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Abstract We explain that a full description of how the non-equilibrium
state of the system evolves in time requires the consideration and solution
of its general equation of motion. In the case of the Carnot medium, as
a general equation of motion, there must be taken two balances of: non-
equilibrium specific volume and non-equilibrium specific entropy. Instead
of taking the classical approach where the balance of entropy is postponed
to more advanced and theoretical treatments, we focus on the analysis of
two, most general, volume and entropy fluxes. These fluxes of motion are
universal features of thermodynamics. It has been shown that the Carnot
working continuum mathematical model is captured by the two general non-
mathematical statements valid for all systems that we call the first law and
the second law of thermodynamics.
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1 Introduction

In 1823 Sadi Carnot introduced [1] the concept of a four-part thermo-
dynamic cycle, dealing with an ideal gas as a working fluid. The name
“working fluid” came from the fact that the Carnot cycle is aimed to con-
vert a “flux of heating energy” into the “flux of working energy”. On the
level of a whole cycle, by integrating the heating and working fluxes Carnot
was able to obtain two basic notions: “cycle heat” and “cycle work” which,
helpfully, were known from engineering practice as “heat” and “work”.

Sadi Carnot has borrowed the concept of conversion from his father
“General Mechanic”. Such a situation that the son takes something from
his father is normal in our Western civilization. Probably it was in 1818
year in Warsaw, where General Lazar Carnot stayed as a French Revolution
emigrant. During the visit of Sadi Carnot, as historians inform us, both –
father and son – had an occasion to see the demonstration of a Watt steam
engine. Probably then, Lazar Carnot asked: on what principle the steam
engines are acting?

It is obvious that Lazar Carnot was a tremendous pattern for young Sadi
Carnot. At that time, on the whole European Continent, Lazar Carnot was
recognized as: “French Newton”. He proposed [2] quite a new concept of
mechanics, with the laws of motion that have followed from the Aristotelian
principle of least action. Lazar Carnot extending Aristotelian notions of
“energea” and “entelehy” was able to introduce the concept of “energy
conversion”. The main example of energy conversion, developed by Lazar,
was the conversion of “potential energy” into “the actual energy” which
takes place in mill wheels, with river water as “the working medium”. Lazar
has introduced the concept of two energy magazines: higher and lower, in
the form of water reservoirs. Lazar’s working medium possesses two state
parameters: “gravitational head” and “flow speed”. Unfortunately, the son
was a disappointment since in Sadi’s concept of working fluid these state
parameters are unimportant – the “gravitational head” is constant and
“flow speed” is equal to zero. Sadi was impressed to find some analogy.

In the year 1823, Sadi changed the configuration of Lazare’s cycle – in
his case, both energy magazines were mobile but the working fluid was
fixed in a geometrical domain of the engine cylinder. It has led to the case
where Lazare’s state parameters: “gravitational head” and “flow speed”
were nonessential. And it opened the need for a new state parameter of
working fluid. Sadi Carnot has decided to introduce two complementary
state parameters: “specific volume” and “specific caloric” (nowadays: spe-
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cific entropy). In his description of a cycle, Sadi Carnot decided to introduce
two yet unknown laws of physics into consideration. These are:

• a law of conservation of specific volume (say v) and
• a law of conservation of specific entropy (say s).

These laws were expressed in words as: at the cycle end, after four ar-
bitrary transformations of state parameters, working fluid is in the same
thermodynamical state as at the beginning, and it is ready to make a new
cycle. Let us note that the balance of energy, which can be treated to be the
mathematical statement of the First Principle of Thermodynamics does not
appear in the Carnot model of working medium. The balance of energy in
the Carnot working medium was used in a special place and in a special role
(see [1] footnote 9) – only for making calculations of the equality of cycle
work and cycle heat: Wcycle = Hcycle. It means that in Said Carnot’s state-
ment, the first principle of thermodynamics plays a special distinguished
role; it is not part of a system of governing equations, since it plays a role
in final judgement.

Internal energy located within the whole working fluid is denoted by Sadi
Carnot as U (see [1] footnote 5). Expressing the specific internal energy as
ε = U/m, where m is a mass of the whole working fluid enclosed within the
container volume Ω, taking into account that gravitation energy is constant
and kinetic energy is zero, the energy balance of 1 kg of working fluid can
be reduced to:

• a law of first principle of thermodynamics:
ε(begining of a cycle) = ε(end of a cycle)

what means that the specific internal energy, being an internal magazine
of energy, located within one kilogram of working fluid, after making four
conversions, returns to its starting store. In other words, the Carnot mathe-
matical model of working fluid is based only on two balances of state param-
eters. And in this model, principles of thermodynamics have a passive role
and are fulfilled from the very beginning. In this paper, we like to extend
this approach to a working fluid within the flow – extending a case of ideal
equilibrium thermodynamics to real non-equilibrium thermodynamics.

2 Non-equilibrium thermodynamical statements
Every one of us knows that a real engine working fluid cannot be described
by permanently stable and reversible behaviour. Unstable phenomena, like
temperature and pressure changes, result from inherent fluctuations of the
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respective state variables. Near global equilibrium, those fluctuations hav-
ing a form of peripatetical motions, do not disturb the equilibrium. The nat-
ural trend toward equilibrium is distinguished by asymptotically vanishing
dissipative contributions. In contrast, non-equilibrium states can amplify
the fluctuations, and any local disturbances can even lead the whole system
into an unstable or metastable state. This feature is an important indica-
tion of the qualitative difference between equilibrium and non-equilibrium
states. Equilibrium states are needed for making the constitutive relation
between equilibrium state parameters, but non-equilibrium state parame-
ters take parts in every whole balance [4, 7, 16,28].

Within the Carnot model, there is no irreversibility generated by any
flow of fluxes: flux of volume, flux of entropy or flux of momentum. The
change of state parameters during four transformations occurs immediately
without any fluxes – the change is visualised by virtual volumetric contact of
any small part of mass of working fluid with any virtual surface of the heat
container (upper and lower) and a mobile surface of the working engine. It
is, of course, an ideal thought by Carnot as “equilibrium change”. In our
approach, we like to go further and to remove this strong condition, by
assuming that during any change of state (i.e. heating or working fluxes on
the load surfaces), there is a place for appearance of non-equilibrium state
fluctuations. Even if, we resign from local action of fluxes, we can obtain
some improvement of the Carnot model.

Let us also note that our approach has one important aim – we want to
develop and to revalorize the science of the “finite-time thermodynamics” [8]
from zero-dimensional and no-time formulation into a three-dimensional
statement. There are many models of fluids in the literature, but from the
Carnot point of view, those models (like the Navier–Stokes equation [3,21])
are improper for 3D description of the Carnot cycle. It is important for
thermodynamics that many different parts of this science have more precise
relations and more unique fundamental stones.

Let us recall that in classical thermodynamics, in most of the existing
models of working continua, the parameters of state such as: the specific
entropy, the specific volume, temperature and pressure are introduced by
assuming a kind of local equilibrium [6,7,14,28,33,38], even if this assump-
tion is quite dubious in far-from-equilibrium situations. In fact, it is known
that in strict local equilibrium, there is no transport of mass, volume, en-
tropy and momentum (hm = hv = hs = t ≡ 0).

Thus, numerous extensions of thermodynamical ideas to far-from-equi-
librium systems, that are summarised in Sieniutycz’s monograph [17, chap-
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ter 4], from a formal point of view, can be selected into two groups. The
first one consists of the models in which the concept of non-equilibrium
state is entirely related to notions of non-equilibrium temperature and non-
equilibrium pressure. On the contrary, the second one is related to models
that are mainly based on the concept of non-equilibrium specific volume
and non-equilibrium specific entropy. It must be noticed that there are no
more consistent definitions of non-equilibrium state [25, 26]. In the litera-
ture [26,27], one can find a variety of approaches to approximation of non-
equilibrium thermodynamics. The one, most frequently used, is “linear irre-
versible thermodynamics”, which has in its basic assumptions, a resignation
from a general balances of non-equilibrium entropy and non-equilibrium
volume, and replaces these balances with a new type of balance based on
a “concept of local non-equilibrium” [29].

Therefore, linear irreversible thermodynamics is advantageous to have
a phenomenological approach to describe natural processes. This approach
is a rational approximation of non-equilibrium thermodynamics proper to
investigate physical, chemical, and biological 3D systems with irreversible
processes, but not to describe the Carnot cycles. In the linear irreversible
thermodynamics (LIT), the main formalism is coming from the increment
of Carnot internal specific energy ε, nowadays known as the Gibbs equation.
Nevertheless, it should be remembered that Sadi Carnot has introduced the
notion of internal energy only for one need – for connecting together the
balance of specific volume and balance of specific entropy, not for the possi-
bility that combines the first and second laws of thermodynamics [7,28,29].
The Carnot internal energy increment together with the Gibbs relation have
nothing in common with the second law of thermodynamics, as mistakenly
assumed in Linear Irreversible Thermodynamics [28].

Yet, another fundamental difference between Carnot and linear irre-
versible thermodynamics (LIT) lies in the manner how both define and
calculate the equilibrium temperature. For Carnot, temperature is a field
related through the internal energy with the field of specific entropy; for
LIT, temperature is calculated from the field of velocity:

〈1
2v2

〉
= 3

2kBT ,
which means that molecular rotation and vibration are not accounted for.

In this article, we will analyse the possibility of formulation of a more
consistent model of flowing working fluid with non-equilibrium state param-
eters s∗ and v∗, respectively. The model under consideration would describe
the relaxation s∗ → s, and v∗ → v from a non-equilibrium state to the
equilibrium state via n additional internal parameters ξα, α = 1, 2, 3 . . . , n.
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We assume that in Carnot fluid continuum, this property is also true when
the fluid under consideration is inviscid and non-conductive. To avoid mis-
understandings, it is worth mentioning that in the proposed model, the
role played by the energy balance is similar to the classical role played by
the entropy balance in LIT – it expresses the fact of still growing amount
of dissipated energy. Our approach is based on the Beretta-Gyftopulos ex-
position of thermodynamics in which such classical notions as “heat” and
“work” are removed from considerations [6, 9, 38].

3 The accompanying state concept

If the framework of LIT is based on a concept of “a local equilibrium”, which
leads to the correctness of the Gibbs equation and locally well-defined equi-
librium internal energy, then in our approach to Carnot fluid continuum we
put as a fundamental assumption the fact that every equilibrium state has
its “accompanying state”. The concept of accompanying state was devel-
oped in the XX century by many termodynamicists and finally proved by
Josef Kestin [15,18,33].

Let us recall that yet in 1901 Władysław Natanson, in his pioneering
paper [11], undertook the problem of non-equilibrium measure of specific
volume (but in the case of solid body) and its relaxing approaching to
the recoverable, equilibrium state. As Natanson showed, in some sense, the
model after elimination of relaxing parameters leads to the Maxwell-like
model of superposition of elastic and non-elastic components of continuum.
This way of reasoning was extended by Mandelstam & Leontonovich [12]
into a more thermodynamical framework.

In 1958 Andrzej Szaniawski published a significant paper [13] concerning
the non-equilibrium entropy within viscous and conductive fluid. Trying to
give an answer to the question “what is to be understood by entropy in
a non-equilibrium state”, Szaniawski introduced a concept of space non-
equilibrium parameters which possess the accompanying equilibrium state
and the accompanying reversible process. Following this concept, he con-
sidered a state of continuum in which non-equilibrium specific volume v∗

and non-equilibrium specific entropy sast are distinguished from reversible,
equilibrium specific entropy s and equilibrium specific volume v. Numerous
examples of non-equilibrium phenomena were described in the papers by
Kestin and Bilicki [18] and Bilicki and Badur [19].
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Physically, the phenomenon responsible for differences between s∗ − s

and v∗ − v is explained by the field of internal parameters ξα = ξα(xt),
α = 1, 2, 3, . . . , n, depending on the position vector x and time t. These
parameters take part in the model, no matter whether the fluid under con-
sideration is viscous or not, conductive or not. The dissipate phenomena
attributed to ξα = ξα(xt) can be explained as the effect of a far-from-
equilibrium state, necessary in the places where experimentalists have with-
drawn traditionally assumed local-equilibrium state. In the most simple
case, the number of parameters is restricted and only two internal (scalar)
parameters should be postulated: the first one – to describe the s∗ → s

relaxation and the second one to describe the v∗ → v relaxation.
In Fig. 1, the non-equilibrium state is represented by s∗, v∗, ξα whereas

a real state of process is described by a point (P ∗), and any process by
means of a curve l∗.

Figure 1: A space of non-equilibrium states with accompanying equilibrium state.

A set of states of equilibrium represents a surface called by Gibbs “the
primitive surface” Σ(s, v, 0) = 0. For every state (P ∗), one can find on
a curve l of the accompanying reversible process, the point (P ). It means
that if P ∗ → P , then s∗ → s, v∗ → v and parameters ξα → ξ̄α(s, v)
become independent and are functions of the equilibrium state parameters.
In particular ξ̄α ≡ 0.
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Let us assume that the non-equilibrium state parameters are uniquely
split additively into the following series:

s∗ (v, s, ξα) = s + 1
2Aαβ(s, v)ξαξβ , (1)

v∗ (v, s, ξα) = v + 1
2Bαβ(s, v)ξαξβ , (2)

where matrices Aαβ, Bαβ; α, β = 1, 2, 3 . . . , n, should be symmetric and
positively defined. Let us also assume that the specific internal energy is
only a function of equilibrium state parameters s and v; it means that
the internal energy stored only elastic part of converted energy trans-
ported within working fluid. We omit here important Mandelstam’s as-
sumption [12] that a small amount of energy that is liberated during relax-
ation P ∗ → P can be recovered and, therefore, is stored in internal energy
(i.e. ε = ε(s, v, ξα)).

4 Balances of non-equilibrium entropy and
non-equilibrium volume

Our line of reasoning assumes here that in the state of thermal equilibrium,
working fluid is completely described by state parameters s and v, uniquely
determining internal energy ε = ε(s, v, ξα). During a motion, which in gen-
eral is not a state of equilibrium, a state of the inviscid non-conductive
fluid must be represented by two non-equilibrium state parameters s∗ and
v∗, or according to Eqs. (1)–(2), through two equilibrium parameters s, v
and n internal parameters ξα. The balances of changes of non-equilibrium
entropy and non-equilibrium volume take the following form [8,30,38]:

d

dt

∫∫∫
Ω

ρs∗ dV ≥
∫∫

∂Ωh

hs · n dA, (3)

d

dt

∫∫∫
Ω

ρv∗ dV ≥
∫∫

∂Ωh

hv · n dA. (4)

In the above, the flux of entropy hs and flux of volume hv appear on a proper
boundary surface oriented by unit normal vector n. But traditionally in the
Carnot, Clapeyron, Segiun, and Rankine style of presentation, instead of
hv and hs fluxes, some corresponding energy fluxes are applied and used.
Instead of hs we have the flux of heating energy FFFh = Ths (sometimes
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denoted as the vector: q), and instead of hv we have the flux of working
energyFFFw = phv. But in general, the relation between fluxes is complicated
especially in the case of continua with heating or working microstructure
– then the additional interstitial working flux and interstitial heating flux
are needed [20,23,27,35]. The temperature T and pressure p appear in this
relation not quite accidentally – they play the role of energy partners.

Rewriting Eqs. (3) and (4) in terms of the appropriate energy fluxes we
obtain:

d

dt

∫∫∫
Ω

ρs∗ dV ≥
∫∫

∂Ωh

FFFh · n
T

dA, (5)

d

dt

∫∫∫
Ω

ρv∗ dV ≥
∫∫

∂Ωv

FFFw · n
p

dA. (6)

where Fh and Fw are the heating and working fluxes, respectively. If the
surface integral in Eq. (5) is replaced and denoted by ðQ/T and the total
entropy in the whole domain is denoted by S, then Eq. (5) takes a global
form proposed originally by Clausius:

dS ≥ ðQ

T
. (7)

It follows from the above that the mathematical expression: dS = dQ/T
has no physical sense [see for instance 13, page 4]. The equation similar to
Eq. (6) has been proposed by Gyftopoulos and Beretta [6], Beretta [38]. The
Said Carnot concept of taking the balance of specific volume has turned
an attention of Max Born in 1921 [31], and Peter Bridgeman [32]. The
role of Eq. (6) within the framework of ideal fluids turned an attention of
Egligt [34] and Badur & Banaszkiewicz [35].

It should be remembered that these fluxes are given on heating and
moving surfaces through which working fluid transfers heat and work, re-
spectively. However, T and p, in opposite to Clausius’ approach, have a cleat
physical mining of the thermodynamical temperature and thermodynamical
pressure (corresponding to the polish word “prę żność”). For a hyperelas-
tic Carnot material, T and pare determined through the following state
relation involving internal energy [17]:

T = ∂u

∂s ∥v=const
, p = ∂u

∂v ∥s=const
. (8)
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It means, according to the Lazar Carnot concept of Aristotelian energy, that
internal energy should be a function of “state parameters”: multiplicative or
additive. Definitely standing against the additive concept of energy, devel-
oped early by Biot and Rumfold, Sadi Carnot has proposed a multiplicative
form of the internal energy magazine, e.i. ε ∼ s ·v; s2 ·v or s · ln

(
v
v0

)
. Then

balancing “working” with “heating” energy, he proposed the following state
equation written in terms of energy as: p(v − b) = R(θ + 273), were b is an
internal volume of gas molecules, θ is Celsius temperature and R = N · kB

is the internal contribution of elements of entropy (caloric), with kB as a
quantum of caloric (nowadays: the Boltzmann constant).

Introducing to inequalities (5)–(6) any always positive quantities, the
so-called “uncompensated heat and uncompensated work transformations”:
σs, σv, and with the help of the Reynolds transport theorem and the Gauss-
Ostrogradski theorem for surface integral, we are able to change Eqs. (5)
and (6) into the following equalities having a customary Cartesian form
(i = x, y, z):

∫∫∫
Ω

[
∂

∂t
(ρs∗) + ∂

∂xi
(ρs∗vi)−

∂

∂xi

(F(h)i
T

)]
dV =

∫∫∫
Ω

ρσs dV, (9)

∫∫∫
Ω

[
∂

∂t
(ρv∗) + ∂

∂xi
(ρv∗vi)−

∂

∂xi

(F(w)i
p

)]
dV =

∫∫∫
Ω

ρσv dV. (10)

In the above: ρ – mass density, v = viei is the substantial velocity of working
fluid. At this point, we are able to introduce the second law of thermody-
namics, in a novel form known also as the requirement that “uncompensated
heat and work transformation” should be always positive [8], i.e.:

σs ≥ 0, σv ≥ 0. (11)

Of course, we agree also with a reader that the form of the second principle
of thermodynamics is far from being complete, nevertheless, it is on the
line of reasoning started by Aristotle and continued by Thomas of Aqvine,
Leonardo da Vinci and Lazare Carnot. Eq. (10) has been proposed by
Mieczysław Mieczyński [30].

Then, introducing by usual procedures the substantial time derivatives,
one can obtain the field equations resulting from Eqs. (9) and (10). After
multiplication of Eq. (9) by T and after multiplication of Eq. (10) by p we
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obtain:

Tρσs = Ts∗
[

∂ρ

∂t
+ div(ρv)

]
+ Tρ

(
ds∗

dt
− ds

dt

)
+ Tρ

ds

dt

− div (FFFh) +FFFh ·
grad T

T
, (12)

pρσv = pv∗
[

∂ρ

∂t
+ div(ρv)

]
+ pρ

(
dv∗

dt
− dv

dt

)
+ pρ

dv

dt

− div (FFFw) +FFFw ·
grad p

p
. (13)

5 Balance of linear momentum
The balance of momentum in any continuum is a simple continuation of
Newton’s approach, which is reducing the whole dynamics to the balance
of translational momentum known as: ma = f . Within a dense continuum
of particles, the form of Newton’s equation is similar, only two elements are
changed. The first one is the definition of acceleration vector, which is now:
= ∂

∂t
v + (grad v)v; this form was established by d’Alembert (in cylindrical

coordinates) and by Euler (in arbitrary coordinates). The second one is
redefinition of force – in continuum of particles, it is important to add
for gravitational part some “particle interaction”: div t, where t = tijei ⊗
ej is the flux of momentum, which has been introduced by Cauchy, and
sometimes called the Cauchy stress (tension) tensor. In fluid continuum,
there is no reversible shear component, therefore, momentum flux must
always be divided into two parts [3, 31]:

t = −πI + τττ , (14)

which are identified with elastic and viscous parts, respectively. Sometimes
the viscous tensor is traceless tr(τττ) = 0, then splitting of elastic and viscous
properties is complete. Thus, introducing the definition of acceleration into
account, and turning the form of balance of momentum into “the conser-
vative form”, one can obtain

∂

∂t
(ρv) + div (ρv⊗ v) = div t + ρb, (15)

where ρb is a body force of general kind. By multiplication of Eq. (15)
by velocity vector, we get the partial balance of kinetic energy κ. Or in
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other words: the scalar property of energy will be related to the momentum
only if we do scalar multiplication of momentum balance by the specific
momentum v: [

ρ
d

dt
v = div t + ρb

]
· v. (15a)

Assuming, next, that the tensor of momentum flux for this simple (non-
gradiental) working fluid is defined as additive contribution of spherical
pressure tensor and the viscous (laminar + turbulent) fluid: t = −πI + τττ ,
we can also split the contribution of energy into the so-called recoverable
and dissipative parts:

ρv · d

dt
v = ρ

d

dt
κ = ρv · b + ρπ

d

dt
ρ−1 + tr (τττd)− div (−πv + τττv) . (15b)

We read the above equation: the rate of change of kinetic energy depends
on the gain of production ρv · b taken from diminished gravitational en-
ergy, the amount of energy conversion ρπ

d

dt
ρ−1, part of energy dissipation

tr(τττd) [where d = 0.5(grad v + grad Tv) is symmetric part of the veloc-
ity gradient], and the exchange of energy by a part of mechanical flux
FFFwork = −πv + phv + τττv, where p is thermodynamic pressure and π rep-
resents co-mechanical pressure due to Gaggioli’s concept of internal vol-
ume evolution [22]. It means that only in a partial balance of energy we
can observe explicitly three manners of energy transformations: expansion,
conversion and dissipation1.

6 Equation of the balance of energy

6.1 Energy flux concept

Discovery of balance of energy which is consistent with the first principle
of thermodynamics is not an easy thing. Every new exposition of thermo-
dynamics needs quite new mathematics and a new flexible system of no-
tations. This statement concerns the Carnot continuum too. The modern

1Looking at the mechanical flux of energy in Eq. (15), yet another fundamental ques-
tion appears – it is somehow strange splitting of energy fluxes into reversible and irre-
versible parts: F⃗work = F⃗rev

work + F⃗ irr
work; F⃗heat = F⃗ rev

heat + F⃗ irr
heat. From Eq. (15) it follows

that in the case of mechanical flux of energy such splitting is possible. However, nothing
is known on splitting of thermal energy flux. The only case where F⃗ rev

heat appeared in the
literature is the Green-Naghdi theory of heat superconducting [21, 22]. Unfortunately,
it means that for the classical Navier-Stokes-Fourier model, the entropy based on the
reversible flux of thermal energy cannot be defined.
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candidate to an expression of energy balance is the Gyftopoulos-Beretta ex-
position [6, pp. 38, 103, 108]. They consider some abstract system A,which
is a system taken in two states A1, A2 – in two times moments. Then the
balance of energy is

E2 − E1 = E←. (16)

In this balance: E← denotes the net energy transferred to system A from all
the other interacting systems during the process that changes the state of A
from A1 to A2. Precisely interpreting the Gyftopoulos-Beretta exposition,
we never express a violating fact that energy gained by the system must be
accounted for by the energy transferred across the boundary of the system
E← – since energy per se neither can be created nor destroyed.

Let us continue this idea – then, the energy transition needs to introduce
a concept of energy flux, say: FE which is transferring energy in time ∆τ1−2,
as follows: FE∆τ1−2 = E←. Beretta and Gyftopoulos have underlined that
any amount of energy can be transferred to a system, for instance, by doing
electrical work on it, but the availability of this energy depends on how the
final state is reached. Usually one can define the “adiabatic availability” [6,
Chapter 5] to be if the final state is reached without irreversibility – then
the available energy is equal to transferred energy. However, if the final state
is reached with irreversibility, this capacity will be smaller than the energy
transferred, and may even be equal to zero. According to Kestin [15], it
should be clarified that the available energy of a system A is derived from
the adiabatic availability – it is a case when the system A interacts by
reversible in-flow and out-flow with a reservoir. It practically means that
the system A is operating at constant thermodynamic conditions and at
a permanent stable equilibrium state.

Gyftopoulos and Beretta [6] denote the energy interaction for all possible
energy flow by symbols: E→ or E← depending on the in-flow or out-flow
of energy. Denoting all interactions by one common letter is a fundamental
step for their paradigm of thinking, especially because in everyday language,
there exists a single meaningful equivalence for E← – it is power: P [watt
= joule per second], which is understood as a rate of energy consumption
by any technical devices. We say that devices have more or less power,
therefore the balance of energy – being the main manifestation of the first
law of thermodynamics – is also interpreted as: the rate of production
(or consumption) of energy is governed by power: d

dt
E = P. The most

convenient and familiar unit of power is watt, which does not mean that
this is a rate of making heat or work, since power is a more basic concept
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than heat and work. Therefore, heat and work should only be treated as
power multiplicated by time (for this line of reasoning unit is kWh, however
an established unit for the SI system is joule) – this statement is confirmed
by the economy that says: “we buy power, but we pay for energy”2.

Unfortunately, the word “power” does not indicate a place where the
exchange of energy takes place. Therefore, instead of letter E← or P, we
propose to introduce another letter F , which denotes the flux of net energy
supplied to system A from all interacting systems and reservoirs. The energy
gained by A must be accounted for as energy transferred across a bound-
ary of the system, because energy neither can be generated ex nihilo nor
destroyed in A:

EA
2 − EA

1 =

 ∫∫
∂A

FFFe · n dS

 ∆τ1−2 = FE∆τ1−2 = E←, (17)

where: FFFe is the local (3D) form vector of a total flux of energy transferred
across the boundary of the system oriented by unit vector n. Only the
normal component of energy flux is important – it defines the net flux
of energy FE , which mathematically cannot by differentiated by ← or →
arrow. It is worth noting that, independently of phenomena under account
[described by quaternions, spinors, tensors, multinions, etc.], the flux of
energy is always a vector [9, 10,38].

6.2 Internal energy concept

Sadi Carnot discovered that if a material continuum underlines the heating
flux FFFh acting on a continuum surface ∂Ωh then “heat can be stored” in
the whole continuum in the form of “internal energy”. In means that the
operation of storage cannot be direct (one joule inflows and one joule is
stored) and needs some conversion. In the Gyftopoulos-Beretta approach,
the energy of a system is a primal property of substance and fields and it
is always a sum of internal U , kinetic K and potential energy Φ:

E = a1U + a2K + a3Φ. (18)

If we adopt the Aristotelian sense of energy, it means that energy taken as
a first invariant of general motion [mathematically expressed as a scalar] is

2Truly speaking, we are correct only in converting kilowatt-hours to joules:
1 kWh = 3.6 MJ not vice versa – it is a basic amount of energy for payment.
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additive, not multiplicative. Additivity means that the mater and the fields
are separable primary physical objects. This concept known as Aristotelian
hylomorphism nowadays is interpreted as a primary assumption that the
whole universe is created from three basic components: matter, fields and
quantum vacuum. It is worth highlighting that kinetic and potential en-
ergies in Eq. (18) are external and account for the system, while internal
energy is determined by inter-particle kinetic and potential energies. In
the universal system of units, the equivalence coefficients are equal to one:
a1 = a2 = a3 = 1, what means that pioneering Joule’s efforts to measure
energy equivalence as J = U/K was baseless.

Another key notion in the Gyftopoulos-Beretta approach is “conversion
of energy”. If our system A undergoes a process from state 1 to state 2:
A1 → A2, then U1, K1, Φ1 change their values to U2, K2, Φ2 and this
mysterious process is called energy conversion. Does not exist conversion
of heat into work and vice versa – work into heat, since both work and
heat are only a comfortable manner of expressing the net amount of energy
conversion during a single process, where a net change of E disappears.

Let us mark the finite elementary volume by the sign dV , and the whole
volume of thermodynamic system A by letter Ω. The system A interacts
with the external environment by the processes acting at the system bound-
ary ∂Ω. The internal, kinetic and potential energy can be denoted by U ,
K, and Φ, respectively, and besides the integral quantities, there are some
quantities related to the unit of mass, such as:

Internal energy U =
∫∫∫

Ω

ρε dV, (19)

Kinetic energy K =
∫∫∫

Ω

1
2ρv · v dV =

∫∫∫
Ω

ρκ dV, (20)

Potential energy Φ =
∫∫∫

Ω

ρϕ dV. (21)

The actual volume Ω is related to the Euler description. Therefore, in ar-
bitrary 3D description, ρ is density, ϕ is specific potential energy and ε
represents specific internal energy. Following Gibbs, the specific internal
energy [J/kg] related to the unit mass can be denoted by ε. The quantity
ρε is volumetric energy density related to actual volume.

Yet, the most restrictive assumption concerning internal energy should
be taken into consideration. It must be a function of intensive state param-
eters. In our case, we have two intensive state parameters: v, s, thus, the
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energy is stored in the Carnot continuum only as: ε = ε(s, v). How much
energy can be stored in one kilogram of mass? It will be reasonable to as-
sume that there exists some limit value: εcrit that can never be exceeded.
The first in the literature concise model of “critical energy”, known also
as “energy hypothesis”, was established by Eugenio Beltrami (1885) and
rediscovered by Tytus Huber (1904) and Włodzimierz Burzyński (1928) [5].

6.3 Splitting of the energy flux

Returning to energy total flux in Eq. (17), we next assume that the energy
fluxes are additive. It allows us to formulate the total energy flux as the
sum of processes:

FE = Fwork + Fheat + Fchem + Felec + Fmag + . . . , (22)

where, respectively, appear: working, heating, chemical, electric and mag-
netic energy fluxes. It was R.A. Gaggioli who first proposed to denote vari-
ous energy fluxes by one common letter [23] – a single letter “IE”, which has
a rather weak connotation with 3D formulation, therefore we propose to
replace the Gaggioli notation with a more concise denotation by the letter
“F”. Precisely, Gaggioli has proposed IE = pIV for volume energy flux and
IE = T Iθ for thermal energy flux (we propose: FFFh = Ths and FFFw = phv,
respectively).

Let us note that Professor Gaggioli introduced the entropy flux density
concept (our hs) in a quite different manner than Eckart (1940) who pro-
posed it in 3D formulation [23]. For Gaggioli, hs should be a rate of some
“thermal charge” transfer. Up to now, no one is familiar with the notion of
“thermal charge” – we are familiar only with an “entropy charge” discovered
by Boltzmann as the constant kB = 1.38 · 10−23 J/K. The introduction of
kB, called by Boltzmann “the entropy element”, is according to Ladislavus
Natanson, the absolute beginning of the science of “Quantum Thermody-
namics” [27]. Therefore, temperature T in Ths plays a role of energy scale
multiplayer, quite similar to pressure in IV (our hv). It should also be added
that, for example, Fheat means heat transferred rate, traditionally denoted
by: Q̇, in watts [W]. This total Fheat relates to heat flux surface density
FFFh, commonly expressed as vector q [W/m2], by integrating the flux over
the surface of the system. Therefore, overwriting the dot in Q̇ is baseless.

The mathematical sum of scalars, presented in Eq. (22) can be treated as
universal one – three dots mean that there is a place for new, yet unknown
processes. There is a lack of radiative flux, described by the Pointing energy



On a Carnot working continuum with non-equilibrium state parameters 301

vector (1899), because it is indirectly related to the system substantial
boundary. If the substantial boundary ∂Ω is oriented outside by the normal
unit vector n, that allows us to write the energy flux as a normal component
of the total energy vector:

FE =
∫∫
∂Ω

(FFFwork +FFFheat +FFFchem +FFFelec +FFFmag + . . .) · n dA. (23)

Two first energy fluxes are very well known in literature:FFFwork is a mechan-
ical energy flux of Umov (1874) and Volterra (1899), and FFFheat is a heating
energy flux of Rankine (1851) and Stokes (1851). Notice that, in practice,
the radiation energy flux is localized on a surface, and approximated via
the Stefan-Boltzmann radiation flux: Frad = FFF rad · n = σ (Tsurf)4 W/m2,
where σ = 5.67 · 10−8 W/m2K4 is the Stefan-Boltzmann constant. For in-
stance, the radiation on the earth is: Frad = 1418 W/m2 (4 January, night)
or Frad = 1325 W/m2 (4 June, day).

6.4 Where do energy fluxes come from?

The essence of the proper definition for the various fluxes is to find a correct
relationship of the energy flux to the other fluxes, like: momentum, angular
momentum, mass, volume, entropy, electricity, etc. If the specific internal
energy ε is expressed by the primary variables of the state, and there are
some spatial and time gradients of the variables of state, then fluxes of
the mechanical energy and heating energy can be expressed by a relatively
simple combination of the momentum flux tensor t the volume flux vector
hv and entropy flux vector hs to be [21,22,35]:

FFFwork = tv + phv +FFF int
work , FFFheat = Ths +FFF int

heat , (24)

where v is the velocity vector of the substance, p is the pressure and T is
the absolute temperature. Additionally, some energy fluxes: FFF int

work, FFF int
heat

appear in the above definitions – these are called “the interstitial working”
and “the interstitial heating” vectors, and are related to gradient or higher-
order models of working continua, presented also in articles [21, 23, 24]. In
the case of electrodynamical field energy, there exists the Pointing radiation
energy flux defined as FFFem = E×H. The chemical flux of energy is usually
defined as [30]:FFFchem = µhµ, however, the electric energy flux is [17, pp. 70–
72]: FFFelec = zi, where z = ceze is a general electric potential and i = qE –
electric current. To sum up, the energy flux vectors are strictly related to
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the model of continua and should rather be postulated as some additional
“consistency relations”.

In the present paper, we restrict our discussion only to two fluxes:
FFFheat ≡ FFFh = Ths and FFFwork ≡ FFFm +FFFw ≡ tv + phv.

6.5 Conservative and substantial form of balance

We now postulate a balance of total energy for an arbitrary material volume
occupying a part Ω in the present configuration and rewrite it into the so-
called integrated form:

d

dt

∫∫∫
Ω

ρ(ε + κ + ϕ) dV =
∫∫
∂Ω

FFFe · n dA + Se . (25)

The storages of energy (ε + κ + ϕ) are defined above as in Eqs. (19)–(21);
the flux of energy is equal to: FFFe ≡ FFFm +FFFw +FFFh and the energy source is

Se =
∫∫∫

Ω

(ρTσs + ρpσv) dV =
∫∫∫

Ω

ρ e dV. (26)

Then, the local conservative form of Eq. (26) is

∂

∂t
[ρ(ε + κ + ϕ)] + div [ρ(ε + κ + ϕ)v] = div (FFFm +FFFw +FFFh)

+ (ρTσs + ρpσv) . (27)

Since the Gibbs equation of evolution of internal energy is described in
terms of the “objective” substantial time derivative, we rewrite Eq. (27)
into a more consistent form∫∫∫

Ω

[
(ε + κ + ϕ)(ρ̇ + ρdiv v)

]
+ ρ

(
ε̇ + κ̇ + ϕ̇

)
= div (FFFm +FFFw +FFFh) + ρ e] dV. (28)

Assuming that geometric continuity is always fulfilled: ρ̇ + ρdiv v = 0, it
must be underlined that this equation is always true, regardless if the set
of governing equations (that is, equations for mass, momentum, moment of
momentum, volume and entropy balances) is satisfied or not. It will now
be shown that, if the fields and variables of state satisfy conditions laid on
by governing equations, the equation of energy receives a very important
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form allowing for further restrictions to describe fields – it means that even
though the solutions may satisfy conservation equations for mass, momen-
tum, volume and entropy, they do not need to satisfy conservation equation
for energy, and in consequence lead to generating energy ex nihilo [26, 32].

Therefore, we can formulate the strong form of the first principle of
thermodynamics, which stands as

Energy cannot be created ex nihilo: Se = 0. (29)

6.6 An energy justification procedure

Equation (28) represents a local (continuum) form of postulated by Gyfto-
poulos-Beretta form of energy balance given through Eq. (16). Now we
want to present some “energy justification procedure” (EJP) whose aim is
to evaluate the correctness of the set of governing equations and to give
primary conditions for fulfilment of the first and second law of thermody-
namics.

What is the physical meaning of Eq. (28)? To explain the role of energy
as a “first invariant of the Aristotelian motion” let us remove from Eq. (28)
the substantial objective rates ϕ̇ and κ̇. Note that the evolution of potential
energy is given as: ϕ̇ = d

dt
ϕ = ∂ϕ

∂x ·
dx
dt

= b · ẋ = b · v, and the substantial

derivative of kinetic energy ρ
d

dt
κ = ρκ̇ = ρb · v + (div t) · v = ρb · v +

tr (t d)−div (t v) (15b) may be stated in a new form without the substantial
derivative of ϕ and κ:

∫∫∫
Ω

[ρε̇− (div t + ρb− ρv̇) · v− tr (t d) + div (FFFw +FFFh)] dV, (30)

where the following identity occurs: div (tv) = (div t) · v + tr(tgrad v).
According to the well-accepted tradition, the velocity gradient, which is
l = grad v, can be decomposed into symmetric and anti-symmetric parts:
l = d + w. Since the moment of momentum of continua is fulfilled and the
flux of momentum is symmetric t = tT, then tr(tgradv) = tr(td).

Taking the following identities: div (hsT ) = Tdiv hs + hs · grad T and
div (hvp) = pdiv hv + hv · grad p, with gs = grad T ; gv = grad p, and next,
through addition and subtraction of ∓T (ρṡ − ρσs) and ∓p(ρv̇ − ρσv), the
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integral equation (30) becomes:

∫∫∫
Ω


ρε̇− (div],t + ρb− ρv̇) · v− (div hs + ρσs − ρṡ) T

− (div hv + ρσv − ρv̇) p− (ε + κ + ϕ) (ρ̇ + ρdiv v)
+T (ρṡ− ρσs) + p (ρv̇ − ρσv)− hs · gs

−hv · gv − tr (td) = 0

 dV. (31)

Now us let introduce some assumption within the concept of volume balance
– according to the physical statement that part of gas volume is occupied
by the internal volume of molecules. Then, the following splitting of the
volume flux is possible and motivated:

hv = αv + h′v, (32)

where αv can be called the “volume velocity” and

α = pdiv(v)
∥v2∥ ∥grad p∥

(33)

is the so-called volume-slip coefficient. In Eq. (31), the parts, expressing the
balance of mass, momentum, volume and entropy, respectively, are to be
fulfilled identically if a set of governing equations is simultaneously solved.
By introducing Eq. (32) and t′ = −(π − p)I + τ into Eq. (31) we are able
to reformulate of total momentum flux to be:∫∫∫

Ω

[
ρε̇ + T (ρṡ− ρσs) + p (ρv̇ − ρσv)− hs · gs − h′v · gv

−tr
(
t′d

) ]
dV = 0. (34)

Even if a thermo-elastic Carnot fluid is expressed via scalar state variables
vs, which is a much simpler situation than in the Carnot solids [20], the
mechanism of the internal energy storage is more complex, since one ob-
serves the multiplicative, not additive, contribution to ε = ε(s, υ) The ma-
terial (objective) time rate of internal energy is: ε̇ = ∂ε

∂s
ṡ+ ∂ε

∂υ
υ̇. Therefore,

by expressing the material derivative of the internal energy, we obtain:∫∫∫
Ω

{{
ρ

(
∂ε

∂υ
− p

)
υ̇ + ρ

(
∂ε

∂s
− T

)
ṡ + ρTσs + ρpσv

− hs · gs − h′v · gv − tr(t′d)
}

dV = 0. (35)
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Working fluid will be thermo-elastic in the Carnot sense (completely re-
versible) if, and only if, thermodynamic pressure and thermodynamic tem-
perature are connected with internal energy by equations of state3:

p = ∂ε

∂υ
, T = ∂ε

∂s
. (36)

These two constitutive relations are fundamental for proving that the bal-
ance of total energy can be fulfilled in any processes governed by the balance
of mass, momentum, moment of momentum, volume and entropy. In the
case of ideal gas, the internal energy depends on two constitutive coeffi-
cients – cv and cp – the specific heat at constant volume and pressure,
respectively. From this pair; cv, cp, one can obtain another pair – Carnot’s
(1824): R = cp − cv and Poisson’s (1831): γ = cp

cv
[34, 35]:

Finally, after removing from Eq. (35) the reversible elastic state param-
eter definitions and after expressing the production of entropy and volume
in terms of Eqs. (12)–(13), we obtain the remaining part of the balance of
energy as

Se =
∫∫∫

Ω

{ρTσs + ρpσv − Φ} dV = 0 (37)

and the non-equilibrium sources expressed by Eqs. (12) and (13); few parts
in the balance of energy can be excluded and the remaining part of that
balance contains this energy that is dissipated. According to Rayleigh, we
will call it a dissipated energy and denote it by Φ:

Φ = pρ

(
dv∗

dt
− dv

dt

)
+ Tρ

(
ds∗

dt
− ds

dt

)
+ h′v · gv + hs · gs

+ tr (τττd) + (π − p)div v. (38)

Then, the requirement that the energy equation be identically satisfied
leads to the inequality relating dissipative “forces” and “fluxes”. By setting

d

dt
v∗ = d

dt
v + 1

2

(
2Bαβξaξ̇β + ∂Bαβ

∂s
ξαξβ ṡ + ∂Bαβ

∂v
ξαξβ v̇

)
, (39)

3Additionally, the internal energy cannot be an arbitrary function of intensive vari-
ables of state. In accordance with the Principle of Energy Conversion, it has to satisfy
a supplementary condition: it is required that the actual state be acquirable with in-
terchangeable cycle combinations; this may be expressed mathematically with the first
equation of thermodynamics postulated independently by Carnot (but not explicitly),
Clapeyron (1836) and Clausius (1850): ∂

∂υ

(
∂ε

∂s

)
= ∂

∂s

(
∂ε

∂υ

)
. This equation has been

extended by Kirchhoff (1858) to chemical state variables and Gibbs (1878) to electrical
state variables. Finally, Maxwell (1871) wrote it to be: ε,αβ = ε,βα.
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d

dt
s∗ = d

dt
s + 1

2

(
2Aαβξaξ̇β + ∂Aαβ

∂s
ξαξβ ṡ + ∂Aαβ

∂v
ξαξβ v̇

)
, (40)

and rejecting the infinitely small quantities of the third order, we finally
obtain an expression for the dissipating energy:

Φ = τijdij + (π − p) (vi,i) +FFFw ·
grad p

p
+FFFh ·

grad T

T

+ (TAαβ + pBαβ) ρξαξ̇β ≥ 0. (41)

In the above formula for the case of inviscid, non-conductive fluid, the first
three parts vanish identically, and dissipative phenomena reduce only to
relaxation s∗ → s and v∗ → v.

7 The neo-classical constitutive relations

Equation (40) resulting from the balance of energy will be regarded as an
identity for every choice of the state parameters. It, in our approach, repre-
sents one global restriction concerning the form of constitutive equations.

It should be emphasised that so far no mention has been made of re-
strictions of constitutive equations, which usually in LIT arise from some
form of the second law of thermodynamics understood as entropy inequality
(dS = diS + deS [28, 29]). In fact, the above inequality can be fulfilled by
taking the energy dissipative potential:

ϖ
(
gs, gv, ξ̇α, d

)
= 1

2ksgsgs + 1
2kvgvgv + µtr (dd)

+
(2

3µ− λ′
)

(trd)2 + 1
2Nαβ ξ̇αξ̇β + Lαξ̇αtr (d) , (42)

which leads to linear Onsager-type constitutive relations:

τ = ∂ϖ

∂d = 2µd + 2
3µ (trd) I, (43)

π − p = ∂ϖ

∂d = λ′trd + Lαξ̇α, (44)

hs = ∂ϖ

∂gs
= ksgs , h′v = ∂ϖ

∂gv
= kvgv, (45)

ξα = ∂ϖ

∂̇ξα

= Nαβ ξ̇β + Lα(trd), (46)
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in which, according to the second Onsager postulate Nαβ = Nβα, and the
following conditions should be satisfied:

Nαα > 0, 2µ + λ′ ≥ 0, (2µ + λ′)2 ≥ 0, ks ≥ 0, kv ≥ 0, (47)(
2µ + λ′

)
Nαα − L2

α ≥ 0,

2[
(
2µ + λ′

)
Nαα]

1
2 > 2 |Lα| , α = 1, 2, 3 . . . , n.

(48)

In the above constitutive relations: ks means an entropy diffusion coeffi-
cient connected with the Fourier conductivity coefficient, kv is the volume
diffusion coefficient (say: the Brenner coefficient), µ and λ′ are the Stokes
shape and volumetric viscosity coefficients and Nαβ; Lα are nonequilibrium
Maldenstam-Leontonovich diffusion coefficients. Let us note, in addition,
that these coefficients must not be constant, but may depend on the pa-
rameters of the state of equilibrium.

8 The set of governing equations

Having for disposal the postulated balance of non-equilibrium state pa-
rameters in Eqs. (9) and (10), and knowing postulated relations between
non-equilibrium and equilibrium state parameters (17) and (16), one can
establish a final set of governing equations closed by the constitutive re-
lations (43)–(46) and the caloric (recoverable, elastic) state relation (36).
Let us note, that in a proposed final set of governing equations, the bal-
ance of energy (25) does not appear because it is identically fulfilled by
the appropriate and consistent statement of the first and second law of
thermodynamics.

The set of governing equations of the Carnot continuum with non-
equilibrium state parameters is to be defined as follows:

a) Balance of working fluid mass

1
ρ

= v +
(

1 + π − p

p

)
Bαβξαξβ , (49)

b) Balance of working fluid momentum

∂

∂t
(ρvi) + ∂

∂xj
(ρvivj + πδij) = ∂

∂xj
τij + ρbi , i, j = x, y, z, (50)
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c) Balance of specific non-equilibrium entropy

∂

∂t
(ρs∗) + ∂

∂xj
(ρs∗vj) = ∂

∂xj
h(s)j + ρσs , (51)

d) Balance of specific non-equilibrium volume

∂

∂t
(ρv∗) + ∂

∂xj
(ρv∗vj) = ∂

∂xj
h(v)j + ρσv . (52)

In the above, it is assumed that the continuity equation is fulfilled from
the beginning, and the definition (49) is so exact that one may not use
the mass continuity explicitly. Now, the constitutive relations are defined
by Eqs. (43)–(46) and (36), respectively. Basic unknown fields are: veloc-
ity v(x, t), specific equilibrium volume v(x, t), specific equilibrium entropy
s(x, t) and the non-equilibrium parameters ξα. The number of governing
equations and the number of unknowns is 1 + 3 + 1 + n = 5 + n, no matter
whether we describe viscous or inviscid fluid, conductive or non-conductive
fluid. In this approach, temperature appears only as the thermodynamical
temperature (36), therefore, putting thermal boundary conditions it must
be remembered that a measurable temperature differs from the thermody-
namical one.

For the above set of equations, the boundary conditions should be de-
scribed as follows:

a) Known velocity vector at the boundary Cv: v∥Cv
= v0,

b) Known value of measurable pressure at the boundary Cπ: π∥Cπ
= π0,

c) Known value of thermodynamic temperature at the boundary CT :
T∥CT

= T 0 and the thermodynamic pressure p∥CT
= p0,

d) Known value of volume flux and entropy flux at the boundary Ch:
hv · n = h0

v and hs · n = h0
s,

e) “Incipient point” for constitutive equation (46) for determination of
a point and a moment of activation and passivation of this constitutive
relation for the internal parameters.

Boundary conditions a) and b) are related to the linear momentum equa-
tion, conditions c) and d) are related to the balance of entropy and balance
of volume.
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9 Further remarks on the concept
of “non-equilibrium heat” and
“non-equilibrium work”

The approach presented above is not the first solution to the problem. Other
concepts, mainly based on the statement of non-equilibrium temperature
and non-equilibrium pressure, are presented in the monographs of Kjelstrup
and Bedeaux [7], Sieniutycz [17], Lebon et al. [28] and Ván [39]. However,
within the ideal gas model and the timeless formulation close to the Carnot
working continuum model, there are no original formulations that would
lead directly to the foundations of finite-time thermodynamics [8].

In other words, within the framework of the approach known in the
literature as the timeless approach, there is no clarity which of the models
proposed in the literature is an important extension of Carnot’s reversible
approach to the non-equilibrium case.

In addition to non-equilibrium temperature, non-equilibrium pressure,
non-equilibrium entropy, and non-equilibrium temperature, there are also
solutions in the literature with “non-equilibrium heat flux” and “non-equi-
librium work flux”. Let us now discuss this last proposal from a timeless
perspective. In this view, the first law of thermodynamics has the classical
form of Clausius: E = ðQ − AðW , where the Clausius equivalent today
has a value of one: A = 1, and dE is an increment of internal energy, ðQ
is the heat gain and ðW is increment of work. This corresponds to our
d

dt
E = Fheat + Fwork.
In 1976, Kestin proposed to divide the heat flux into two parts: a non-

equilibrium and an equilibrium one [33]. Using similar arguments, Gujrati
in 2011 proposed dividing the work flux into two parts: equilibrium and
non-equilibrium [41]. According to this concept, you can write (Fig. 2):

ðQ = dirrQ + deqQ, ðW = dirrW + deqW. (53)

Figure 2: Separation of fluxes into equilibrium and non-equilibrium parts.



310 T. Ochrymiuk, W. Dudda, and J. Badur

Integral values of state parameters are determined by equilibrium quanti-
ties: intensive S, V and extensive: T , p. According to Kestin, the reversible
part of heating flux defines equilibrium entropy dS = deqQ/T and according
to Gujrati, the equilibrium part of the working flux defines the equilibrium
volume dV = deqW/p. Using these definitions, we have the first law of
thermodynamics in the form

dE = ðQ−AðW = dirrQ + deqQ− (dirrW + deqW )
= TdS − pdV + (dirrQ− dirrW ) = TdS − pdV. (54)

Gujrati notes that the non-equilibrium parts of work and heat fluxes must
compensate for each other so that [41, Eq. (4)]

(dirrQ− dirrW ) = 0. (55)

This condition strongly limits the magnitude of the fluxes, and it is a rea-
son that the first law of thermodynamics finally becomes equivalent to
the Gibbs equation. It is an unacceptable paradoxical result. If we use
an uncompensated heat Nheat =

∮
dirrS and an uncompensated work:

Nwork =
∮

dirrV , then from Eq. (55) it follows that: Nheat = Nwork.
Therefore, the approach presented in Section 4 is of a different kind; it

assumes that uncompensated heat σs and uncompensated work σv are to
be field sources, not surface ones. Similarly, energy fluxes are conceived,
which act as surface quantities that cannot be divided into reversible and
irreversible parts. For example, heat energy flux is a function of the tem-
perature gradient gs = grad T . It can be divided when the temperature
for instance is divisible:T = Teq + Tirr. As you can see from the above,
this approach spoils the concept of accompanying state and removes the
possibility of developing 3D foundations for finite-time thermodynamics.

10 Concept of non-equilibrium energy

The concept of internal energy was finally introduced into thermodynamics
by Gibbs in 1873. Internal energy has been defined as an invariant of motion
expressed by state parameters. In the case of Carnot’s working medium,
these parameters were specific volume and specific entropy. Gibbs was the
first to find the function ε = ε(v, s) and to draw it as a surface in the
space of state functions. Delighted by this fact, Maxwell made a plaster
model of this surface in a wide range of values of state parameters, i.e.
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for water, steam and ice. This surface was learned to be determined by
experimentators – first for water and later for other gases and liquids.

It is difficult to imagine anything that would be a “non-equilibrium inter-
nal energy”. Nevertheless, as of recently, Gian Paolo Beretta, standing in the
position of quantum thermodynamics, believes that it is possible to define
non-equilibrium internal energy as a function of non-equilibrium, indepen-
dent, state parameters: ε∗ = ε∗(γ1, γ2, γ3, . . .) [38]. To ensure “full flexibility
of formulation”, Beretta introduces a new law of thermodynamics, which
he nominates to the position of the “fourth law of thermodynamics”.

In other words, Beretta states that this fourth principle is needed to in-
troduce and motivate the concept of non-equilibrium internal energy. What
is characteristic of Beretta’s formulation is that he does not consider specific
entropy as a basic (non-eliminable) parameter of the state, but expresses it
through the experimentally unknown function s∗ = s∗(γ1, γ2, γ3, . . .). Con-
trary to the fundamental definition of Carnot, Reech, Rankine, Maxwell,
the internal energy in Beretta’s view is not a direct function of specific
entropy.

Figure 3: State representation of the non-equilibrium energy.

Note, that proposed by Beretta the evolution equations for non-equilibrium
state parameters γ1, γ2, γ3, . . . have a form equivalent to our evolutionary
equations v∗, s∗ – see Eqs. (51)–(52). In Beretta’s equations, fluxes of non-
equilibrium state parameters also appeared. They are marked by him by
the letter Jγ . They have the same status as our hv, hs vectors, and they
have nothing to do with the “thermodynamic fluxes” of LIT. According to
Beretta, Jγ fluxes are subjected to various constraints, for example, the
fluxes of state parameters should satisfy symmetry conditions similar to
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the Onsager symmetry condition supposed on “thermodynamic fluxes”. The
essence of Beretta’s proposal is the introduction of a metric Gγ field and
an intrinsic dissipation time τγ , which span over the non-equilibrium space
of energy at the point of contact. This metric and time allow the evolution
of the non-equilibrium state to the optimal equilibrium state according to
the fourth law of thermodynamics (SEA).

In conclusion, Beretta’s concept goes further than our assumption about
the possible evolution of non-equilibrium state parameters. His concept
assumes the existence of a non-equilibrium energy spanning over a tangent
space that has its own Riemannian metric and “intrinsic time”.

However, in thermodynamical practice, there are no numerous connota-
tions with the notion of “non-equilibrium internal energy” in the literature.
Casas-Vázquez and Jou [37] have extensively discussed this problem, and
they remark that in practice the internal energy cannot be a function of
non-equilibrium state parameter.

11 The case of a solid
A solid continuum, like heat resistance steels [5], can be as good a working
medium as liquids and gases. For heat engines, alloys that have high hidden
heat of phase transition, e.g. austenite-martensite [42], are frequently used
and the Carnot cycle has also four transformations.

In a solid body, state parameters and internal energy can also be suc-
cessfully defined. The intrinsic energy of a solid state was first proposed
by de Saint Venant and later by Poisson [42]. It has been called: “storage
energy” and was a function of a generalized change in the specific volume
of deformation and a generalized change in specific entropy. Both of these
state parameters are denoted today by: v = vijei⊗ej and s = sijei⊗ej , re-
spectively. From a mathematical point of view, these are tensors; let us also
assume that they are symmetric objects. Specific internal energy is therefore
a function of both: ε = ε(v, s). For isotropic materials, the internal energy
is a function of the invariants of both tensors [5]. If we accept Kirchhoff’s
assumption that the entropy tensor is simplified to be a spherical tensor, it
is enough to use the entropy scalar s = 1

3tr(s).
The equations of evolution of state parameters have a structure similar

to our Eqs. (9)–(10):

ρ
∆︷︸︸︷
v = divhv + ρnv , ρ

∆︷︸︸︷
s = divhs + ρns, (56)
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where hv = hv
ijkei ⊗ ej ⊗ ek, hs = hs

ijkei ⊗ ej ⊗ ek, are the volume and
entropy fluxes, and nv, ns are the uncompensated transformation of work
and heat, in analogy to σv and σs in Eqs. (9)–(10).

Due to the fact that we deal with tensors, not with scalars, additional
elements appear. The hv, hs fluxes are third-order tensors, and their evo-
lution is subjected to the Zaremba principle of relativity and must use an
objective time derivative [5, 20]. Additionally, the Gibbs equation now has
an objective form:

d

dt
ε(vs) = ∂ε

∂v ·
∆︷︸︸︷
v +∂ε

∂s ·
∆︷︸︸︷
s . (57)

This equation allows us, ultimately, to introduce the equation of evolution
of state parameters into the energy balance. Let us note additionally that
non-equilibrium parameters ξα in solid continuum are also tensors, which
in the case of Prandtl-Reuss rate of plasticity can easily be interpreted
physically [4, 5].

12 Conclusions
In the literature, there are several approaches to modelling of continua in
non-equilibrium state (see: [4–6, 36–38]). Evidently, the main difficulty of
this physical concept lies in these basic questions: how to define the “inter-
nal state”, i.e. what are the variables to be chosen for this definition? Which
variables can be taken to be: independent or dependent [24, 25]? Which
variables can influence the dissipation of energy? Which thermodynamic
law is first (more primitive)? Why most of the existing literature on ther-
modynamics does not admit an entropy balance but postulates an entropy
inequality such as the Clausius-Duhem or similar inequalities? [29,30,39,40].

The main purpose of this note was to demonstrate another line of reason-
ing leading to a more consistent model of continuum with a non-equilibrium
state. Two aspects of the present derivation are worth emphasising. First,
the inclusion of balances of specific entropy and specific volume in the
primitive form of balance of total energy provided a clearer interpretation
of Kelvin’s principle of desegregated energy. Second, the balance of entropy,
which within the framework of inviscid fluid model plays an independent
role, in the present development emerges naturally instead of being a sep-
arate postulate motivated by Carnot and Clausius.

The paper is based on the Beretta and Gyftopoulos exposition of ther-
modynamics [10, 38]. It means that “heat”, as well as “work”, plays no
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role in our statement of the first law, also in the definition of internal en-
ergy where the intensive state parameters are primary objects. “Heat” and
“work” notions are not present in our statement of the second law, and in
the definition of entropy and specific volume. Our concept of “the energy
flux” is based on collecting particular physical fluxes into one resulting bal-
ance. The most important are the momentum, volume and entropy flux
exchanges between interacting systems. They are defined using these con-
cepts and laws, after they have been independently and unambiguously in-
troduced. In other words, “heat” and “work” are not the energy exchanged
between systems, since we assume them to be more fundamental: heating
and working processes. Does not exist “a heat interaction” but only “the
flux of entropy”.

Finally, let us note that in this paper, we develop and illustrate the
general definition of equilibrium and non-equilibrium intensive state pa-
rameters within the Carnot working fluid. In view of the importance of
non-equilibrium states for a wide range of applications of thermodynamics,
we hope our efforts will help to remove obstacles to understating numerous
physical phenomena (like the action of laser), yet not described within the
framework of thermodynamics.
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