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Abstract

In order to improve the measurement accuracy of pressure sensors, a method based on gray wolf optimization
(GWO) to optimize kernel extreme learning machine (KELM) is proposed to address the problem of nonlinear
drift that can be easily affected by temperature in the working environment. Firstly, the fast search capability
of the GWO algorithm is used to find optimal regularization coefficients and kernel function parameters of the
KELM algorithm; secondly, the random mapping of the traditional ELM algorithm is replaced by the kernel
mapping of the KELM algorithm to improve the generalization and stability degradation brought by the
random assignments. Finally, the voltage signal values under different temperature and pressure environments
are obtained through calibration experiments and compensated by the GWO-KELM algorithm. The results
show that the GWO-KELM method has a better compensation effect compared with the traditional BP neural
network with a full-scale error of 0.13% (FS), the ELM algorithm with a full-scale error of 0.12%FS, and the
KELM algorithm with a full-scale error of 0.12% in the range of 0 to 700 kPa absolute pressure and —40°
to 70°. The full-scale error is only 0.07% and the maximum absolute error is as low as 0.5446 kPa, which
improves the accuracy index by one order of magnitude.

Keywords: Gray wolf optimization, kernel extreme learning machine, pressure sensor, temperature compen-
sation.

1. Introduction

Silicon piezoresistive pressure sensors are widely used in cutting-edge applications such as med-
ical devices [1-3], robotics [4], industrial automation [5], military defense [6], and aerospace [7,8],.
Despite this, pressure sensors face many challenges from a variety of applications and operating
conditions. A precision measurement requires a pressure sensor with a high accuracy (less than
0.1% FES) [9] and stable performance over a wide temperature range (e.g., -40 to 70°C). The
accuracy of the pressure sensor is therefore a key factor in determining its performance indicators in
engineering [10]. There is, however, a high degree of sensitivity to temperature and nonlinear drift in
pressure sensor accuracy metrics, which seems inevitable [11]. In the case of the common piezore-
sistive pressure sensor, the operating conditions of its internal resistance will also change when the
ambient temperature changes, affecting the sensor’s output. For this reason, compensating the pres-
sure sensor must be done in order to eliminate interference caused by temperature changes [12, 13].
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Temperature compensation can be achieved in two ways: through hardware compensation and
through software compensation. There are several methods for hardware compensation available,
including strain gauge self-compensation [14], compensation for bridge circuits [15], compensation
for auxiliary measurements [16], and compensation for thermistor types [17]. To a certain extent,
these compensation methods can achieve temperature compensation. However, integration and
miniaturization difficulties prevent intelligent sensor development [18, 19]. Among the soft-
ware compensation methods there are the interpolation fitting method [20], regression analysis
method [21], neural network method [22, 23], efc. As compared to hardware compensation,
software algorithmic compensation is more robust and requires fewer manufacturing processes.

Currently, most pressure sensor temperature compensation research relies mostly on software.
These methods produce good compensation results when combining neural networks with
optimization algorithms. To address the problem of low pressure scanner accuracy due to
temperature variations during measurement, Wang et al. [24] proposed a backward propagation
(BP) neural network based on the whale optimization algorithm (WOA). Ge et al. [25] compensated
for temperature drift in fiber optic F-P pressure sensors using a wavelet neural network based on
a genetic algorithm. Xie et al. [26] proposed an improved algorithm for optimizing radial basis
function (RBF) neural networks for pressure sensors to achieve pressure compensation by using
Dynamic Quantum Particle Swarm Optimization (DQPSO).

As a result, neural networks such as BP and RBF suffer from the problems of slow operation
speed, poor generalization ability, and insufficient compensation effect when improving accuracy,
which becomes their main bottleneck. Therefore, a new structure with fast learning speed, easy
to obtain the global optimal solution, and strong generalization capability has become the focus
and hot area of current research. Data mining and time series forecasting have gradually gained
popularity in recent years using prediction methods based on the Extreme Learning Machine
(ELM) [27,28]. This single hidden layer neural network is significantly faster, more algorithmically
sound, and more generalizable than traditional neural networks. However, the incorporation of
kernel functions into Kernel Extreme Learning Machine (KELM) algorithms can often achieve
better generalization performance than traditional ELM algorithms for nonlinear feature learn-
ing [29, 30]. In addition, it helps solve data modeling and prediction tasks involving complex
nonlinear relationships [31]. Zou et al. used Aquila Optimizer to optimize the hybrid polynomial
KELM to generate more data for sensor compensation, resulting in 0.03% FS in the range of
—250 to +250 kPa [32]. Li et al. used the coupled simulated annealing algorithm and the simplex
algorithm combined with KELM to achieve the desired synthetic compensation performance at
pressures from -1000 kPa to 1000 kPa and temperatures from —20°C to 70°C [33]. All of the above
methods show that KELM has a great potential for temperature compensation in pressure sensors,
but a combination of different optimization algorithms is needed to produce better compensation
when specific to the characteristics of different types of sensors.

Therefore, in this paper, a Gray Wolf Optimization (GWO) algorithm is proposed to optimize
KELM’s temperature compensation strategy, which is applied to silicon piezoresistive pressure
sensors. By using this strategy, KELM updates will be faster and more flexible. KELM not only
takes advantage of the fast iteration of the GWO to find the optimal solution, but also achieves
high prediction accuracy and compensation stability thanks to the fast iteration of the algorithm. A
BP and ELM model is first used for analysis; a KELM model is then developed by adding a kernel
function; finally, a hybrid algorithm named GWO-KELM is developed using the GWO model. To
verify the validity of the proposed model, we will compare the performance errors of the BP model,
ELM model, and KELM model. Moreover, to enhance the practicality of the algorithm, we will
conduct compensation experiments using real pressure sensor calibration data. By using examples,
it can be demonstrated that the method can indeed enhance sensor accuracy to a high level.
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The sections of the article are described as follows: Section 2 discusses the fundamentals
of sensor compensation, introduces Gray Wolf Optimization and the Kernel Extreme Learning
Machine, and proposes a hybrid GWO-KELM compensation algorithm. In Section 3, we describe
amethod for obtaining experimental data for calibrating pressure sensors as well as the experimental
schematic and the actual data gathered. Section 4 compares the compensation results of the GWO-
KELM model with various compensation methods to verify the feasibility and effectiveness of
temperature compensation in pressure sensors. Section 5 concludes this study.

2. Methods for temperature compensation in pressure sensors

2.1. Pressure sensor temperature compensation principle

As shown in Fig. | below, a schematic diagram of a pressure sensor using the GWO algorithm
to optimize the KELM for temperature compensation is demonstrated. A pressure sensor core and
a temperature sensor measure external pressure and ambient temperature, respectively. The output
signal of the pressure sensor and temperature signal of the temperature sensor are both fed into the
KELM'’s input layer.

An optimal regularization coefficient and kernel function parameter are found using the
GWO in this system. This optimizes the performance of the KELM. As the final temperature
compensation operation is performed using the KELM, it is used to predict the pressure value first.
To determine the difference, it compares the predicted value with the measured value. A GWO
algorithm is then used to continuously optimize the parameters of the KELM in order to minimize
the difference, thus completing the temperature compensation process. It is a repeated process
in which the parameters of the KELM are constantly adjusted in order to gradually achieve the
optimal state, which allows the output of the pressure sensor to be compensated for temperature
changes and the system to be more accurate and stable.
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Fig. 1. Temperature compensation schematic diagram.

2.2. GWO-KELM

2.2.1. KEILM

KELM (Kernel Extreme Learning Machine) employs a simple single hidden layer structure [34].
It completes the learning process by randomly selecting regularization coefficients and kernel
parameters to compute output weights. Compared with traditional gradient algorithms, KELM
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avoids problems such as local minima and overfitting, and has excellent learning and generalization
capabilities [35,36]. KELM is an efficient and easy-to-implement model. Its ELM network
structure practically used in this paper is shown in Fig. 2.

y m

Input layer Implicit layer Output layer

Fig. 2. Extreme learning machine network structure.

2.2.2. GWO

Gray Wolf Optimization (GWO) is a novel heuristic algorithm inspired by gray wolves’ intrinsic
system and hunting behavior [38]. Its goal is to find the optimal solution by simulating gray wolf
hunting patterns. In the natural environment, gray wolves are top predators in the food chain,
exhibiting strong group collaboration and hunting strategies. Gray wolf groups maintain a strict
social structure and hierarchy within the group [39]. This forms a clear hierarchy of leadership
and division of labor, as shown in Fig. 3.

(4]

Fig. 3. Hierarchy diagram for the Gray Wolf Optimization.

The gray wolf algorithm divides wolves into four types. The first type is the @ wolf, which is in
the leadership position of the pack. The second type is the 8 wolf, which strictly follows the @ wolf
leadership and passes information and mediates disputes within the pack. In the absence of the «,
the 8 wolves control all other wolves. Lastly, the § wolves lead only the w wolves within the pack
and perform basic tasks. Finally, the fourth category are the w wolves, which are located at the
bottom of the pack hierarchy and obey higher-ranking wolves’ orders. Fig. 4. shows a schematic of
the search process for optimal solutions.
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Fig. 4. Explanatory chart for gray wolf seeking superiority.

The separation distance D between the gray wolf and the target can be expressed as follows in
the surrounding behavior of the gray wolf algorithm:

D =|(r)=(r)l, ey

where 7 is the number of iterations; is the position of the target. }7 denotes the position of the gray
wolf.

In order to dynamically adjust the position, the wolves need to perform a positional update of
the distance, which allows the wolves to approach the target from different vantage points, with
the update equation being

— — —
X' (r+1)=X,(r)- AD, )
A =237 -7, 3)
C =23, )

where is the convergence factor; , are belong to [0, 1]; and are the coefficient vectors.
Once the pack has successfully surrounded the target, search behavior begins. e, 8, and ¢
wolves are positioned closest to the target. Its search behavior can be expressed as

—— -
Dy = C1 X, (r) = X" (r) Q)

—— A
Dy =X, (1) - X (r) ©)

—— A
Ds = C3X5(r) = X' (r) @)
Q(H 1)=?_(Z(r)—z?1>17; (8)
X+ 1) = X,(r) - 42D, ©)
X}(r +1) = X(r) - ADg (10)

— 11— — —

X’(r+1)=5[Xl’(r+1)+X2'(r+1)+X3’(r+1)] 11

2.2.3. GWO-KELM algorithm design

In addition to the regularization coefficients, the kernel function parameters also directly affect
the prediction efficiency and accuracy of the KELM algorithm. On the one hand, inappropriate
selection may cause the algorithm to arrive at a poor solution, which affects the accuracy of
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compensation [40]. On the other hand, it requires multiple trainings to find the most suitable

regularization coefficients and kernel function parameters, which is a process of randomness and

chance and impacts the actual effect of the KELM [41].

In this study, the excellent search capability of the GWO is utilized to iteratively search for the
optimal regularization coefficients and kernel function parameters of the KELM, which can use
the advantages of the kernel limit learning machine. The steps to temperature compensation of the
KELM based on the GWO are as follows:

1. Each of the obtained pressure sensor and temperature sensor datasets (corresponding to the
inputs of the KELM network, respectively) are divided into a training set and a test set (7:3)
and normalized.

2. Initialize the gray wolf algorithm parameters. Calculate the current gray wolf population
status. R -
Calculate the current population fitness value and update the coefficient vector A’ and C”.
Calculate the distance and update the position, and search for optimization.

5. Calculate whether the fitness is optimal. If it is reached, calculate the optimal gray wolf
position, i.e., the regularization coefficient and kernel function parameter of the KELM; if
it is not determined, check iterations. If not, adjust the coefficient vector sum and iterate the
training again.

6. Relate the optimal regularization coefficients and kernel functions to the KELM for algorithm
training.

7. Output the most accurate predicted pressure value.

Bl

3. Temperature calibration experiment

3.1. Experimental system

The experimental system for collecting measurement data from a silicon piezoresistive gas
pressure sensor is shown in Fig. 5. The main apparatus of this experimental system is composed
of a constant temperature test chamber, a pressure calibrator, a gas pressure sensor, and a test
computer. First, the pressure sensor is connected to the pressure calibrator through a gas hose.
The pressure calibrator will provide a variable pressure environment for the sensor. Next, the

’

Data transmission g

Control pressure

Fig. 5. Pressure sensor experiment acquisition system diagram (a) test chamber; (b) test computer; (c) gas pressure sensor;
(d) pressure calibrator.
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connected pressure transducer is placed in a thermostatic test chamber. The thermostat simulates
different ambient temperatures for the sensor. Finally, the signals sensed by the transducer from
the ambient environment are transmitted via a data cable to the test computer for display.

3.2. Data acquisition

In order to analyze and record the characteristics of sensors with temperature changes, in
the experiment the nominal absolute pressure range from 0 to 700 kPa pressure sensor core was
selected as a test. At the same time, a resistance temperature detector (RTD) sensor monitored the
current ambient temperature in a temperature chamber together with the pressure sensor core.

In order to achieve 5°C intervals, 23 temperature points ranging from —40°C to 70°C were
selected for this experiment. The experiment was conducted by sequentially applying pressures
from O to 700 kPa, 70 kPa at a time, for a total of 11 pressure values. At each time when the
specified temperature point was reached, the operation of holding the temperature for 2 hours was
performed. The power was turned on for 10 minutes to start the pressure recording.

4. Compensation results and analysis

4.1. Parameterization and evaluation indicators

In order to investigate the performance of this paper’s algorithm for compensating pressure sen-
sors in different temperature environments, MATLAB 2020a is used for temperature compensation
experiments.

According to the temperature compensation step assumed in Section 2.2.3, the population
number of the GWO is set to 40 and the maximum number of iterations to 10. For the KELM, the
input layer neurons is set to 2 and the output layer neurons to 1. In the compensation process of
the GWO for optimizing the KELM, the fitness function selected the value of the error computed
each time. When the error is smaller, the corresponding compensation accuracy value is higher.
The full-scale error (FS) [42] of the sensor and the mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE), which are commonly used for
prediction, are selected to evaluate the algorithm’s compensation performance [43,44].

The specific formula for its error evaluation index is:

1 .
eps = p— Max lyi = %il, (12)
s

13)
(14)

o, 5)

where Prg is the full-scale pressure; N’ is the number of samples; y; is the standard pressure value
at each actual temperature; and y; is the compensated pressure value.
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4.2. Compensation results and error analysis

After setting the parameters, the algorithm program is run and the fitness curve of the GWO
for optimization is obtained. It is shown in Fig. 6.

%107

35

1 2 3 4 5 6 7 8 9 10
Evolutionary Algebra

Fig. 6. Graph of the fitness function.

Figure 6 demonstrates that the gray wolf algorithm quickly searches for optimality during pre-
liminary iterations. After four to five iterations, the optimal fitness value is immediately found (The
final result time to iterate out the pressure value is 0.34 s.). The gray wolf position at this time is the
optimal regularization coefficient and kernel function parameters of the KELM algorithm. Through
the compensation of the KELM model, the comparison between the high-precision pressure value
predicted by the algorithm and the actual real pressure value was finally obtained as shown in
Fig. 7(a), and the absolute error distribution of the test set after compensation is shown in Fig. 7(b).

In order to see the comparison effect more clearly, the following figure is shown. Fig. 7(a)
shows the pressure value after GWO-KELM compensation compared with the real value between
200-600 samples in the test set and the pressure range of 500-600 kPa. It can be seen that the
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Fig. 7. (a) GWO-KELM compensated value vs. true value; (b) Absolute error distribution plot.
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compensated values overlap with the true values with excellent consistency, i.e., high accuracy
after compensation. Figure 7(b) shows that the maximum absolute error after compensation by the
GWO-KELM algorithm is only 0.5446 kPa, and its corresponding full-scale error is 0.0778% FS.

At the same time, to compare the compensation effect of the GWO-KELM algorithm more
clearly, the design ELM, BP neural network, and KELM algorithms are tested together. The
relative error distribution is obtained as shown in Fig. 8. It can be seen that the relative errors of
the BP neural network and KELM algorithms are larger. These errors are 0.05509 and 0.05661,
respectively. The effect of the KELM optimized by the GWO is obviously improved, and its
maximum relative error is reduced to 0.02036, which further exerts the advantages of the KELM,
and also improves the smoothness of its compensation, which greatly avoids being affected by the
regularization coeflicients and kernel function parameters.
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Fig. 8. Relative error distribution for different algorithms.

Based on the above test results, the error metrics of different algorithms are plotted as shown
in Fig. 9. From the figure, it can be clearly seen that the MAE, RMSE, and MAPE error metrics
of the GWO-KELM algorithm are at the lowest values among several algorithms. Therefore, the
algorithm is superior in dealing with the temperature compensation problems. In addition to this,
both the BP and ELM algorithms are at a higher level in terms of error metrics, indicating that the
two algorithms have room for further improvement in dealing with the compensation problem.

So far, we have given the key indicators of the maximum absolute error and full-scale error as
shown in Table 1:

Table 1. Comparison of key accuracy indicators for pressure

Model Maximum absolute error (kPa) FS (%)
BP 0.9099 0.1300
ELM 0.8601 0.1229
KELM 0.8492 0.1213
GWO-KELM 0.5446 0.0778
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Fig. 9. Comparison of error metrics of different algorithms.

In the key indexes of the pressure sensors given in Table 1, it can be seen that the accuracy
of the pressure sensors compensated by GWO-KELM is improved from the order of 1 part in
a thousand to the order of 7 parts in 10,000 in comparison with the remaining three algorithms,
which strongly indicates the effectiveness of the algorithms presented in this paper.

5. Conclusion

In this paper, we propose the use of GWO-KELM model to deal with the temperature
compensation in gas pressure sensors to illustrate the effectiveness and reliability of the method.
The main conclusions are as follows:

1. An innovative GWO-KELM gas pressure sensor compensation algorithm is proposed.
The KELM algorithm improves solution accuracy. This is done by improving the ELM
algorithm’s poor handling of nonlinear problems, and then using the Gray Wolf Optimization
Algorithm strategy.

2. For the experimentally collected data, the GWO-KELM algorithm converges to the target
values quickly, showing strong optimization seeking ability.

3. From the experimental results, it can be seen that the GWO-KELM method has a better
compensation effect. It achieves an accuracy of 0.07%FS in the full temperature range of
the adiabatic pressure sensor 0-700 kPa, which is higher than the ELM and KELM accuracy
of 0.12%FS. Compared to BP neural networks, it is an order of magnitude higher. Pressure
sensors can be improved in accuracy and training time with this technology.

The GWO-KELM model can provide guidance for temperature compensation in gas pressure
sensors. However, the model has some limitations. We will work on developing different models
with higher compensation accuracy for different compensation types of silicon piezoresistive
pressure sensors.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 61174120) and

the Scientific Research and Innovation Program of the Chinese Academy of Management Sciences (No.
JKSC14568).

10



Metrol. Meas. Syst.,Vol. 32 (2025), No. 1, pp. 1-14
DOI: 10.24425/mms.2025.152773

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

Xu, T., Wang, H., Xia, Y., Zhao, Z., Huang, M., Wang, J., Zhao, L., Zhao, Y., & Jiang, Z. (2017). Piezore-
sistive pressure sensor with high sensitivity for medical application using peninsula-island structure.
Frontiers of Mechanical Engineering, 12(4), 546-553. https://doi.org/10.1007/s11465-017-0447-9

Pramanik, C., & Saha, H. (2006). Low Pressure Piezoresistive Sensors for Medical Electronics
Applications. Materials and Manufacturing Processes, 21(3), 233-238. https://doi.org/10.1080/
10426910500464446

Ginggen, A., Tardy, Y., Crivelli, R., Bork, T., & Renaud, P. (2008). A Telemetric Pressure Sensor
System for Biomedical Applications. I[EEE Transactions on Biomedical Engineering, 55(4), 1374-1381.
https://doi.org/10.1109/tbme.2007.913908

Gao, Y., Xiao, T., Li, Q., Chen, Y., Qiu, X., Liu, J., Bian, Y., & Xuan, F. (2022). Flexible mi-
crostructured pressure sensors: design, fabrication and applications. Nanotechnology, 33(32), 322002.
https://doi.org/10.1088/1361-6528/ac6812

Jakoby, B., Eisenschmid, H., & Herrmann, F. (2002). The potential of microacoustic SAW- and
BAW-based sensors for automotive applications - a review. IEEE Sensors Journal, 2(5), 443-452.
https://doi.org/10.1109/jsen.2002.806748

Han, X., Du, W., Chen, M., Wang, X., Zhang, X., Li, X., Li, J., Peng, Z., Pan, C., & Wang, Z.L. (2017).
Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the
Piezotronic Effect. Advanced Materials, 29(26). https://doi.org/10.1002/adma.201701253

Javed, Y., Mansoor, M., & Shah, I.A. (2019). A review of principles of MEMS pressure sensing with
its aerospace applications. Sensor Review, 39(5), 652—664. https://doi.org/10.1108/sr-06-2018-0135

Angelidis, D.T. (1992). Optical micromachined pressure sensor for aerospace applications. Optical
Engineering, 31(8), 1638. https://doi.org/10.1117/12.58838

Cheng, C., Yao, J., Xue, H., Lu, Y., Wang, J., Chen, D., & Chen, J. (2022). A MEMS Resonant
Differential Pressure Sensor with High Accuracy by Integrated Temperature Sensor and Static Pressure
Sensor. IEEE Electron Device Letters, 43(12), 2157-2160. https://doi.org/10.1109/1ed.2022.3211886

Zhao, C., & Kong, D. (2020). An indirect comparison quasi-static calibration method for piezoelectric
pressure sensors based on an inverse model. Measurement, 159, 107778. https://doi.org/10.1016/
j.measurement.2020.107778

Yue, Y.-L., Xu, S.-J., & Zuo, X. (2022). Nonlinear correction method of pressure sensor based on data
fusion. Measurement, 199, 111303. https://doi.org/10.1016/j.measurement.2022.111303

Tang, Z., Wu, W., Gao, J., Yang, P., Hussain, A., Luo, J., Tao, R., Fu, C., & Li, T. (2022). Improv-
ing Water Pressure Measurement Using Temperature-Compensated Wireless Passive SAW Bidirec-
tional RDL Pressure Sensor. [EEE Transactions on Instrumentation and Measurement, 71, 1-11.
https://doi.org/10.1109/tim.2021.3120146

Pereira, R. dos S., & Cima, C.A. (2021). Thermal Compensation Method for Piezoresistive Pressure
Transducer. IEEE Transactions on Instrumentation and Measurement, 70, 1-7. https://doi.org/10.1109/
tim.2021.3092789

Zhang, C.C., Kang, Z.P., Zhao, N., Lei, P. and Yan, B. (Mar 2023). A Bilayer Thin-
Film Strain Gauge with Temperature Self-Compensation. [EEE Sens. J., 23, 6, 5601-5608.
https://doi.org/10.1109/jsen.2023.3238328

11


https://doi.org/10.24425/mms.2025.152773
https://doi.org/10.1007/s11465-017-0447-9
https://doi.org/10.1080/10426910500464446
https://doi.org/10.1080/10426910500464446
https://doi.org/10.1109/tbme.2007.913908
https://doi.org/10.1088/1361-6528/ac6812
https://doi.org/10.1109/jsen.2002.806748
https://doi.org/10.1002/adma.201701253
https://doi.org/10.1108/sr-06-2018-0135
https://doi.org/10.1117/12.58838
https://doi.org/10.1109/led.2022.3211886
https://doi.org/10.1016/j.measurement.2020.107778
https://doi.org/10.1016/j.measurement.2020.107778
https://doi.org/10.1016/j.measurement.2022.111303
https://doi.org/10.1109/tim.2021.3120146
https://doi.org/10.1109/tim.2021.3092789
https://doi.org/10.1109/tim.2021.3092789
https://doi.org/10.1109/jsen.2023.3238328

(15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

H. WANG et al.: KERNEL EXTREME LEARNING MACHINE COMBINED WITH GRAY WOLF OPTIMIZATION . . .

Zhao, G., Yin, J., Wu, L., & Feng, Z. (2020). Ultrastable and Low-Noise Self-Compensation Method
for Circuit Thermal Drift of Eddy Current Sensors Based on Analog Multiplier. [EEE Transactions on
Industrial Electronics, 67(10), 8851-8859. https://doi.org/10.1109/tie.2019.2949511

Ameli, A., Ghafouri, M., Salama, M.M.A., & El-Saadany, E.F. (2022). An Auxiliary Framework to
Mitigate Measurement Inaccuracies Caused by Capacitive Voltage Transformers. IEEE Transactions on
Instrumentation and Measurement, 71, 1-11. https://doi.org/10.1109/tim.2022.3142040

Anandanatarajan, R., Mangalanathan, U., & Gandhi, U. (2022). Deep Neural Network Based Lineariza-
tion and Cold Junction Compensation of Thermocouple. IEEE Transactions on Instrumentation and
Measurement, 1-1. https://doi.org/10.1109/tim.2022.3227982

Pan, Q., Sun, Y., Su, M., Chen, S., Cai, Z., Zhang, Z., Zou, M., Chen, B., Mikhailova, J.V., Zuev, D., &
Song, Y. (2022). Circular Subwavelength Photodetectors for 3D Space Exploration. Advanced Optical
Materials, 10(6). https://doi.org/10.1002/adom.202102163

Long, H., Zhang, L., Ma, H., Li, J., Xia, J., Zhang, Y., & Chen, J. (2022). Heterogeneous Integration Sys-
tem in Display (HISiD) for Next-Generation Terminal Device. IEEE Transactions on Components, Pack-
aging and Manufacturing Technology, 12(5), 731-739. https://doi.org/10.1109/tcpmt.2022.3167729

Yang, J., Yan, T., & Sun, W. (2023). Polynomial Fitting and Interpolation Method in TDOA Estimation of
Sensors Network. IEEE Sensors Journal, 23(4), 3837-3847. https://doi.org/10.1109/jsen.2022.3232625

Li, Y, Yao, S., Zhang, R., & Yang, C. (2020). Analyzing host security using D-S evidence theory
and multisource information fusion. International Journal of Intelligent Systems, 36(2), 1053—-1068.
https://doi.org/10.1002/int.22330

Badawi, D., Agambayev, A., Ozev, S., & Cetin, A.E. (2021). Real-Time Low-Cost Drift Compensation
for Chemical Sensors Using a Deep Neural Network with Hadamard Transform and Additive Layers.
IEEE Sensors Journal, 21(16), 17984—17994. https://doi.org/10.1109/jsen.2021.3084220

Tsai, P.-C., Cheng, C.-C., Chen, W.-J., & Su, S.-J. (2020). Sensor placement methodology for spindle
thermal compensation of machine tools. The International Journal of Advanced Manufacturing
Technology, 106(11-12), 5429-5440. https://doi.org/10.1007/s00170-020-04932-8

Wang, H., Zeng, Q., Zhang, Z., & Zou, Y. (2023). A novel whale-based algorithm for optimizing
the ANN approach: application to temperature compensation in pressure scanner calibration systems.
Measurement Science and Technology, 34(9), 095904. https://doi.org/10.1088/1361-6501/acd26d

Ge, Y., Shen, L., & Sun, M. (2021). Temperature Compensation for Optical Fiber Graphene Micro-
Pressure Sensor Using Genetic Wavelet Neural Networks. IEEE Sensors Journal, 21(21), 24195-24201.

Xie, J., Li, Z., & Zou, X. (2023). Dynamic Temperature Compensation of Pressure Sensors in Migratory
Bird Biologging Applications. Electronics, 12(20), 4373. https://doi.org/10.3390/electronics 12204373

Zhang, B., Tan, R., & Lin, C.-J. (2020). Forecasting of e-commerce transaction volume using a hybrid
of extreme learning machine and improved moth-flame optimization algorithm. Applied Intelligence,
51(2), 952-965. https://doi.org/10.1007/s10489-020-01840-y

Lou, J., Jiang, Y., Shen, Q., Wang, R., & Li, Z. (2023). Probabilistic Regularized Extreme Learning for
Robust Modeling of Traftic Flow Forecasting. IEEE Transactions on Neural Networks and Learning
Systems, 34(4), 1732—1741. https://doi.org/10.1109/tnnls.2020.3027822

Li, J., Hong, Z., Zhang, C., Wu, J., & Yu, C. (2024). A novel hybrid model for crude oil price
forecasting based on MEEMD and Mix-KELM. Expert Systems with Applications, 246, 123104.
https://doi.org/10.1016/j.eswa.2023.123104



https://doi.org/10.1109/tie.2019.2949511
https://doi.org/10.1109/tim.2022.3142040
https://doi.org/10.1109/tim.2022.3227982
https://doi.org/10.1002/adom.202102163
https://doi.org/10.1109/tcpmt.2022.3167729
https://doi.org/10.1109/jsen.2022.3232625
https://doi.org/10.1002/int.22330
https://doi.org/10.1109/jsen.2021.3084220
https://doi.org/10.1007/s00170-020-04932-8
https://doi.org/10.1088/1361-6501/acd26d
https://doi.org/10.3390/electronics12204373
https://doi.org/10.1007/s10489-020-01840-y
https://doi.org/10.1109/tnnls.2020.3027822
https://doi.org/10.1016/j.eswa.2023.123104

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

Metrol. Meas. Syst.,Vol. 32 (2025), No. 1, pp. 1-14
DOI: 10.24425/mms.2025.152773

Bisoi, R., Dash, P.K., & Das, P.P. (2018). Short-term electricity price forecasting and classification in
smart grids using optimized multikernel extreme learning machine. Neural Computing and Applications,
32(5), 1457-1480. https://doi.org/10.1007/s00521-018-3652-5

Sun, S., Wang, S., Wei, Y., & Zhang, G. (2020). A Clustering-Based Nonlinear Ensemble Approach for
Exchange Rates Forecasting. I[EEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6),
2284-2292. https://doi.org/10.1109/tsmc.2018.2799869

Zou, M., Xu, Y., Jin, J., Chu, M., & Huang, W. (2023). Accurate Nonlinearity and Temperature
Compensation Method for Piezoresistive Pressure Sensors Based on Data Generation. Sensors, 23(13),
6167. https://doi.org/10.3390/s23136167

Li, J., Hu, G., Zhou, Y., Zou, C., Peng, W., & Alam SM, J. (2017). Study on Temperature
and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simu-

lated Annealing and Simplex Optimized Kernel Extreme Learning Machine. Sensors, 17(4), 894.
https://doi.org/10.3390/s17040894

Liu, Y., & Wang, J. (2022). Transfer learning based multi-layer extreme learning machine for probabilistic
wind power forecasting. Applied Energy, 312, 118729. https://doi.org/10.1016/j.apenergy.2022.118729

Qin, Q., Huang, Z., Zhou, Z., Chen, Y., & Zhao, W. (2022). Hodrick—Prescott filter-based hybrid
ARIMA-SLFNs model with residual decomposition scheme for carbon price forecasting. Applied Soft
Computing, 119, 108560. https://doi.org/10.1016/j.as0c.2022.108560

Lu, H., Ma, X., Huang, K., & Azimi, M. (2020). Carbon trading volume and price forecasting
in China using multiple machine learning models. Journal of Cleaner Production, 249, 119386.
https://doi.org/10.1016/j.jclepro.2019.119386

Sulaiman, S. M., Jeyanthy, P.A., Devaraj, D., & Shihabudheen, K.V. (2022). A novel hybrid
short-term electricity forecasting technique for residential loads using Empirical Mode Decom-

position and Extreme Learning Machines. Computers & Electrical Engineering, 98, 107663.
https://doi.org/10.1016/j.compeleceng.2021.107663

Luo, J., & Liu, Z. (2019). Novel grey wolf optimization based on modified differential evolution
for numerical function optimization. Applied Intelligence, 50(2), 468—486. https://doi.org/10.1007/
s10489-019-01521-5

Mohanty, F., Rup, S., Dash, B., Majhi, B., & Swamy, M.N.S. (2018). A computer-aided diagnosis
system using Tchebichef features and improved grey wolf optimized extreme learning machine. Applied
Intelligence, 49(3), 983—1001. https://doi.org/10.1007/s10489-018-1294-z

Tong, S., Guo, M., Tian, Y., Le, J., Zhang, D., & Zhang, H. (2024). Multi-objective optimization design
of scramjet nozzle based on grey wolf optimization algorithm and kernel extreme learning machine
surrogate model. Physics of Fluids, 36(2). https://doi.org/10.1063/5.0188627

Roushangar, K., Shahnazi, S., & Sadaghiani, A.A. (2022). An efficient hybrid grey wolf optimization-
based KELM approach for prediction of the discharge coefficient of submerged radial gates. Soft
Computing, 27(7), 3623-3640. https://doi.org/10.1007/s00500-022-07614-7

Zhao, X., Chen, Y., Wei, G., Pang, L., & Xu, C. (2023). A comprehensive compensation method for
piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm. Measurement,
207, 112387. https://doi.org/10.1016/j.measurement.2022.112387

Wen, X., Jaxa-Rozen, M., & Trutnevyte, E. (2022). Accuracy indicators for evaluating retrospec-
tive performance of energy system models. Applied Energy, 325, 119906. https://doi.org/10.1016/
j-apenergy.2022.119906

13


https://doi.org/10.24425/mms.2025.152773
https://doi.org/10.1007/s00521-018-3652-5
https://doi.org/10.1109/tsmc.2018.2799869
https://doi.org/10.3390/s23136167
https://doi.org/10.3390/s17040894
https://doi.org/10.1016/j.apenergy.2022.118729
https://doi.org/10.1016/j.asoc.2022.108560
https://doi.org/10.1016/j.jclepro.2019.119386
https://doi.org/10.1016/j.compeleceng.2021.107663
https://doi.org/10.1007/s10489-019-01521-5
https://doi.org/10.1007/s10489-019-01521-5
https://doi.org/10.1007/s10489-018-1294-z
https://doi.org/10.1063/5.0188627
https://doi.org/10.1007/s00500-022-07614-7
https://doi.org/10.1016/j.measurement.2022.112387
https://doi.org/10.1016/j.apenergy.2022.119906
https://doi.org/10.1016/j.apenergy.2022.119906

H. WANG et al.: KERNEL EXTREME LEARNING MACHINE COMBINED WITH GRAY WOLF OPTIMIZATION . . .

[44] Zhou,J., Lin, H., Jin, H., Li, S., Yan, Z., & Huang, S. (2022). Cooperative prediction method of gas
emission from mining face based on feature selection and machine learning. International Journal of
Coal Science & Technology, 9(1). https://doi.org/10.1007/s40789-022-00519-8

Huan Wang (Graduate Member,
IEEE) received the B.Sc. degree
in Mechatronics Engineering from
Nanjing Engineering College, China,
in 2020. He received his M.Sc. de-
gree in Aeronautical and Astronau-
tical Science and Technology from
the College of Aeronautics and As-
tronautics, Sun Yat-sen University
in 2023. He is currently pursuing
a Ph.D. degree from the School of
Advanced Manufacturing, Sun Yat-
sen University. His current research
interests include the design of cali-

bration system for multi-channel pressure scanners and the study
of high precision temperature compensation algorithms.

14

Ting Wu received B.Eng. degree
from the China University of Min-
ing and Technology (CUMT), China
in 2023. Since then, he has been pur-
suing a M.Eng. degree from Sun Yat-
sen University (SYSU). His main re-
search interests include sensor algo-
rithms and control theory.

Pan Liu received his B.Sc. degree
in Mechanical Engineering from
the School of Mechanical Engineer-
ing and Automation at Northeast-
ern University in Shenyang, Liaon-
ing Province in 2017. He is currently
pursuing a master’s degree in Energy
and Power at the School of Aero-
nautics and Astronautics at Sun Yat-
sen University in Shenzhen, China.
His research interests are tempera-
ture compensation and fault diagno-
sis of multi-channel pressure scan-
ners.

Yijun Zou received the B.Sc. de-
gree in detection guidance and con-
trol from the School of Astronautics,
Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2019. She is
currently pursuing the M.Sc. degree
in aerospace science and technology
from Sun Yat-sen University, Shen-
zhen, China. Her current research in-
terests in fault diagnosis of pressure
Sensor.

Qinghua Zeng received the Ph.D.
degree in aerospace science and en-
gineering from the National Univer-
sity of Defense Technology, Chang-
sha, China, in 2003. He is currently
a Professor with Sun Yat-sen Univer-
sity, Shenzhen, China. His research
interests include aircraft control sys-
tem design and simulation, and de-
sign of pressure measurement sys-
tems for solid rocket engines.


https://doi.org/10.1007/s40789-022-00519-8

