with

A(𝑡)𝑥(𝜁) = 2𝑡
(
𝑑𝑥

𝑑𝜁

)
,

with domain

𝐷 (A(𝑡)) = 𝐷 =

{
𝑥 ∈ 𝑋/ 𝑑𝑥

𝑑𝜁
∈ 𝑋, 𝑥0 = 𝑥0

}
,

B(𝑡) = 𝐼, 𝑑 (𝑡) ∈ [0, 1),

C(𝑡) =
{
−2𝑡

1
2 𝐼 if 0 ¬ 𝑡 < 1,

𝐼 if 𝑡 ­ 1,

where 𝐼 is the identity operator, and

Υ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑 (𝑡)) = 𝑑 (𝑡) sin(𝑢(𝑡))
1 + 𝑡2

𝑥(𝑡) + sin(𝑥(𝑡)) (1 + 𝑡)
1 + 𝑡2

.

From [28], the operator A(𝑡) generates a strongly continuous evolution family
(Γ(𝑡, 𝑠))𝑡­𝑠­0, of the form:

(Γ(𝑡, 𝑠)𝑥) (𝜁) = 𝑥(𝜁 + 𝑠2 + 2𝑠𝑡), 𝜁 , 𝑡, 𝑠 ­ 0,

for all 𝑥 ∈ 𝑋.

We choose a stabilizing feedback

𝑢(𝑡) = K(𝑡)𝑥(𝑡), (26)

with

K(𝑡) =
{
−2𝑡𝑥(𝜁) if 0 ¬ 𝜁 + 𝑡 < 1,
−𝑥(𝜁) if 𝜁 + 𝑡 ­ 1,

for all 𝑥 ∈ 𝐷.
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We see that the operatorK ∈𝐶 (R+, 𝐿(𝑋,𝑈)),with sup
𝑡­0

∥K(𝑡)∥ < ∞ and a cor-

responding uniformly exponentially stable evolution family (ΓBK (𝜃, 𝜏)𝜃­𝜏­0, is
defined by

(ΓBK (𝑡, 𝑠)𝑥) (𝜁) =
{
𝑒−(𝑠

2+2𝑠𝑡)𝑥(𝜁 + 𝑠2 + 2𝑠𝑡), if 0 ¬ 𝜁 + 𝑠2 + 2𝑠𝑡 < 1,
𝑒−𝑠𝑥(𝜁 + 𝑠2 + 2𝑠𝑡) if 𝜁 + 𝑠2 + 2𝑠𝑡 ­ 1,

for all 𝑡, 𝑠, 𝜁 ­ 0, and all 𝑥 ∈ 𝑋.

Moreover, we choose a stabilizing output injection such that

F (𝑡) =
{
𝑡

1
2 if 0 ¬ 𝑡 < 1,
−𝐼 if 𝑡 ­ 1.

It is easy to verify that A(𝑡) +F (𝑡)C(𝑡) generates a strongly continuous evolution
uniformly exponentially stable family

(ΓFC (𝑡, 𝑠)𝑥) (𝜁) = (ΓBK (𝑡, 𝑠)𝑥) (𝜁),

for all 𝑡, 𝑠, 𝜁 ­ 0, and all 𝑥 ∈ 𝑋.

One can see that Assumption (H2) is verified with 𝜔(𝑡) = 1
1 + 𝑡2

and 𝜉 (𝑡) =
2 + 2𝑡
1 + 𝑡2

, in particular 𝜔 ∈ 𝐿1(R+,R+) and 𝜉 ∈ 𝐿𝑝 (R+,R+) for all 𝑝 ∈ (1,∞).
Hence, all hypotheses of Theorem 3 are satisfied. We conclude that the stabi-

lizing compensator is given by equation (22).

5. Conclusion

We have expanded the theory of Luenberger observers and stabilizing compen-
sators to a class of non-autonomous control semilinear evolution equations with
disturbances in Banach spaces. We have demonstrated, how under the assump-
tions of stabilizability and detectability of the linear non-autonomous control
systems, we estimate practically exponentially the state while having a practical
exponential convergence of the estimation error. Our approach is based on integral
inequality. An illustrative example is given to indicate significant improvements
and the application of the results.
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