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Abstract
To address issues such as severe specular reflection, low detection accuracy, and large model parameters
in ceramic ball detection, an improved YOLOv8 model, named YOLOv8-AP, is proposed for ceramic ball
surface defects detection. Firstly, the coaxial light source is employed to reduce the specular reflection effect
and an efficient image acquisition platform is established to obtain defect samples. Additionally, various data
augmentation techniques are utilized to expand the dataset, and both the ADown module and an improved
Powerful-IoU loss function are introduced to optimize the YOLOv8 network, significantly enhancing the
detection efficiency for small target defects. Experimental results show that the proposed improved YOLOv8-
AP model can achieve a mean average precision of 96.1% for the detection of the ceramic ball surface defects,
which greatly enhances the defect detection accuracy compared to the traditional models and can hope to
meet the intelligent and automatic detection requirements of ceramic ball detection online applications.
Keywords: Defect detection, ceramic ball, YOLOv8-AP model, Powerful-IoU loss function.

1. Introduction

Silicon nitride (Si3N4) or zirconia oxide (ZrO2) ceramic balls exhibit exceptional properties
such as high hardness, high temperature resistance, and self-lubrication [1,2], making them widely
used in key components of military equipment and new energy vehicles [3,4]. However, due to the
low brittleness of ceramic materials and the limitations of processing technology, defects such
as pits, scratches, and pores easily form on their surfaces during manufacturing. These defects
significantly reduce the lubrication capability and service life of ceramic balls [5]. To ensure the
safety and reliability of equipment, it is crucial to study the formation and detection techniques of
surface defects in ceramic balls. Manual visual inspection suffers from low accuracy and high
randomness [6,7], prompting researchers to explore other methods such as radiography, fluorescent
penetrant testing, and ultrasound [8]. Although these methods have achieved certain progress, each
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has limitations. For example, radiographic testing can only detect larger cracks and inclusions,
laser scattering methods have high misjudgement rates and costs, and fluorescent penetrant testing
is effective only for open defects and is less sensitive to colour differences and shallow pits, also
being relatively costly. Traditional image processing requires complex feature design to identify
different defects but is less adaptable to actual production environments.

In recent years, researchers worldwide have applied machine vision for ceramic ball defect
detection. Li et al. [9] proposed a multi-view surface defect detection method for Si3N4 ceramic
bearing balls by enhancing features with Gabor saliency domain fusion, addressing issues of
insufficient boundary, colour, and shape feature fusion due to single view limitations. Zhang et
al. [10] discovered that some defects in Si3N4 ceramic balls could not be directly detected and
proposed a surface defect detection method based on fringe reflection. By projecting sinusoidal
fringes onto the Si3N4 ceramic balls, uniform fringes were formed on defect-free surfaces,
validating the effectiveness of the method through experiments.

With the development of artificial intelligence, machine vision technology based on deep
learning has made significant progress in surface defect detection in terms of speed and accuracy
using convolutional neural network models. Yu et al. [11] proposed a defect detection algorithm
based on SWT and nonlinear enhancement, solving the problem of uneven backgrounds by using
low-pass filtering in the frequency domain to correct decomposition coefficients, effectively
identifying surface defects in Si3N4 ceramic balls. Chen et al. [12] addressed the problem of
missed detections of aluminium tube surface defects by proposing a detection method based on
Faster RCNN, achieving higher recognition speed and accuracy. Liao et al. [13] integrated the
BiFPN module into the neck of the YOLOv5 algorithm and proposed an improved YOLOv5-based
non-destructive detection method for Si3N4 bearing balls, achieving good detection results. Fan et
al. [14] designed a lightweight CM-YOLOv8 algorithm specifically for coal mining operations,
significantly reducing computational requirements andmodel size while maintaining high precision.
Likewise, Lv et al. [15] proposed an improved YOLOv5 method by introducing a CA (Coordinate
Attention) mechanism for milling surface roughness detection, and realized a higher detection
speed and robustness to the lighting environment.

Despite these advancements, challenges such as severe specular reflection, small sample sizes
and low detection accuracy remain in the research on surface defect detection of ceramic balls. To ad-
dress these problems, an improved YOLOv8 method, named YOLOv8-AP, is proposed for ceramic
ball surface defects detection in this paper. Firstly, a vision acquisition platform is built to collect
samples of surface defects on a ceramic ball, and data augmentation is applied to these samples [16];
then, a ceramic ball defect dataset is created. Finally, an ADown module is introduced to replace the
convolution module in the YOLOv8 model, and a Powerful-IoU loss function is also integrated to
reduce computational complexity while improving detection accuracy. This ensures the extraction
of small defect features in ceramic ball images, enhancing the model’s detection efficiency.

2. Image Pre-processing

The dataset used in this paper is a self-constructed Si3N4 ceramic ball (black colour) and ZrO2
ceramic ball (white colour) dataset. Since the quality of the dataset significantly impacts defect
detection results, it is essential to build a collection device tailored to the dataset’s specific charac-
teristics to enhance sample quality. Data augmentation is employed to generate new samples, which,
on one hand, increases the dataset’s diversity, thereby improving the model’s generalization ability;
on the other hand, it introduces noise into the original data, enhancing the model’s robustness [17].
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2.1. Image Acquisition

To obtain high quality images of surface defects on ceramic balls, a dedicated image acquisition
platform was constructed, as shown in Fig. 1. Considering the spherical nature of the subject and
the significant impact of specular reflection on the captured images, a coaxial light source [18, 19]
was employed for the setup. The coaxial light source is fixed directly above the ceramic ball, and an
industrial camera is positioned directly above the coaxial light source, ensuring that the industrial
camera, coaxial light source, and ceramic ball are aligned on a central axis.

Fig. 1. Schematic of the image acquisition platform.

The coaxial light source enables light to illuminate directly onto the detected object, almost
parallel to the imaging axis, which is crucial for minimizing shadows and reflections on reflective
surfaces such as ceramic balls. This setup provides uniform lighting that originates from the
camera’s perspective, effectively reducing shadows caused by surface irregularities and minimizing
light interference. Moreover, it significantly enhances image contrast and clarity, making the
details more pronounced and facilitating more accurate visual inspections and measurements.
As illustrated in Fig. 2, taking the erosion defect as an example, a sample collected without a
coaxial light source suffers from a significant environmental and lighting interference and exhibits
shadows. In contrast, a sample collected with a coaxial light source displays no shadows and is
minimally affected by external conditions.

To ensure the diversity and comprehensiveness of the data, this paper collected various typical
defects of both black (Si3N4) and white (ZrO2) ceramic balls. Pit defects are predominantly found
in black ceramic balls, whereas scratches, porosity, and erosion types of defects are more common
in white ceramic balls. The experiments employed a colour COMS camera (GS3-U3-51S5C-C,
FLIR) to capture images of these defects under varying light conditions, simulating the lighting
scenarios likely to be encountered in a real factory setting. The images of the defective ceramic
balls, as shown in Fig. 3, reveal that the surface defects are small and the contrast is low. In images of
pit defects, localized tissue spalling with distinct edges is clearly visible. Scratch defects appear as
elongated, linear marks, while porosity and erosion defects present as dots or point-like formations.
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(a) (b)
Fig. 2. Collected defective ceramic ball sample images.

(a) using coaxial light source; (b) without using coaxial light source.

(a) pit (b) pore (c) scratch (d) erosion
Fig. 3. Typical defect images of ceramic ball surface.

A total of 1027 samples of ceramic balls were collected, and 384 samples of ceramic balls were
obtained by filtering out invalid images, such as blurred and duplicated images. Neural network
training requires a lot of input samples to avoid model failure to converge and overfitting problems.
Insufficient samples may cause the model to learn noise and fall into local optimum, making it
difficult to evaluate the model performance. Therefore, image enhancement techniques become
especially critical.

2.2. Date Enhancement

To avoid potential issues such as overfitting, data augmentation is necessary for the dataset.
In digital image processing, histogram equalization [20–22] is a common method to enhance
image contrast and visual effects by adjusting the grayscale distribution. However, since this
paper focuses on ceramic balls with small defect targets and low contrast, conventional histogram
equalization manages to highlight details and defects effectively. Therefore, the Contrast Limited
Adaptive Histogram Equalization (CLAHE) [23] algorithm was utilized in this paper to enhance
the original images, revealing subtle defect information more effectively. CLAHE, the adaptive
histogram equalization algorithm, enhances the details of an image by limiting the contrast.

The image is divided into small blocks called “tiles”. Each tile undergoes independent
histogram equalization, allowing for localized enhancement and improving local contrast in each
small region of the image. For each tile, its grayscale histogram is denoted ash(i), and the clipping
threshold T is computed as

T =
Cclip × Nx × Ny

M
, (1)
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whereCclip is the clipping factor, Nx and Ny are the number of pixels in the width and height of each
subgraph, respectively, and M is the number of grey levels of the corresponding subgraph. If any h(i)
in the histogram exceeds the set clipping threshold T , the excess pixels N are evenly redistributed
to other grayscale levels. The number of extra pixels allocated to each grayscale level is Nave

N =
M−1∑
i=0
{max [h(i) − T]}, (2)

Nave =
N
M
. (3)

This method not only prevents noise amplification, but also smooths the edges of the tiles using
bilinear interpolation after equalizing all the tiles, eliminating the obvious boundaries between the
tiles, so that the image enhancement shows an overall uniformity and naturalness. As shown in
Fig. 4, the grey scale histogram of the sample after using the CLAHE algorithm is more uniform
compared to the grey scale histogram of the original image. Through this local equalization and
interpolation process, the small target defects in the image are effectively enhanced and are more
suitable for human eye observation.

(a)

(b)
Fig. 4. Grey scale histogram of samples processed with (a) and without (b) the CLAHE algorithm.
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In object detection, a diverse and high-quality dataset is crucial for the performance of neural
network models. This study thus employed the median filter to augment the ceramic ball image
samples data. Techniques such as changing light intensity, cropping, horizontal flipping, mosaic,
adding Gaussian noise, enhancing contrast, and employing the CLAHE algorithm were used to
process images of the collected ceramic ball image dataset with defects. As an example of ablation
defects, the images augmentation data are shown in Fig. 5.

(a) original image (b) change light intensity (c) crop size (d) horizontal flipping

(e) mosaic (f) adding Gaussian noise (g) contrast enhancement (h) CLAHE
Fig. 5. Enhancement images of ceramic ball surface defects.

3. Improvement of YOLOv8

YOLOv8, developed by Ultralytics [24], is the latest deep convolutional neural network based
on a single-stage object detection algorithm and represents a continuation of the You Only Look
Once series. This model enhances the capabilities of its predecessor, YOLOv5 [25], by optimizing
underlying feature extraction and improving semantic and contextual information integration.
The enhancements include an optimized backbone network and prediction head, as well as the
replacement of all C3 modules in the YOLOv5 network with C2f modules [26], leading to an
increased detection accuracy. YOLOv8 shows significant improvements in processing speed and
detection accuracy for high-resolution images compared to YOLOv5. Trained on large-scale
datasets, the model exhibits excellent generalization capabilities across various object detection
tasks. To meet real-time operational requirements, YOLOv8 is designed with fewer parameters. For
the specific task of detecting surface defects on ceramic balls, the YOLOv8n network was chosen
due to its balance of accuracy and speed. However, challenges such as low detection accuracy and
missing detections persist in identifying defects on a ceramic ball. Therefore, this study proposes
further design improvements for the YOLOv8 model to address these issues.
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3.1. Network Modelling Improvements

To enhance detection performance and reduce computational costs, significant improvements
and optimizations have been implemented in the following areas. First, to more effectively extract
features of target defects, a ADown module has been introduced, replacing the convolutional
modules in the YOLOv8 model. This module enhances feature extraction by employing multiple
convolution and pooling operations that gradually reduce the size of the feature maps while
increasing the number of channels. Second, the loss function has been replaced with the Powerful-
IoU (Powerful for Intersection Over Union) loss function [27]. This modification increases the
loss function’s capability to handle scenarios with occluded defects or multiple defects, thereby
enhancing the model’s learning efficacy. Fig. 6 illustrates the structure of the modified YOLOv8-AP
model, which is based on these improvements to the original YOLOv8 framework.

Fig. 6. Improved YOLOv8-AP structure.

3.2. ADown Module

To address the issue of small defect sizes on ceramic balls, most existing techniques employ
the traditional FPN (Feature Pyramid Network) [28] for feature fusion. This approach transfers
high-level, semantically-rich information to lower-level features in a top-down manner. In contrast,
the ADown module, a crucial component of YOLOv9, utilizes a multipath processing mechanism
to enhance interactions between different levels of features, thus improving the model’s ability to
detect targets of various sizes. The structure of the ADown module is depicted in Fig. 7. It adopts
a lightweight design strategy that significantly reduces the model’s complexity by optimizing
and minimizing the number of parameters. Unlike traditional down sampling techniques, such
as simple pooling layers or conventional convolutional stride adjustments, the ADown module
preserves critical target features through finer structural adjustments. This not only enhances the
model’s efficiency but also allows it to adapt its structure and functionality dynamically to suit
different data and application scenarios, effectively overcoming the limitations posed by resource
constraints in real-time applications on mobile devices and embedded systems.
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Fig. 7. ADown module structure.

As shown in Fig. 8 in detail, with a kernel size of 2 × 2, an image with input dimensions of
640 × 640 is processed through MaxPool2d (maximum pooling), reducing the dimensions of
the image by half in each direction, resulting in a feature map of 320 × 320. The principle of
MaxPool2d is illustrated in Figure 8, where the left panel shows the feature values contained
within the feature map. The feature map is systematically scanned using a predefined kernel size
and stride.

Fig. 8. MaxPool2d schematic.

For each kernel-sized region, this operation picks the maximum value in the region, effectively
capturing the most significant features in the local region. When using a 2 × 2 kernel size and
corresponding step size, each 2 × 2 block in the input is evaluated and the highest value in each
block is retained. The first block is calculated as follows.

Output1 = Maximum(5, 7, 2, 9) = 9. (4)

This method not only reduces the data dimensionality and boosts computational efficiency, but
also enhances the invariance of the model to small translations and deformations. After maximum
pooling, the feature map is divided into two parts, each maintaining a spatial size of 320 × 320.
Each split feature map is then directed along two separate paths, where they undergo further
processing with a second MaxPool2d and CBS (Combi Brake System) operations. This second
round of MaxPooling halves the dimensions from 320× 320 to 160× 160 in each direction. Finally,
the output size of each pathway is reduced to 80 × 80. This procedure significantly decreases the
spatial size of the feature maps while retaining critical features, thereby reducing computational
demands and enhancing the model’s detection capabilities. Clearly, the introduction of the ADown
module offers an efficient, adjustable, and precise down sampling tool for the detection of surface
defects on a ceramic ball.
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3.3. Powerful-IoU Loss Function

The Powerful-IoU loss function is a technique used to enhance model performance in object
detection tasks, particularly in terms of object localization accuracy. This loss function builds upon
and refines the traditional IoU (Intersection over Union) [29] loss to address its insensitivity in
certain scenarios, especially when the predicted bounding box has little or no overlap with the true
bounding box. The Powerful-IoU loss function consists of three key components: the IoU term,
the centroid distance term C, and the aspect ratio term v. IoU is the intersection and concurrency
ratio between the predicted bounding box and the true bounding box, and is an intuitive measure
of the similarity of the two bounding boxes. The formulas for the calculation of IoU, C, and v are,
respectively, expressed as

IoU =
Area of Overlap
Area of Union

, (5)

C =
√
(x2 − x1)2 + (y2 − y1)2, (6)

v =
4
π2

(
tan−1 wgt

hgt
− tan−1 wpred

hpred

)2
, (7)

where wgt , hgt are the width and height of the real frame, and wpred, hpred are the width and height
of the predicted frame. Thus, the formula for Powerful-IoU loss can be written as

Powerful − IoU Loss = 1 − IoU +
ρ2 (

b, bgt
)

C2 + αv, (8)

where ρ(b, bgt ) denotes the Euclidean distance between the centre of the predicted frame and the
real frame and is the coefficient used to balance the aspect ratio term, which is usually a fixed
parameter. In this way, the Powerful-IoU loss function is not only optimized over the overlapping
regions of the predicted and real frames, but also takes into consideration their geometries and
relative positions, which helps to improve the localization accuracy. Therefore, Powerful-IoU is an
efficient loss function that can significantly improve the localization accuracy in target detection
tasks. By addressing some of the limitations in traditional IoU losses, it enables the network to
learn more consistently and efficiently in a variety of situations.

4. Experiments

4.1. Data Set and Experimental Environment

In this study, different lighting intensities were simulated by adjusting the light source controller.
Images were captured using a COMS industrial camera at a resolution of 2024 × 2024 pixels and
saved in PNG format. A total of 1,027 ceramic ball samples were collected, featuring four types of
defects: pits, pores, scratches, and erosions. Data augmentation was applied to 384 well-captured
images, resulting in 1,518 effective samples that were subsequently annotated. The dataset was
divided into training, testing, and validation sets in a 7:2:1 ratio. Each type of defect was labelled
and visually experimented, as shown in Fig. 9. Each matrix cell represents a label used during
model training, and the depth of the region colour reflects the correlation between respective
labels. Darker areas indicate a deeper understanding of the correlation between these two labels by
the model, whereas lighter areas indicate weaker correlations.
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Fig. 9 (a) shows a histogram of the number of categories in the dataset. Fig. 9 (b) details the
distribution of labels in the original dataset. Analysis reveals that the distribution of defects in the
self-built dataset is uneven. The accuracy of the rectangular bounding boxes indicates that this
method is suitable for detecting surface defects on ceramic balls.

(a) distribution of dataset categories

(b) details of label distribution
Fig. 9. Statistics and visualization of annotated files of the dataset.

The experiments were implemented under the PyTorch deep learning framework and use a
single RTX 3090 graphics card for model training. The specific configuration of the experimental
environment is shown in Table 1.
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Table 1. Experimental environment.

Name of the environment Name

Operating system Ubuntu 20.04

GPUs RTX3090

CPU Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz

RAM 24GB

Deep learning frameworks PyTorch (1.11.0)

Interpreter Python (3.8)

CUDA version CUDA (11.3)

4.2. Evaluation Indicators

To comprehensively evaluate the performance of the YOLOv8 network model, this paper
employed several key metrics, including Recall, Precision, multi-class average accuracy (mAP0.5),
detection speed, and number of parameters. mAP0.5 represents the average accuracy under different
confidence thresholds, and it is an important metric for evaluating the accuracy of multi-class
target detection. In addition, the detection speed of the model is quantified by the number of frames
per second (FPS) processed, which examines the response speed and processing efficiency of the
model in practical applications. The performance calculation is based on (8) to (12)

Precision =
Tp

Tp + Fp
, (9)

Recall =
Tp

Tp + FN
, (10)

F1 = 2 ×
Precision × Recall
Precision + Recall

, (11)

AP =

1∫
0

Precision(Recall)dRecall, (12)

mAP =

C∑
i=1

AP(i)

C
. (13)

In the above equations, Tp indicates that the positive samples predicted by the model are in the
positive category, Fpindicates that the negative samples predicted by the model are in the positive
category, and FN indicates that the positive samples predicted by the model are in the negative
category, so as to ensure the accuracy and reliability of the assessment results.

4.3. Experimental Results

4.3.1. Influence of Different Backbone Networks on the Model

In this study, the YOLOv8n object detection network serves as the foundational model, with
the introduction of the ADown module to replace the convolutional modules within the YOLOv8
framework. This substitution incorporates commonly used lightweight feature extraction backbone
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networks such as the CBAM module (Convolutional Block Attention Module) [30], CA module
(Coordinate Attention) [31], andDATmodule (Vision TransformerwithDeformableAttention) [32].
Keeping all parameters consistent except for the backbone network, the experimental results listed
in Table 2 illustrate varied training outcomes among the different backbone networks. Compared
to the CA, DAT, and CBAM networks, the ADown-enhanced approach exhibits higher training
accuracy, recall, and mean average precision. Relative to the other networks, the mAP0.5 scores
have increased by 3.1%, 0.9%, and 1.7%, respectively. Therefore, the ADown module significantly
improves the detection performance of the YOLOv8 model.

Table 2. Performance comparison of different backbone networks.

Models Backbone
network Precision /% Recall rate /% mAP0.5 /% mAP0.5-0.95 /%

Number of
parameters

/M
FLOPs /G

YOLOv8 CBAM 93.0 91.4 93.0 45.7 3.0 7.4
YOLOv8 CA 94.2 93.3 95.2 46.9 3.0 8.1
YOLOv8 DAT 92.8 92.7 94.4 43.3 2.7 7.5
YOLOv8 ADown 94.8 93.5 96.1 47.4 2.7 7.5

4.3.2. Ablation Experiments

This study implemented two key enhancements in the YOLOv8 model to boost its performance.
Firstly, the introduction of theADownmodule replaced the original convolutionmodules to optimize
themodel structure. Secondly, the Powerful-IoU loss function was adopted in place of the traditional
loss functions to enhance detection precision. To assess the actual effects of these improvements,
a series of ablation experiments were conducted. The results, shown in Table 3, indicate that
with the YOLOv8n model unchanged, the integration of the ADown module alone resulted in the
YOLOv8-A model having a 10% reduction in the number of parameters, with recall and mAP0.5
increasing by 1% and 2.7%, respectively. Replacing only the loss function with Powerful-IoU in
the YOLOv8-P model maintained the parameter count while improving mAP0.5 by 1.8%. Lastly,
by introducing the ADown module and replacing the loss function, the YOLOv8-AP model was
achieved. This model, without an increase in parameter volume, further improved in recall and
mAP0.5, demonstrating enhanced detection capabilities for surface defects in ceramic balls.

Table 3. Results of ablation experiments.

Models Precision /% Recall rate /% mAP0.5 /% mAP0.5-0.95 /% Number of parameters /M FLOPs /G
YOLOv8n 90.6 92.5 93.4 47.5 3.0 8.1
YOLOv8-A 94.8 93.5 96.1 47.4 2.7 7.5
YOLOv8-P 92.1 91.7 95.2 47.6 3.0 8.1
YOLOv8-AP 94.8 94.0 96.1 48.9 2.7 7.5

4.3.3. Performance Comparison of Different Models

To validate the effectiveness of the YOLOv8-AP model for detecting surface defects on ceramic
balls, this study conducted comparative training and testing using the YOLOv5s, YOLOv9-c,
YOLOv8n, SSD-300 and YOLOv7 models on a dataset of ceramic balls, with performance results
presented in Table 4. When compared with the lightweight networks in the YOLO series such
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as YOLOv5s, YOLOv9-c, YOLOv8n and YOLOv7, the improved YOLOv8-AP model achieved
significant performance optimization. Specifically, compared to these models, YOLOv8-AP
reduced the parameter count by 61.4%, 94.7%, 10% and 92.7%, respectively, effectively lowering
computational demands. In terms of performance evaluation, mAP0.5 improved by 2.2%, 4.8%,
2.7% and 16.9%, respectively, and recall rates also saw varying degrees of enhancement. These
results indicate that the YOLOv8-AP algorithm, while maintaining a smaller model size, provides
higher detection accuracy and lower computational costs, thereby optimizing detection efficiency.
This makes the algorithm not only suitable for real-time object detection of surface defects on
ceramic balls but also facilitates deployment and application on resource-limited devices.

Table 4. Performance comparison of different models.

Models Model size /MB Recall rate /% mAP0.5 /% Number of parameters /M FLOPs /G
YOLOv5s 14.5 90.6 93.9 7.0 15.8
YOLOv9-c 102.8 87.4 91.3 50.7 236.7
YOLOv8n 6.3 92.5 93.4 3.0 8.1
SSD-300 100.3 28.75 82.49 102.2 31.0
YOLOv7 74.8 73.2 79.9 37.2 105.2

YOLOv8-AP 5.7 94.0 96.1 2.7 7.5

As illustrated in Fig. 10, the comparison of loss values for theYOLOv5s, YOLOv9-c, YOLOv8n,
YOLOv7, SSD-300 and YOLOv8-AP models shows that the YOLOv8-AP model, represented
by the red curve, has the smallest loss value. This indicates that the error between the models’
predictions and the actual results is minimal, demonstrating a significant improvement in the
models’ performance.

Fig. 10. Comparison of loss values for different models.

4.3.4. Comparison of Detection Accuracy of Different Light Sources

To verify the effectiveness of using a coaxial light source for detecting surface defects on
ceramic balls, the study collected 240 samples of ceramic ball defects without the coaxial light
source. These samples were processed using the same data augmentation methods, resulting in 977
effective images. The dataset was then tested using the improved YOLOv8-AP model. According
to Table 5, the results of using the coaxial light source showed improvements in accuracy, recall
rate, and mAP0.5 values by 1.3%, 6.9%, and 4.8% respectively, compared to those without the
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coaxial light source. This experiment demonstrates the effectiveness of the coaxial light source in
enhancing the detection of surface defects on ceramic balls.

Table 5. Comparison of detection results with and without coaxial light source.

Light source Models Precision /% Recall rate /% mAP0.5 /% FLOPs /G

Non-coaxial light source YOLOv8-AP 91.9 87.1 91.3 7.5

Coaxial light source YOLOv8-AP 93.2 94.0 96.1 8.1

Fig. 11 shows the detection results of surface defects on ceramic balls using the YOLOv8
model under coaxial light, the YOLOv8-AP model under coaxial light, and the YOLOv8-AP
model without coaxial light. The experimental results indicate that both models can detect the
surface defects on ceramic balls. However, YOLOv8 exhibits issues of low detection precision and
missed detections when dealing with smaller target sizes. In contrast, the YOLOv8-AP model
demonstrates superior recognition accuracy. Furthermore, when analysing the loss values of
the models under different scenarios for detecting ceramic balls, YOLOv8-AP shows a better
adaptability to complex environments and consistently records the lowest loss across all conditions.
These results completely indicate that YOLOv8-AP has a distinct advantage in ensuring the
accuracy and reliability of detection.

(a) (b) (c)
Fig. 11. Detection results of ceramic balls using different models.

(a) YOLOv8 model with coaxial light source; (b) YOLOv8-AP model with coaxial light source;
(c) YOLOv8-AP model without coaxial light source.
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5. Conclusions

This study innovatively applied the improved YOLOv8-AP model for non-destructive detection
of small target defects on ceramic balls. To address the severe specular reflection issues, the coaxial
light source was employed, significantly reducing the impact of specular reflection effect on the
experiments. Various data augmentation techniques were utilized to enhance model robustness,
along with the application of CLAHE to improve image contrast. The ADown module was
introduced to improve the performance of the YOLOv8 algorithm, which progressively reduced
the feature map size while increasing the number of channels through multiple convolutional and
pooling operations, thereby more effectively extracting features.

Additionally, the normal loss function was replaced with the Powerful-IoU loss function, which
incorporated adjustable parameters to tackle challenges in multi-target detection and occlusion.
Experimental results demonstrate that the improved YOLOv8-AP model achieved a mAP0.5 and
recall rate of 96.1% and 94%, respectively, on a custom dataset of surface defects in ceramic balls.
Compared to the YOLOv8 algorithm, the mAP0.5 and recall rate were improved by 2.7% and
1.5%, respectively, while the parameter count was reduced by 10%. These findings completely
validate the enhancement of the detection efficiency of the improved YOLOv8-AP model in the
fields of the detection of ceramic ball defects.

This study not only advances the understanding of small target detection technologies but
also provides reliable technical support for industrial practices, particularly in high-precision,
intelligent detection of ceramic balls, holding significant practical value. However, despite the
excellent performance of the improved YOLOv8-AP model, further testing of ceramic balls by use
of the improved YOLOv8-AP model is necessary to enhance robustness under the actual industrial
scenarios, which will be the next issue to be investigated.
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