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Dynamical behavior of a new jerk system inspired
from chaotic memory oscillators

Saad Fawzi AL-AZZAWIo

This paper constructs a six-term new simple 3D jerk system modeled by chaotic model
memory oscillators with four parameters that control the behavior. The suitable choice of one of
these parameters helps the system describe behavior and attractors. This means that the choice is
a parameter of the associated behavior (dissipative or conservative) and attractors (self-excited
or hidden). Some features of the equilibrium are observed that are related to the dependence
on these parameters, such as saddle-foci, non-hyperbolic, and node-foci. This system is rich
in dynamic features including chaotic, quasi-periodic (2-torus), and periodic via the utilization
of bifurcation diagrams and Lyapunov spectrum. Finally, a new image encryption algorithm is
introduced that utilizes the jerk system. The algorithm is assessed through statistical performance
analysis, according to the results of the experiments and security tests, it has been verified that
the suggested image encryption algorithm is highly secure and could be a viable option for
real-world applications.
Key words: chaotic memory oscillators (𝑀𝑂4), jerk system, elegant system, encryption, de-
cryption

1. Introduction

Chaotic systems are dynamical systems that exhibit sensitive dependence on
initial conditions, meaning that small changes in the initial conditions can lead
to vastly different outcomes. One important feature of chaotic systems is that
their behavior can be influenced by parameter (coefficient) values. In particular,
a system may exhibit chaotic behavior only within a certain range of parameter
values, beyond which it may converge to a stable state or exhibits periodic behavior
as in the Lorenz system [1], which exhibits chaotic and stable behavior relying
on one of its parameters [2].

Copyright © 2024. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

S.F. Al-Azzawi (e-mail: saad_alazawi@uomosul.edu.iq) is with Department of Mathematics, College
of Computer Science and Mathematics, University of Mosul, Mosul, Iraq.

Received 1.08.2023. Revised 7.12.2023.

https://orcid.org/0000-0002-8198-8035
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:saad_alazawi@uomosul.edu.iq


150 S.F. AL-AZZAWI

In 1994, Sprott identified 19 different chaotic systems, labeled A through S [3].
These systems are simpler than the Lorenz model because they only consist of
five or six terms. Most of these systems are referred to as “elegant systems” [4,5]
because they have most parameters (coefficients) that are set to zero, with the
rest parameters being either ±1, a decimal fraction, or a small integer. Sprott
used these special coefficients looking for cases for which the first Lyapunov
exponent exceeds the threshold of 0.001 that are required to identify chaos.
However, it should be noted that any system without parameters produces special
cases. Therefore, the parameters play a crucial role in the analysis and study of
the behavior of systems. Researchers have extensively utilized these systems to
generate high-dimension systems with a fewer number of terms [6–13].

Any dynamical system is composed of a set of variables and parameters. Un-
derstanding the role of each parameter in a system, many mathematical systems
can be created that accurately predict its behavior in different scenarios: state
feedback control and coupling strategy [14–16]. One important application of
parameter analysis is in the field of electronic circuits via NI Multisim to iden-
tify the optimal resistors and capacitors that will achieve the desired performance
characteristics [17–19]. The problem of stabilization for delay fuzzy systems with
parameters to an estimated controller of the nonlinear Takagi-Sugeno parameter-
ized systems [20]. Overall, the study of parameters is essential for explaining the
behavior of systems in various fields.

In 2010, Sprott [5] identified 16 chaotic model memory oscillators (𝑀𝑂𝑖)
which are called 𝑀𝑂0, 𝑀𝑂1, 𝑀𝑂2, . . . , 𝑀𝑂15. It is clear that all these models
are homogeneous third-order explicit ordinary differential equations (3rd ODEs)
with single variable 𝑥, also called a jerk equation 𝑥 = 𝐽 (𝑥, ¤𝑥, ¥𝑥), where the first
derivative represents velocity, the second derivative represents acceleration, and
the third derivative represents jerk. Memory oscillators are a class of dynamical
systems that exhibit interesting and complex behavior and can be recast in the
form of systems that consist of a set of first-order differential equations. According
to [17], these memory oscillator models are special cases of the more general
class of chaotic electrical circuit

𝑥 + 𝐴 ¥𝑥 + ¤𝑥 − 𝐺 (𝑥) = 0. (1)

𝐴 is constant, 𝐺 (𝑥) – nonlinear function (nonlinear feedback element) as shown
in Fig. 1.

Several 3D ordinary differential equation (ODE) systems have been adopted
based on the jerk equation and Sprott’s criteria for constructing a new chaotic
systems [21]. These systems focus on a limited number of terms and an indefinite
number of quadratic nonlinearities. In 2013, Molaie et al. [4] identified six chaotic
jerk systems (SE1–SE6) with node-foci equilibria, which were deemed “simple
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Figure 1: A general chaotic electrical circuit [17]

systems” at that time due to their composition of seven or eight terms as per [4]. In
2015, another jerk system derived from memory oscillators 𝑀𝑂11 was presented,
which was deemed simpler than SE1, . . . , SE6 systems as it included only six
terms with specific coefficients [22]. In 2017, Vaidyanthan et al. [23] introduced a
jerk system composed of seven terms and five parameters. Similar to conventional
systems, these parameters played a significant role in influencing the chaotic
behavior. However, the other parameters did not influence the dynamic properties
of the system except for one parameter related to divergence [23].

Recently, there has been significant attention from researchers towards jerk
systems, due to their potential applications in diverse fields including image
encryption [24, 25] and optimization [26]. Several studies have been conducted
on different types of jerk systems, and Table 1 provides a comprehensive summary
and offers detailed information on various jerk systems of these studies organized
by publication year. For instance, in 2018, publications such as [27–29] were
released, followed by [30] in 2019, [31–34] in 2020, [35–38] in 2021, and [39–41]
in 2022. Newly, Vaidyanathan et al. introduced a new 3D jerk system with eight
terms and three parameters in 2022 [42]. It is clear from Table 1 that most
parameters of the systems played a minor role in analyzing and investigating the
characteristics of each system.

Until now, chaotic behavior is still important in various systems, such as the
chaotic Colpitts oscillator [43]. This paper focuses on introducing a new chaotic
oscillator with a triangular wave non-linearity. Additionally, a 3D chaotic biology
system, comprising one prey and two predators, is presented [44]. Another study
introduces a new 3D chaotic Thomas’ system, where a fractional derivative
(specifically, Riemann-Liouville) is utilized to gain a better understanding of
the system’s dynamics [45]. The researchers thoroughly examine the system for
different fractional index values to demonstrate the sensitivity of chaotic systems
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Table 1: Some of the reported chaotic jerk models with active parameters

No. Refs.
Total
no. of
terms

Nonlinearities and their type No. of
parameters

No. of
active

parameters
No. of

nonlinear Type

1–6

[4],
2013
six

models

SE1 7 2

Quadratic, Cross product without
parameters –

SE2 8 3
SE3 7 2
SE4 7 2
SE5 7 2
SE6 7 3

7 [21], 2015 6 2 Two Exponentials 2 1
8 [22], 2017 7 3 Cross product, Cubic 5 1
9 [26], 2018 6 2 Two Exponentials 4 2
10 [27], 2018 7 3 Quadratic, Cross product 7 1
11 [28], 2018 6 1 Cubic 6 3
12 [29], 2019 6 1 Exponential 2 2
13 [30], 2019 7 2 Quadratic, Cross product 3 3
14 [31], 2020 7 3 Quadratic, Cross product, Cubic 3 1
15 [32], 2020 7 2 Quadratic, Cubic 4 3
16 [33], 2020 6 1 Sine hyperbolic function 3 2
17 [34], 2020 8 3 Quadratic, Cross product 8 3
18 [35], 2021 6 1 Cubic 4 1
19 [36], 2021 7 2 Quadratic, Cross product 2 1
20 [37], 2021 7 2 Quadratic, Cross product 2 –
21 [38], 2021 7 2 Quadratic, Cross product 4 1
22 [39], 2022 6 1 Cubic 2 2
23 [40], 2022 7 1 Sine hyperbolic function 5 2
24 [41], 2022 7 2 Quadratic, Cross product 4 1
25 [42], 2022 8 3 Quadratic, Cross product 3 3
26 This work 6 2 Quadratic, Exponential 4 4 (all)

to initial conditions. In a different study, a speech cryptosystem based on the
3D new chaotic system is proposed a speech cryptosystem based on the 3D
new chaotic system [46]. However, there have been many previous studies on
chaotic systems and oscillators. This motivated us to propose a new six-term jerk
system with four parameters, inspired by chaotic memory oscillators, where each
parameter has a significance on the proposed system.
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In the following points, the exceptional and captivating attributes of the pro-
posed system will be outlined.

• The proposed system is relatively simple compared to other systems of a
similar nature in existing literature, as it contains only one exponential term
and four parameters among its total of six terms.

• Every parameter plays a significant role in the evaluation of the proposed
system’s dynamics:

(i) The determination of stability is affected by the crucial parameters 𝑎1
and 𝑎3.

(ii) The system’s dynamics are influenced by the bifurcation parameter 𝑎2,
and it can exhibit different behavior such as periodic, quasi-periodic
(2-torus), and chaotic behavior.

(iii) The classification of this system as either dissipative or conservative is
determined by the divergence analysis, which is based on the parame-
ter 𝑎3.

(iv) Parameter 𝑎4 plays a crucial role in determining whether attractors are
self-excited or hidden based on equilibria.

• A new algorithm for encrypting images is proposed, which involves utilizing
the jerk system. The algorithm’s security is tested, and its effectiveness is
evaluated.

2. A new 3D jerk system

Let us recall the fifth class 𝑀𝑂4 [6] which includes a quadratic polynomial i.e.,

𝑥 + 0.5¥𝑥 + ¤𝑥 − 𝑥(𝑥 − 1)︸   ︷︷   ︸
𝐺 (𝑥)

= 0. (2)

It is convenient to convert the ODE (2) in a 3-D system having six terms by
setting 𝑦 = ¤𝑥, 𝑧 = ¥𝑥 i.e., 

¤𝑥 = 𝑦,

¤𝑦 = 𝑧,

¤𝑧 = −𝑥 − 𝑦 − 0.5𝑧 + 𝑥2.

(3)

System (3) can be expressed in a general form via the equivalent system as
¤𝑥 = 𝑦,

¤𝑦 = 𝑧,

¤𝑧 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥
2.

(4)
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In which 𝑎1 = 𝑎2 = 1, 𝑎3 = −0.5, and 𝑎4 = 1. According to parameters (co-
efficients) 𝑎𝑖, system (4) is categorized into elegant [4, 5] or no elegant jerk
model as:

The system (4) can be classified as an elegant or non-elegant jerk model based
on its parameters, as indicated by the value of 𝑎𝑖:

• Elegant system if many 𝑎𝑖 = ±1/0 or other 𝑎𝑖 < 1 (decimal fraction or
small integer).

• No elegant system if many 𝑎𝑖 ≠ ±1/0 or other 𝑎𝑖 > 1 (greater than one).

The classification of the system (4) as an elegant or non-elegant jerk model
depends on the values of its parameters, specifically the value of 𝑎𝑖. If the majority
of 𝑎𝑖 values are either equal to ±1/0 or less than 1 (represented as a decimal
fraction or small integer), then the system is considered an elegant one. On the
other hand, if the majority of 𝑎𝑖 values are not equal to ±1/0 or greater than 1,
then the system is classified as a non-elegant one. Such system (4) is called jerk
system and the general form of jerk equation as

𝐽 (𝑥, 𝑦, 𝑧) = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥
2 + 𝑎5𝑦

2 + 𝑎6𝑧
2 + 𝑎7𝑥𝑦

+ 𝑎8𝑥𝑧 + 𝑎9𝑦𝑧 + 𝑎10 , (5)

where
𝐽 (𝑥, 𝑦, 𝑧) = 𝑥 = 𝐽 (𝑥, ¤𝑥, ¥𝑥) (6)

and the third derivative of the system (6) i.e., 𝑥 =
d3𝑥

d𝑥3 = ¤𝑥3 represents the jerk.
So, the 𝑀𝑂4 model belongs to the family of jerk systems.

Relying on the model (3) and Eq. (5), a new simple jerk model inspired by
𝑀𝑂4 is proposed which can be depicted as:

¤𝑥 = 𝑦,

¤𝑦 = 𝑧,

¤𝑧 = −𝑎1𝑥 − 𝑎2𝑒
𝑦 − 𝑎3𝑧 + 𝑎4𝑥

2,

(7)

where 𝑎𝑖, 𝑖 = 1, . . . , 4 are control parameters and by adjusting these parameters,
it is possible to obtain various types of peculiar attractors. System (7) has chaotic
behavior under typical (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (3, 0.25, 11.5, 1) with initial conditions
(0, 0.1, 0) as shown in Fig. 2a. It is clear that both the 𝑀𝑂4 system (3) and a
new jerk system (7) have six terms, but with replaced the linear term (−𝑦) in the
third ODE of (3) with exponential nonlinear term (−𝑒𝑦) in the proposed system.
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Figure 2: Lyapunov exponents and chaotic attractor for the new system

3. Dynamical analysis of the jerk system

3.1. Dissipativity and conservative

These two properties are essential for understanding the dynamical behavior
of this jerk system and how it can be used for various applications. The dissipative
nature of this system ensures that it does not lose energy over time, while the
conservative nature ensures that its momentum is preserved. By studying these
properties, we can gain insight into how this new jerk system behaves in different
circumstances and what kind of applications it could be useful for.

The divergence of the system (7) can be obtained as

∇𝑉 =
𝜕 ¤𝑥
𝜕𝑥

+ 𝜕 ¤𝑦
𝜕𝑦

+ 𝜕 ¤𝑧
𝜕𝑧

= −𝑎3 . (8)

Note that the divergence based on control parameter 𝑎3 only as:
• If 𝑎3 > 0, then the system is dissipative,
• If 𝑎3 = 0, then the system is conservative,
• If 𝑎3 < 0, then the system is unbounded.

3.2. Lyapunov exponents and Lyapunov dimension

System (7) has one positive Lyapunov exponent under (𝑎1, 𝑎2, 𝑎3, 𝑎4) =

(3, 0.25, 11.5, 1) with initial condition (0, 0.1, 0) as depicted in Fig. 2 as follows
LE1 = 0.0022,
LE2 = −0.0001 ≈ 0,
LE3 = −11.5016,

3∑︁
𝑖=1

LE𝑖 = −11.4996, (9)
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whereas, the Lyapunov dimension (𝐷𝐿) given as

𝐷𝐿 = 𝑗 + 1��𝐿𝐸 𝑗+1
�� 𝑗∑︁
𝑖=1

LE𝑖 =⇒ 𝐷𝐿 = 2 + 0.0022 − 0.0001
|LE3 |

= 2.0002. (10)

The degree to which a system exhibits chaotic behavior may be measured using
the Lyapunov dimension.

3.3. Equilibria and stability

System (7) categories as hidden and self-excited attractors relying on param-
eter 𝑎4 as:

• If 𝑎4 = 0, then the system (7) is without equilibria and belongs to hidden
attractors.

• If 𝑎4 ≠ 0, then the system (7) has two unstable equilibria and belongs to
self-excited attractors.

Under 𝑎4 ≠ 0, system (7) has equilibria 𝐸1,2 =
©­­«
𝑎1 ±

√︃
𝑎2

1 + 4𝑎2𝑎4

2𝑎4
, 0, 0

ª®®¬ and it

can be written in a general form as 𝐸 (𝑥∗, 0, 0) where 𝑥∗ =
𝑎1 ±

√︃
𝑎2

1 + 4𝑎2𝑎4

2𝑎4
.

The Jacobian and the corresponding characteristic polynomial are given in
Eq. (11) and Eq. (12), respectively.

𝐽 =


0 1 0
0 0 1

−𝑎1 + 2𝑎4𝑥 −𝑎2𝑒
𝑦 −𝑎3


−−−−−−→
𝐽 (𝐸1,2)


0 1 0
0 0 1

±
√︃
𝑎2

1 + 4𝑎2𝑎4 −𝑎2 −𝑎3

 (11)

𝐸1 : 𝑝(𝜆) = 𝜆3 + 𝑎3𝜆
2 + 𝑎2𝜆 −

√︃
𝑎2

1 + 4𝑎2𝑎4 , (12a)

𝐸2 : 𝑝(𝜆) = 𝜆3 + 𝑎3𝜆
2 + 𝑎2𝜆 +

√︃
𝑎2

1 + 4𝑎2𝑎4 . (12b)

The system (7) is always unstable at point 𝐸1 due to the final term of Eq. (12a) is
negative. Therefore, the investigation for stability at point 𝐸2 is considered only to
check whether it is stable or not. Now, the Hurwitz matrix of the above equation
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at 𝐸2 as

𝐻 =


𝑎3

√︃
𝑎2

1 + 4𝑎2𝑎4 0
1 𝑎2 0

0 𝑎3

√︃
𝑎2

1 + 4𝑎2𝑎4

 .
Based on the Routh -Hurwitz criterion, constraints are required as

• Δ1 = |𝑎3 | > 0,

• Δ2 =

�����𝑎3

√︃
𝑎2

1 + 4𝑎2𝑎4

1 𝑎2

����� = 𝑎2𝑎3 −
√︃
𝑎2

1 + 4𝑎2𝑎4 > 0,

• Δ3 =

√︃
𝑎2

1 + 4𝑎2𝑎4 , Δ2 > 0.
Consequently, the Eq. (12b) has three eigenvalues with negative real part at the
next conditions:

𝑎3 > 0, 𝑎1 >

√︃
𝑎2(𝑎2𝑎

2
3 − 4𝑎4) = 𝑎𝐶 . (13)

If 𝑎1 = 𝑎𝐶 , then it is termed a critical value.

Corollary 1. (Critical Value) The jerk system has a critical value at the equilib-
rium 𝐸2 as

𝑎1 = 𝑎𝐶 =

√︃
𝑎2(𝑎2𝑎

2
3 − 4𝑎4) . (14)

Proof. Hopf bifurcation for Eq. (12b) occur of the transit via the coefficients
𝑎3𝑎2−

√︃
𝑎2

1 + 4𝑎2𝑎4 = 0 ⇒ (𝑎3𝑎2)2 = 𝑎2
1+4𝑎2𝑎4 ⇒ 𝑎1 =

√︃
𝑎2(𝑎2𝑎

2
3 − 4𝑎4) =

𝑎𝐶 .

Corollary 2. Under condition (14), Eq. (12b) has one pair of pure-imaginary
roots, and the solutions are 𝜆1 = −𝑎3, 𝜆2,3 = ±√𝑎2𝑖.

Proof. Let 𝜆2,3 = ±𝑏𝑖 be the complex solutions and 𝜆1 the real solution of
Eq. (12b) then, utilize the law 𝜆1 +𝜆2 +𝜆3 = −𝑎3 → 𝜆1 = −𝑎3. This readily leads
to 𝑎3 > 0, 𝑎1 =

√︃
𝑎2(𝑎2

3𝑎2 − 4𝑎4) and 𝜆1 = −𝑎3, 𝜆2,3 = ±√𝑎2 𝑖. So, system (7)
exhibits a Hopf bifurcation at the point 𝐸2. Consequently, the point 𝐸2 loses its
stability at 𝑎1 = 𝑎𝐶 .

Theorem 1. If 𝑎1 =

√︃
𝑎2(𝑎2𝑎

2
3 − 4𝑎4), Eq. (12b) has a negative eigenvalue

𝜆1 = −𝑎3 < 0 together with one pair of pure-imaginary eigenvalues𝜆2,3 = ±√𝑎2 𝑖

such that Re
(
𝜆́(𝑎𝐶)

)
≠ 0, therefore the system (7) exhibits a Hopf bifurcation at

the point 𝐸2.
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Proof. If 𝑎1 = 𝑎𝐶 =

√︃
𝑎2(𝑎2𝑎

2
3 − 4𝑎4) the Eq. (12b) is transformed into

(𝜆 + 𝑎3)
(
𝜆2 − 𝑎2

)
= 0

with solutions 𝜆1 = −𝑎3, 𝜆2,3 = ±√𝑎2𝑖

𝜆́ =

1
2 (𝑎

2
1 + 4𝑎2𝑎4)−

1
2 (2𝑎1)

3𝜆2 + 2𝑎3𝜆 + 𝑎2

⇒ 𝜆́ (𝑎𝐶) =
𝑎1(𝑎2

1 + 4𝑎2𝑎4)
− 1

2

3𝜆2 + 2𝑎3𝜆 + 𝑎2

������
𝑎1=

√︃
𝑎2 (𝑎2

3𝑎2−4𝑎4)

. (15)

Inserting 𝜆2,3 = ±√𝑎2 𝑖 in Eq. (15), the real and imaginary parts are given in
Eq. (16) and Eq. (17), respectively as:

Re
(
𝜆́(𝑎𝐶)

)
=

−2𝑎1𝑎2√︃
𝑎2

1 + 4𝑎2𝑎4(4𝑎2
2 + 4𝑎2𝑎

2
3)

≠ 0, (16)

Im
(
𝜆́(𝑎𝐶)

)
=

−2𝑎3
√
𝑎2√︃

𝑎2
1 + 4𝑎2𝑎4(4𝑎2

2 + 4𝑎2𝑎
2
3)

≠ 0. (17)

Consequently, the new system (7) presents a Hopf bifurcation at 𝐸2.
Obviously, Eq. (14) (Critical Value) can be written in another way as

𝑎3 =
𝑎2

1 + 4𝑎2𝑎4

𝑎2

√︃
𝑎2

1 + 4𝑎2𝑎4

= 𝑎𝐶 . (18)

Herein 𝑎𝐶 = 12.6491 under typical (𝑎1, 𝑎2, 𝑎4) = (3, 0.25, 1). According to the
critical value and the control parameter 𝑎3, the proposed system can produce
three categories of point 𝐸2: saddle-foci (unstable), non-hyperbolic (bifurcation),
and node-foci (stable), Table 2 illustrates these categories with variation 𝑎3.

Table 2: Classification of equilibrium point 𝐸2 based on critical value (𝑎𝐶 = 12.6491) with
parameters (𝑎1, 𝑎2, 𝑎4) = (3, 0.25, 1) and varying 𝑎3

Parameter 𝑎3 Eigenvalues Equilibrium 𝐸2

𝑎3 = 11.5 (0.001 ± 0.5243, −11.5022) Saddle-foci
𝑎3 = 12.6491 (0.00 ± 0.5, −12.6491) Non-hyperbolic
𝑎3 = 15 (−0.0013 ± 0.4592𝑖, −14.9974) Node-foci
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3.4. Bifurcation analysis

To characterize the dynamical behavior of the proposed system relying on
the bifurcation diagram and the corresponding Lyapunov exponent spectrum of
the state variable 𝑥 with respect to control parameter 𝑎2 ∈ [0.27, 0.33] and
fix the parameters (𝑎1, 𝑎3, 𝑎4) = (3, 10, 0). Fig. 3 exhibits various dynamical
behaviors, including chaotic, periodic, and quasi-periodic.

Figure 3: Bifurcation diagram and Lyapunov spectrum at (𝑎1, 𝑎3, 𝑎4) = (3, 10, 0) and 𝑎2 ∈
[0.27, 0.33]

According to Fig. 3a, the interval [0.27, 0.33] is divided into three subinter-
vals, which are summarized as:

• 𝑎2 ∈ [0.27, 0.29], there is (+, 0, −) sign of LEs and the system (7) has chaotic
attractors.

• 𝑎2 = 0.3, there is (0, 0, −) sign of LEs and the system (7) has quasi-periodic.
• 𝑎2 ∈ [0.31, 0.33], there is (0, −, −) sign of LEs and the system (7) has periodic.

Some typical behaviors and Lyapunov exponents corresponding to special values
of 𝑎2 are illustrated in Fig. 4 and Table 3, respectively.

Figure 4: Typical dynamical behavior of the new system with control parameters (𝑎1, 𝑎3, 𝑎4) =
(3, 10, 0) and various of 𝑎2. (a) 𝑎2 = 0.27, (b) 𝑎2 = 0.30, (c) 𝑎2 = 0.32
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Table 3: LEs at (𝑎1, 𝑎3, 𝑎4) = (3, 10, 0) with special values of 𝑎2 and ∇𝑉 = −10

Parameters 𝑎2 Lyapunov exponent Sum of LEs sign of 𝐿𝐸𝑠 Behavior Figure

0.27
LE1 = 0.0023
LE2 = 0.0006
LE3 = −10.0028

−9.9999 (+, 0, −) Chaotic Fig. 4a

0.3
LE1 = 0.0009
LE2 = −0.0009
LE3 = −9.9998

−9.9998 (0, 0, −) Quasi-periodic
(2 torus) Fig. 4b

0.32
LE1 = 0.0000
LE2 = −0.0019
LE3 = −9.9979

−9.9998 (0, −, −) Periodic Fig. 4c

3.5. Influence of parameters

The parameters of the proposed system 𝑎𝑖, 𝑖 = 1, . . . , 4 are called control
parameters effect on the dynamical behavior of this system as shown in Fig. 5.

Figure 5: The attractor of the new system with various control parameters
(𝑎1, 𝑎2, 𝑎3, 𝑎4) at: (a) (3, 0.28, 10, 0), (b) (3, 0.25, 10, 1), (c) (0, 0.19, 10, 1)

• With (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (3, 0.28, 10, 0), the new system without equilibria
points and generates a hidden chaotic attractor as shown in Fig. 5a under
the initial conditions (0, 0.1, 0), the corresponding Lyapunov exponents
and Lyapunov dimension are illustrated in Table 4.

• With (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (3, 0.25, 10, 1), system (7) has two unstable equi-

libria points 𝑃1,2

(
3
2
±
√

10
2

, 0, 0

)
saddle/saddle-foci and system (7) gen-

erate another typical self-excited chaotic attractor as shown in Fig. 5b and
the correspond eigenvalues, Lyapunov exponents and Lyapunov dimension
are given in Table 4.
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• With (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (0, 0.19, 10, 1), the system (7) has two stable
and unstable equilibria points 𝑃1,2(±

√
0.19, 0, 0) node-foci/saddle and sys-

tem (7) has coexistence of multiple attractors: self-excited and hidden peri-
odic shown in Fig. 5c, the corresponding eigenvalues, Lyapunov exponents
and Lyapunov dimension are listed in Table 4.

Table 4: Several typical attractors of the system (7) with various control parameters

Parameters 𝑎𝑖 Equilibria Eigenvalues Attractor LE𝑖 𝐷𝐿

(3, 0.28, 10, 0) No equilibria . . . hidden
LE1 = 0.0019
LE2 = 0.0000
LE3 = −10.0061

2.0001

(3, 0.25, 10, 1)

(
3
2
+
√

10
2

, 0, 0

)
(

3
2
−
√

10
2

, 0, 0

)
𝜆1 = 0.5361
𝜆2 = −0.5932
𝜆3 = −9.9429

𝜆1 = −10.0066
𝜆2,3 = 0.0033 + 0.5621𝑖

self-
excited

LE1 = 0.0062
LE2 = 0.0000
LE3 = −10.0061

2.0006

(0, 0.19, 10, 1)

(√
0.19, 0, 0

)
(
−
√

0.19, 0, 0
)

𝜆1 = 0.2821
𝜆2 = −0.3099
𝜆3 = −9.9722

𝜆1 = −9.9897
𝜆2,3 = −0.0051+ 0.2954𝑖

multiple
attractors

LE1 = 0.0002
LE2 = −0.0115
LE3 = −9.9881

1.0174

4. The proposed algorithm

Data encryption plays a crucial role in maintaining information confiden-
tiality, particularly when sensitive data is transmitted over unsecured channels.
Considering this, our proposed system for image encryption serves as evidence of
the potential of utilizing such systems for enhancing security and confidentiality
in various applications.

A new algorithm for image encryption has been developed that employs a
3-D jerk chaotic system for encrypting colored images. The encryption process
begins by detecting the original-colored image, which is then encrypted using
our following proposed algorithm as depicted in Fig. 6. The original image has
dimensions of ℎ × 𝑤.

Following the completion of all the necessary procedures and acquisition of
the outcomes, statistical tests utilizing mathematical approaches were employed to
evaluate the results. Efficiency measures, including Mean Squared Error (MSE),
are used to assess the level of misrepresentation in the image, the correlation
coefficient used to evaluate the association between variables, and PSNR (Peak
Signal-to-Noise Ratio) which measures the quality of the encrypted image by
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Figure 6: Block diagram of image encryption and image description process
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The proposed Algorithm: Image encryption algorithm

1. Resize the image to fit the process of cutting into blocks,
2. Divide the image into a group of blocks, each block is 50 * 50,
3. Flipping the elements of each block to increase security,
4. Implementation of the 3D jerk system which produces three state variables 𝑥𝑦𝑧,
5. Process the elements of each of the three variables, first, make all values positive, where

if 𝑥𝑖 ( 𝑗) < 0
Then 𝑥𝑖 ( 𝑗) = 𝑥𝑖 ( 𝑗) ∗ −1
Else 𝑥𝑖 ( 𝑗) = 𝑥𝑖 ( 𝑗),

6. Process values greater than 255 where if
𝑥𝑖 ( 𝑗) >= 255
Then 𝑥𝑖 ( 𝑗) = 𝑥𝑖 ( 𝑗) mod 255
Else 𝑥𝑖 ( 𝑗) = 𝑥𝑖 ( 𝑗),

7. Building a key matrix in Zack Zag style from the two variables 𝑦, 𝑧,
8. Carrying out the encryption process by applying the XOR operation for the flipping image

blocks elements with the key matrix elements,
9. Get the encrypted image.

comparing it with the plain image, were utilized during the evaluation process
where

𝑀𝑆𝐸 =
1

𝑀𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

(𝑥𝑖 𝑗 − 𝑦𝑖 𝑗 )2, (19)

Corr =

𝑁∑
𝑖=1

𝑀∑
𝑗=1

(
𝑥𝑖 𝑗 − 𝑥

) (
𝑦𝑖 𝑗 − 𝑦̄

)
√︄

𝑁∑
𝑖=1

𝑀∑
𝑗=1

(
𝑥𝑖 𝑗 − 𝑥

)2
√︄

𝑁∑
𝑖=1

𝑀∑
𝑗=1

(
𝑦𝑖 𝑗 − 𝑦̄

)2

, (20)

where 𝑥, 𝑦̄ represents the mean of images 𝑥 and 𝑦 and can be calculated as follows:

𝑥 =

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑥𝑖 𝑗

𝑁𝑀
, 𝑦̄ =

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖 𝑗

𝑁𝑀
(21)

and 𝑃𝑆𝑁𝑅

𝑃𝑆𝑁𝑅 = 10 log10

(
𝐶2

max
𝑀𝑆𝐸

)
. (22)

To achieve optimal outcomes, multiple tests were conducted. Each of the resulting
system sequences was used individually during the image encoding procedure to
assess the influence of linear and non-linear variables on the encoding output.
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The encoder utilized the XOR function to combine the color values of image
pixels with the resulting string following some preliminary processing of these
strings. The statistical measures of these outcomes are presented in Fig. 7.

Figure 7: Encryption image with system strings results uses variables (a) 𝑥; (b) 𝑦; (c) 𝑧; (d) 𝑦

and 𝑧

Based on the observed outcomes, it appears evident that utilizing the first and
second series obtained from the equation did not produce outcomes as satisfactory
as the rest of the results. This is because the first and second equations in the
system are linear, while the third equation is nonlinear. To enhance the encryption
results, it was proposed to construct a keychain by combining the second and third
strings, as the outcomes demonstrate. The statistical measures employed in the
study are presented in Table 5.

To evaluate the effectiveness of the suggested algorithm, we utilized multiple
images and began the merging and configuration process using the string from
the 5000th site. We measured the algorithm’s performance using Mean Squared
Error, correlation, and Peak Signal-to-Noise Ratio on five images utilizing both 𝑦

and 𝑧. Through statistical testing, we compared the original images with the

Table 5: MSE, Corr, and Peak-SNR between the original image and encrypted Image uses 𝑥, 𝑦, 𝑧
and 𝑦 and 𝑧

Peak-SNR Corr MSE Variables
10.25073 0.01968 97.09727 𝑥

10.43436 0.04557 102.24683 𝑦

10.50899 −0.00988 92.78875 𝑧

10.47239 0.01129 96.64012 𝑦 and 𝑧
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encrypted and decrypted images, and the results were presented in Tables 6 and 7,
demonstrating the accuracy of the algorithm.

Table 6: Statistical measures between the original image and encrypted image and the original
image and decrypted image use 𝑦 and 𝑧

Images
Original and encrypted images Original and decrypted images

MSE Corr Peak-SNR MSE Corr Peak-SNR
1 83.63747 0.00019 8.22620 19.79072 0.99477 31.54938
2 75.30725 0.00317 8.92621 27.84417 0.98813 29.64523
3 96.64012 0.01129 10.472398 8.72718 0.99450 35.60986
4 104.67066 0.00061 8.88281 19.66175 0.99481 31.80955
5 74.81339 0.00018 7.45140 11.74053 0.99765 34.27360

Table 7: Experimental results of the encryption algorithm using the matrix obtained from merging
𝑦 and 𝑧 start merging from position 5000
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From the practical experiments and comparison between the original image
and the encrypted image, the values of metrics mean squared error (MSE), Cor-
relation, and Peak signal-to-noise ratios (PSNR) are (74.81339 − 104.67066),
(0.00018 − 0.01129) and, (7.45140 − 10.472398), respectively. Whereas the
values of the same metrics: MSE, Corr., and PSNR between the original im-
ages and decrypted images, are (8.72718− 27.84417), (0.98813− 0.99765) and
(29.64523− 35.60986), respectively as depicted in Table 5. This indicates levels
of mismatch and high obscurity, with a negligible relationship between the plain
and encrypted images, and the extent of distortion achieved by the encryption al-
gorithm. Whilst the decryption process introduces a simple level of distortion, the
strong relationship between the two sets of images means a high degree of sim-
ilarity between the original and decrypted images. The Peak-SNR values for the
original and decrypted images are generally high, suggesting that the decryption
process maintains image quality.

5. Conclusions

In this article, a new 3D jerk system is developed using a chaotic model mem-
ory oscillator (𝑀𝑂4) with four adjustable parameters. By choosing the appropri-
ate parameter, the system can exhibit different types of behavior and attractors,
such as dissipative or conservative behavior, and self-excited or hidden attrac-
tors. Several characteristics are obtained from the equilibrium under specified
parameters included saddle-foci, non-hyperbolic, and node-foci. The proposed
system exhibits various behavior: chaotic, quasi-periodic (2-torus), and periodic
attractors via utilized both software bifurcation diagrams and Lyapunov spectrum
analysis. Finally this system is employed in application of images encryption and
decryption which indicates its practical benefit.
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