
1. Introduction

The exponential stretching surface in boundary layer flow has 

significant applications in manufacturing engineering, such as 

the production of copper wires and determining the quality of 

various industrial products. A substantial portion of contempo-

rary research focuses on the study of boundary layer flow over 

stretching sheets. For instance, Gupta and Gupta [1] analysed 

the transfer of momentum, mass, and heat within the boundary 

region of a stretching sheet. Magyari and Keller [2], along with 

Elbashbeshy [3], investigated heat transfer over an exponen-

tially stretched sheet, considering the effects of suction and 

blowing. Pramanik [4] examined heat transfer in the boundary 

layer of an exponentially stretching surface. Jain et al. [5] stud-

ied boundary layer flow over a suction surface with slip and 

mixed convection conditions. Similarly, researchers like Partha 

et al. [6], Khan [7], and Sajid and Hayat [8] explored exponen-

tially stretching sheets under various fluid dynamics scenarios. 
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Abstract 

This research investigates the mixed convection of an incompressible, non-Newtonian radiating Casson fluid in a Darcy-
Forchheimer porous medium over a slippery, permeable, stretching surface. The study further examines the influences of 
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differential equations are transformed into nonlinear ordinary differential equations. These nonlinear ordinary differential 
equations are solved using MATLAB with the fourth-order Runge-Kutta method combined with the shooting technique. 
This work aims to assess the influence of Casson parameter, porosity parameter, radiation parameter, suction parameter, 
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and temperature. The findings show that increasing Casson parameter results in decreased velocity and temperature, while 
an increase in the radiation parameter leads to a rise in temperature. Velocity decreases with an increase in slip parameter 
for velocity, but as the similarity variable exceeds 2.4, it experiences a slight increase due to the stretching effect of the 
sheet. Conversely, temperature is directly proportional to slip parameter for velocity. 
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Nomenclature 

Cp – specific heat coefficient,  J/(kg K) 

Cf – skin friction coefficient 

𝑒𝑖𝑗 – (ij)th component of the deformation rate 

Ec – Eckert number 

f – dimensionless stream function 

F – drag coefficient 

Fr – local inertia coefficient 

g – gravitational acceleration, m/s2 

Gr – Grashof number 

h – heat transfer coefficient, W/ (m2 K) 

K – porous medium permeability, m2 

𝐾1 – porosity parameter 

𝑘∗ – mean absorption coefficient, 1/m 

L – characteristic length, m 

N – radiation parameter 

Nu – Nusselt number 

Pr ‒ Prandtl number 

𝑞 ‒ heat flux, W/m2 

R – slip length coefficient, m 

Re – Reynolds number 

S – suction/blowing parameter 

T – temperature, K 

𝑢, 𝑣 – velocity in x- and y-direction, m/s 

U ‒ stretching velocity, m/s 

V ‒ velocity over the sheet, m/s 

 

 

Greek symbols 

𝛽 – Casson parameter 

𝛽∗ – thermal expansion coefficient, 1/K 

𝜃 – dimensionless temperature 

𝜗 – kinematic viscosity, m2/s 

𝜅 – thermal conductivity, W/(m K) 

𝜆 – mixed convection parameter 

𝜆𝑢 – slip parameter for velocity 

𝜆𝑡 – slip parameter for temperature 

 – viscosity of fluid, Pas  

𝜂 – similarity variable  

ρ – density, kg/m3  

𝜎 – Stefan-Boltzmann coefficient, 5.6710-8 W/(m2 K4) 

 

Subscripts and Superscripts 

𝑟 – radiation,  

𝑡 – temperature 

𝑢 – velocity 

W – sheet surface 

0 – initial 

∞ – fluid surface 

(·)ꞌ – differentiation with respect to η 

 

Abbreviations and Acronyms 

PDE – partial differential equation  

ODE – ordinary differential equation 

 

 

The study of radiating Casson fluid flow holds diverse engi-

neering and industrial applications, particularly in fluid dynam-

ics and complex fluid behaviours. It is relevant in processes such 

as polymer processing, food manufacturing, paint production, 

and oil drilling. Additionally, the non-Newtonian behaviour of 

blood can be described using the Casson fluid model, which is 

critical for designing medical devices like artificial heart valves 

and understanding blood circulation mechanics. Radiating Cas-

son fluid also plays a role in studying blood flow under different 

physiological conditions. For example, during cardiac surgeries, 

external heating or cooling is used to regulate blood flow and 

prevent complications. Bejawada et al. [9] investigated the ef-

fects of radiating Casson fluid flow in a porous medium with an 

inclined non-linear sheet, while Rassol et al. [10] explored Cas-

son nanofluid flow in a porous medium over a non-linear stretch-

ing sheet. Bilal et al. [11] provided an analytical study on Casson 

fluid flow over an isothermal sloping Riga sheet with thermal 

radiation. Other notable works include Raju et al. [12], who an-

alysed heat and mass transfer characteristics of Casson fluid on 

a rotating wedge under thermal radiation, and Mehmood et al. 

[13], who studied the behaviour of non-aligned Casson fluid on 

a stretching surface in the presence of radiation. Research by 

Sinha et al. [14] focused on mixed convection in fluid flow with 

dissipation and radiation effects, while Loganathan and Deepa 

[15] examined electromagnetic and radiative Casson fluid flow 

near a permeable vertical plate. Additional studies by Kumar 

and Sugunamma [16] and Samrat et al. [17] investigated mag-

netohydrodynamic (MHD) radiative Casson fluid over various 

geometries.  

Viscous dissipation, an essential concept in fluid mechanics,  

refers to the conversion of mechanical energy into thermal en-

ergy due to internal friction within a fluid. This phenomenon is 

influenced by fluid viscosity and shear forces and plays a vital 

role in applications like heat exchangers, cooling systems, and 

electronics cooling. Gebhart [18] was the first to discuss the vis-

cous dissipation term in natural convection, while Hadhrami 

et al. [19] studied its effects on porous media and permeable sur-

faces. Hayat et al. [20] explored the impact of viscous dissipa-

tion in Casson fluid flow combined with nanofluid and thermal 

conductivity. Praveen et al. [21] examined Joule heating and 

heat generation effects on a permeable stretching cylinder. Re-

searchers such as Koo and Kleinstreuer [22] and Winter [23] 

have also investigated the role of viscous dissipation in energy 

equations. 

The Darcy-Forchheimer porous medium is used to model 

fluid flow in filtration processes, water treatment systems, and 

oil and gas filtration. It is also applied in geotechnical engineer-

ing to estimate groundwater flow rates and pressure distributions 

and has biomedical applications in tissue engineering, drug de-

livery, and blood flow through tissues. For example, Khan [24] 

analysed velocity slip, viscous dissipation, heat sources/sinks, 

and Ohmic heating in a Darcy-Forchheimer porous medium. 

Mukhopadhyay et al. [25] studied boundary layer convective 

flow over a porous plate in such a medium. Ganesh et al. [26] 

investigated heat transfer in non-Newtonian Reiner-Philippoff 

fluid flow within a Darcy-Forchheimer medium, while Prasad 

[27] examined thermal diffusion in MHD mixed convection 

over an accelerating vertically wavy plate in a porous medium. 

Shoaib et al. [28] analysed the effects of a Forchheimer porous 

medium on Casson fluid over a non-linear surface, and Bansal 
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and Yadav [29] explored slip velocity effects in Newtonian fluid 

flow over a stretching surface with a porous medium. 

This research expands on the work of Pramanik [4] by incor-

porating the effects of slippery, permeable Darcy-Forchheimer 

porous medium and mixed convection. The effects of slip con-

ditions, viscous dissipation, and thermal buoyancy are also in-

vestigated. The governing nonlinear partial differential equa-

tions are transformed into nonlinear ordinary differential equa-

tions using similarity transformations. These equations are 

solved numerically using the fourth-order Runge-Kutta method. 

2. Mathematical model 

This study focuses on the incompressible, non-Newtonian 

radiative Casson fluid over a slippery, permeable, stretching flat 

surface. The flow occurs within a Darcy-Forchheimer porous 

medium, with the flat plate aligned parallel to the x-axis (Fig. 1). 

Fluid stream is restricted to 𝑦 > 0. Further assumptions include 

that two identical but adverse stresses are used along with the 

flow direction to stretch the sheet while maintaining the origin 

static. The phenomena impacting the fluid flow include radiative 

heat transfer, drag effects, buoyancy forces, and viscous dissi-

pation. 

The following equation is the rheological expression for an 

incompressible, isotropic, and viscous Casson fluid: 

 𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑝𝑦

√2𝜋
) 𝑒𝑖𝑗,     𝜋 > 𝜋𝑐

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗,    𝜋 < 𝜋𝑐

  , 

where 𝜋 =  𝑒𝑖𝑗𝑒𝑖𝑗 is the product of the component of defor-

mation rate, 𝑒𝑖𝑗 is the (ij)th component of the deformation rate, 

𝜇𝐵 is the plastic dynamic viscosity of a non-Newtonian fluid, 

𝑝𝑦 is the yield stress of the fluid, and 𝜋𝑐 is the critical value of 

the product. 

The governing continuity equation, derived from the princi-

ple of mass conservation for an incompressible fluid in two di-

mensions, is expressed as 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

where 𝑢 is the velocity in the x-direction, and 𝑣 is the velocity 

in the y-direction. 

The momentum equation, also called the Navier-Stokes 

equation, is derived from Newton’s second law of motion for an 

incompressible non-Newtonian fluid, incorporating additional 

effects such as permeability, buoyancy and a stretching sheet, 

and is expressed as 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
− 𝜗 (1 +

1

𝛽
)
𝑢

𝐾
+ 

                 −
𝐹𝑢2

𝜌√𝐾
+ 𝑔𝛽∗(𝑇 − 𝑇∞), (2) 

where 𝜌 is the density, 𝛽∗ is the thermal expansion, 𝜗 is the kin-

ematic viscosity, F is the drag coefficient, g is the gravitational 

acceleration, 𝐾 is the permeability of the porous medium, T is 

the temperature, and 𝛽 = 𝜇𝐵
√2𝜋𝑐

𝑝𝑦
 is the Casson parameter. 

The energy equation, derived from the first law of thermo-

dynamics (the conservation of energy), for an incompressible 

non-Newtonian fluid with effects, such as porous medium, vis-

cous dissipation, Forchheimer drag, and radiative heat transfer, 

is expressed as 

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌𝐶𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

+ 

                           +(1 +
1

𝛽
)
𝜇𝑢2

𝐾𝜌𝐶𝑝
+

𝐹𝑢3

𝜌𝐶𝑝√𝐾
−

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
. (3) 

where Cp is the specific heat, 𝑞𝑟 is the radiative heat flux, 𝜅 is 

the thermal conductivity, and µ is the viscosity. We are able to 

write an expression of the Rosseland estimation as 

 𝑞𝑟 = −
4𝜎

3𝑘∗

𝜕𝑇4

𝜕𝑦
, (4) 

where 𝜎 is the Stefan-Boltzmann constant and 𝑘∗ is the mean 

absorption coefficient. Then, expanding 𝑇4 along with 𝑇∞ with 

the help of Taylor series, taking zero of higher-order terms in 

fluid flow yields: 

 𝑇4 ≡ 4𝑇∞
3𝑇 − 3𝑇∞

4 . (5) 

Using Eqs. (4) and (5), Eq. (3) is converted into  

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (

𝜅

𝜌𝐶𝑝
+

16𝜎𝑇∞
3

3𝜌𝐶𝑝𝑘
∗)

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌𝐶𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

+ 

 +(1 +
1

𝛽
)
𝜇𝑢2

𝐾𝜌𝐶𝑝
+

𝐹𝑢3

𝜌𝐶𝑝√𝐾
. (6) 

The boundary conditions adopted in this study are: 

 

     𝑢 = 𝑈𝑤 +
𝜇

𝑅
(1 +

1

𝛽
)
𝜕𝑢

𝜕𝑦
,

𝑣 = −𝑉(𝑥),

−𝜅
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑤 − 𝑇),

    at 𝑦 = 0, (7) 

 𝑢 → 0,    𝑇 → 𝑇∞    as 𝑦 → ∞  (8) 

Here, 𝑈𝑤 = 𝑈0𝑒
𝑥

𝐿 is the stretch velocity, where L is the is the 

characteristic length and 𝑈0 is the reference velocity, 𝑅 is the 

 

Fig. 1. Diagram of the flow case under consideration. 
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slip length coefficient, 𝑇𝑤 = 𝑇0𝑒
𝑥

2𝐿 is the temperature over the 

surface, 𝑇0 is the reference temperature, 𝑉(𝑥) = 𝑉0𝑒
𝑥

2𝐿 is a ve-

locity over the sheet, where 𝑉0 is considered as constant, while 

𝑉(𝑥) > 0 is the velocity for suction and 𝑉(𝑥) < 0 is the velocity 

for blowing. 

3. Numerical solution 

Dimensionless variables are defined as: 

𝜂 = √
𝑈0

2𝜗𝐿
 𝑒

𝑥

2𝐿𝑦,     𝑣 = −√
𝜗𝑈0

2𝐿
𝑒
𝑥

2𝐿[𝑓(𝜂) + 𝜂𝑓′(𝜂)], 

  (9) 

𝑢 = 𝑈0𝑒
𝑥

𝐿𝑓′(𝜂),     𝑇 = 𝑇∞ + 𝑇0𝑒
𝑥

2𝐿𝜃(𝜂), 

where f is the dimensionless stream function and θ is the dimen-

sionless temperature, and the prime mark denotes differentiation 

with respect to η. 

Using Eqs. (9), Eqs. (2) and (6) transform to dimensionless 

forms, respectively: 

(1 +
1

𝛽
) 𝑓′′′ + 𝑓𝑓′′ − (1 +

1

𝛽
)𝐾1𝑓

′ − (Fr + 2)𝑓′
2
+ 2𝜆𝜃 = 0,

   (10) 

      (1 +
4

3
𝑁)𝜃′′ − Pr(𝜃𝑓′ − 𝑓𝜃′) + 

 +(1 +
1

𝛽
) EcPr(𝑓′′

2
+ 𝐾1𝑓

′2) + FrEcPr𝑓′
3
= 0, (11) 

where higher order derivatives with respect to η are represented 

by adding more primes (the second and third derivatives).  

Applying similarity transformation from Eq. (9), Eqs. (7) 

and (8) can be converted as follows: 

 {

𝑓′(0) = 1 + (1 +
1

𝛽
) 𝜆𝑢 + 𝑓

′′,

𝑓′(0) = 𝑆,

𝜃(0) = 1 + 𝜆𝑡𝜃
′(0),

      at 𝜂 = 0, (12) 

 𝑓′(∞) → 0,   𝜃(∞) → 0,        as 𝜂 → ∞. (13) 

Here, 𝑆 =
𝑉0

√𝜗𝑈0
2𝐿

> 0 is the suction or 𝑆 < 0 is the blowing pa-

rameter, 𝜆𝑢 =
𝜇

𝑅
√

𝑈0

2𝜗𝐿
𝑒
𝑥

2𝐿 is the velocity slip parameter, 

𝜆𝑡 =
𝜅

ℎ
√

𝑈0

2𝜗𝐿
𝑒
𝑥

2𝐿 is the slip parameter of temperature distribution, 

Gr =
𝑔𝛽∗(𝑇𝑤−𝑇∞)𝐿

3

𝜗2
 is the Grashof number, Pr =

𝜇𝐶𝑝

𝜅
 is the 

Prandtl number, Ec =
𝑈𝑤

2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number, Fr =

2𝐹𝐿

𝜌√𝜅
 

is the local inertia coefficient, 𝜆 =
Gr

Re2
 is the mixed convection 

parameter, Re2 =
𝑈𝑤

2𝐿2

𝜗
 is the local Reynolds number, 𝐾1 =

2𝜗𝐿

𝑈𝑤𝐾
 

 the porosity parameter, 𝑁 =
4𝜎𝑇∞

3

𝜅𝑘∗
  the radiation parameter. 

The skin friction coefficient 𝐶𝑓 and Nusselt number Nu, 

which are the factors of physical interest, are calculated as 

 𝐶𝑓 =
𝜏𝑤

1

2
𝜌𝑈𝑤

2
,     Nu =

𝐿𝑞𝑤

𝜅(𝑇𝑤−𝑇∞)
,  

where 𝜏𝑤  is the shear stress at the surface and 𝑞𝑤 is the heat flux  

at the surface: 

 𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

,    𝑞𝑤 = −𝜅 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

.  

By using Eq. (8), the above are converted as follows: 

 𝐶𝑓
 √Re

√2
= 𝑓′′(0),    Nu

√2

√Re
= −𝜃′(0).  

3.1. Numerical methodology 

Using Eqs. (12) and (13), the solution of governing Eqs. (10) 

and (11) has been computed numerically by means of the 

fourth-order Runge-Kutta (RK4) method. The momentum 

and energy equations are converted from higher order to first 

order differential equations using the following substitution: 

 𝑓 = 𝑓1,  

 𝑓′ = 𝑓2,  

 𝑓′′ = 𝑓3,  

𝑓′3 =
1

(1+
1

𝛽
)
[(1 +

1

𝛽
)𝐾1𝑓2 + (2 + Fr)𝑓2

2 − 𝑓1𝑓3 − 2𝜆𝑓4], 

                         (14) 

 𝜃 = 𝑓4,  

 𝜃′ = 𝑓5,  

 𝑓′
5
=

1

1+
4

3
𝑁
[Pr(𝑓4𝑓2 − 𝑓1𝑓5) − (1 +

1

𝛽
)EcPr(𝑓3

2 + 𝐾1𝑓2
2) +

                     − FrEcPr𝑓2
3] (15) 

with the boundary conditions: 

 

{
 
 
 

 
 
 

𝑓1(0) = 𝑆,

𝑓2(0) = 1 + (1 +
1

𝛽
) 𝜆𝑢𝑓3(0),

𝑓2(0) = 1 + (1 +
1

𝛽
) 𝜆𝑢𝑓3(0),

𝑓4(0) = 1 + 𝜆𝑡𝑓5(0),

𝑓2(∞) → 0,

𝑓4(∞) → 0.

 (16) 

The values of 𝑓3(0) and 𝑓5(0) are required to integrate the 

initial value problems in Eqs. (14) and (15) with the boundary 

conditions given by Eqs. (16), but these values are not provided. 

It is crucial to set a finite value for η∞ when using the shooting 

technique. We begin with random initial estimate values to ob-

tain 𝑓3(0) and 𝑓5(0) for a finite value of 𝜂∞. Repeating this pro-

cess for the significant value of η∞, a finite value of 𝜂∞ = 10 for 

all physical parameters is used to integrate the boundary value 

problem with a difference of 0.01, applying the RK4 method. 

We set the better approximation of 𝑓3(0) and 𝑓5(0) for the given 

boundary conditions of 𝑓2(10) = 10 and 𝑓4(10) = 0 until the 

output reaches the required decimals of accuracy 10−5. 

3.2. Validation of the code 

To verify the present code, the guessed value of 𝑓3(0) for (𝛽 =

∞) is similar to the result provided by Sahoo and Poncet [30], 
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Keller and Magyari [2], and Pramanik [4] in their seminal works. 

The value 𝑓3(0)  =  −1.281816 is correct up to 10−6, which is 

a sufficient accuracy compared with 𝑓3(0)  =  −1.281811, 

𝑓3(0)  =  −1.28180, and 𝑓3(0) = − 1.28182. Table 1 validates 

the program's coding by comparing the current outcome with the 

results reported by Pramanik [4] and Bidin [31].  

4. Results and discussion 

The combined effects of various parameters on velocity and 

temperature are analysed for the Casson parameter, porosity pa-

rameter, radiation parameter, suction parameter, Eckert number, 

mixed convection parameter, local inertia coefficient, Prandtl 

number, and slip parameter, while keeping the fixed values 

𝛽 = 0.5, 𝐾1 = 0.1, Pr = 0.7, 𝑁 = 1, Fr = 1, Ec = 0.2, 

𝜆 = 0.5, 𝜆𝑢 = 0.1, and  𝜆𝑡 = 0.1. Figures 2 and 3 illustrate the 

influence of the Casson parameter (𝛽) on the velocity and tem-

perature profiles. For velocity, an increase in 𝛽 enhances the 

flow in the region approximately between 0 ≤ 𝜂 ≤ 0.62  

(𝑆 = 0.5) and 0 ≤ 𝜂 ≤ 0.86 (𝑆 = −0.5). Beyond these points, 

an opposite trend is observed. Initially, the velocity increases 

due to the effect of the slippery surface. However, as 𝛽 continues 

to rise, the fluid’s yield stress increases, resulting in higher re-

sistance forces, which ultimately reduce the fluid velocity. In 

terms of temperature, an increase in 𝛽 leads to a reduction in the 

temperature profile. This behaviour is attributed to the same re-

sistance effect caused by the increased yield stress. Additionally, 

when comparing the effects of blowing and suction, it is evident 

that suction significantly reduces both the fluid velocity and tem-

perature.  

Figures 4 and 5 depict the effect of the suction parameter (𝑆) 

on the velocity and temperature profiles. When 𝑆 > 0 (suction), 

the velocity profile significantly decreases. The case 𝑆 = 0 rep-

resents a non-permeable stretching sheet. Conversely, for 𝑆 < 0 

(blowing), the velocity exhibits an increasing trend. The temper-

ature profile also decreases with an increase in 𝑆 > 0, whereas 

it rises when 𝑆 < 0. This behaviour can be attributed to the fact 

that blowing increases pressure, allowing the warmed fluid to 

move farther from the surface, accelerating both velocity and 

temperature. In contrast, suction exerts an opposite influence by  

Table 1. Comparison of −𝜃′(0) against Prandtl number 

for 𝐾1 = S = Fr = Ec = λ = 𝜆𝑢 = 𝜆𝑡 = 0, β = ∞. 

 Bidin &Nazar 

[31] 
Pramanik [4] Present study 

   N 

Pr 
0.5 1 0.5 1 0.5 1 

1 0.6765 0.5315 0.6765 0.5315 0.6775 0.5353 

2 1.0735 0.8627 1.0734 0.8626 1.1074 0.8628 

3 1.3807 1.1214 1.3807 1.1213 1.3807 1.1214 

 

 

Fig. 2. Change in velocity profiles with 𝛽 in the existence of 𝑆. 

 

Fig. 3. Change in temperature profiles with 𝛽 in the existence of 𝑆. 

 

Fig. 4. Velocity profiles for varying S. 
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pulling the fluid closer to the surface, reducing both velocity and 

temperature. 

Figures 6 and 7 present the effect of the porosity parameter 

(𝐾1) on the temperature and velocity profiles. As 𝐾1 increases, 

permeability of the porous medium decreases. This reduced per-

meability leads to stronger resistance and, consequently, lower 

fluid velocity. The Forchheimer effect also contributes to in-

creased resistance, further decreasing the velocity. This reduc-

tion in permeability and the presence of the Forchheimer effect 

cause an increase in resistance, which in turn leads to a higher 

temperature profile as 𝐾1 increases. 

Figures 8 and 9 show the influence of the local inertia coef-

ficient (Fr) on velocity and temperature. Here, the Forchheimer 

drag in porous medium increases internal resistance; higher Fr 

increases flow resistance, reducing fluid velocity in the porous 

medium. Forchheimer inertial drag generates heat, so a higher 

 

Fig.5. Temperature profiles for varying S. 

 

Fig.6. Change in velocity profiles with 𝑲𝟏. 

 

Fig. 8. Change in velocity profiles with Fr. 

 

Fig. 7. Change in temperature profiles with 𝐾1. 

 

Fig. 9. Change in temperature profiles with Fr. 
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Fr increases heat generation, leading to a rise in fluid tempera-

ture.  

Figures 10 and 11 explore the effect of the mixed convection 

parameter (𝜆) on the velocity and temperature. The results indi-

cate that temperature decreases and velocity increases with ris-

ing 𝜆. This occurs because the temperature difference is directly 

proportional to 𝜆; the temperature gradient at the wall increases, 

leading to a higher Nusselt number (more efficient heat dissipa-

tion). The thermal boundary layer thickness decreases as more 

heat is convected away. In the velocity case, the buoyancy force 

acts in the direction of the flow, which leads to an increase in 

velocity with an increase in 𝜆. 

Figure 12 shows the effect of the radiation parameter (𝑁) on the 

temperature profile. An increase in 𝑁 results in a continuous rise in 

temperature, because higher 𝑁 enhances radiative heat transfer, in-

creasing energy transport in the fluid. This leads to a higher temper-

ature throughout the boundary layer. Figure 13 illustrates the effect 

of the Prandtl number (Pr) on temperature, showing a decrease in 

temperature as Pr increases. A higher Pr signifies greater thermal 

conductivity (𝜅), which lowers the fluid temperature.  

Figure 14 demonstrates that the temperature profile expands 

with an increase in the Eckert number (Ec). This is because Ec 

reflects the conversion of mechanical energy into thermal en-

ergy. When Ec is high, more mechanical energy is converted 

into heat, leading to a rise in the fluid temperature. Figure 15 

examines the impact of the slip parameter for the temperature 

(𝜆𝑡), showing that temperature decreases with higher 𝜆𝑡 as less 

heat is transferred from the sheet to the fluid. The thermal 

boundary layer becomes thinner as less heat is conducted to the 

fluid. Figures 16 and 17 depict the influence of the velocity slip 

 

Fig. 10. Velocity profile change with 𝜆. 

 

Fig. 11. Temperature profile change with 𝜆. 

 

Fig. 13. Temperature profile change with Pr. 

 

Fig. 12. Temperature profile change with N. 
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parameter (𝜆𝑢) on the velocity and temperature. Velocity de-

creases with an increase in 𝜆𝑢, because of a reduction in wall 

shear stress, but as 𝜂 exceeds 2.4, it slightly increases due to the 

stretching effect of the sheet. Conversely, temperature is directly 

proportional to 𝜆𝑢, increasing with 𝜆𝑢. This results in an in-

crease in thermal boundary layer thickness because of weaker 

momentum transfer. 

The skin friction coefficient (Cf) and Nusselt (Nu) number 

play crucial roles in analysing the effects of shear stress and heat 

transfer at the surface of the stretching sheet. Table 2 summa-

rizes the effect of various parameters on 𝐶𝑓 and Nu for a fixed 

Reynolds number, Re = 1. The Nusselt number increases with 

𝑆, Pr, 𝛽, and 𝜆, but decreases with 𝐾1, Fr, 𝑁, Ec, 𝜆𝑢 and 𝜆𝑡. 

Meanwhile, the skin friction coefficient 𝐶𝑓 increases with 𝑁, Ec, 

𝜆 and 𝜆𝑢, while it decreases with 𝐾1, 𝛽, 𝑆, Fr, Pr and 𝜆𝑡. 
A higher skin friction coefficient means increased drag force on 

the stretching sheet due to resistance from fluid motion. 

A higher Nusselt number implies more efficient heat transfer, 

which is crucial in applications like cooling processes and ther-

mal management in industrial systems. 

5. Practical significance and usefulness 

The findings of this study offer valuable insights into the behav-

iour of Casson non-Newtonian fluid flow and heat transfer over 

a stretching sheet, considering various physical effects, such as 

porous media, thermal radiation, mixed convection, velocity slip 

and suction/blowing. These results have significant applications 

across multiple industrial and engineering fields, particularly in 

areas where non-Newtonian fluids and porous media play a cru-

cial role. 

The study demonstrates that parameters, such as the Prandtl 

number, suction parameter, Casson parameter and mixed con-

vection parameter, notably enhance the Nusselt number, thereby 

improving heat dissipation. This is particularly important for 

cooling electronic devices, thermal coating processes and poly- 

 

Fig. 14. Temperature profile change with Ec. 

 

Fig. 16. Velocity profile change with 𝜆𝑢. 

 

Fig. 15. Temperature profile change with 𝜆𝑡. 

 

Fig. 17. Temperature profile change with 𝜆𝑢. 
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extrusion, where efficient heat removal is essential to prevent 

overheating. 

Additionally, the study examines the influence of the poros-

ity parameter and local inertia coefficient on the velocity and 

temperature. This knowledge is beneficial in oil extraction, ge-

othermal energy systems, and chemical filtration, where under-

standing fluid flow resistance through porous media is essential 

for optimizing performance. 

The Casson fluid models are widely used to describe blood 

flow in arteries. The effects of suction and porosity on the ve-

locity and temperature can provide insights into blood perfusion 

in biological tissues and aid in the design of porous medical im-

plants for improved heat dissipation. 

Furthermore, stretching sheet problems are common in pol-

ymer manufacturing, fibre spinning, and metal extrusion. The 

influence of mixed convection and porous media effects is also 

crucial in applications, such as solar energy collection, geother-

mal heat exchangers, and thermal energy storage systems. 

6. Conclusions 

The mathematical approaches of steady boundary layer flow for 

a radiating Casson fluid on a permeable stretching sheet under 

the existence of both velocity and temperature slip conditions 

with a Darcy-Forchheimer porous medium and viscous dissipa-

tion were analysed. The findings of the current investigation are 

briefly summarised below. 

1) The velocity increases with increasing Ec and 𝜆, but falls 

with increasing 𝐾1, S > 0,  𝛽 and Fr; 

2) The temperature increases with an increase of 𝐾1, Fr, 𝑁 

and 𝜆𝑢, but declines with increasing 𝜆, 𝛽, Pr, 𝑆 > 0 and 𝜆𝑡; 

3) Fr first decreases the velocity, then as 𝜂 > 4.75 (approxi-

mately) increases it due to the mixed convection effect. 

Boundary layer thickness increases with increasing local 

inertia coefficient; 

4) The velocity profile enhances with increased 𝛽 before 

𝜂 = 0.62 for 𝑆 = 0.5  (𝜂 = 0.86 for 𝑆 = −0.5), but after 

that, it decreases because of the slip velocity effect; 

5) The velocity profile increases when 𝜆 increases, but the 

temperature decreases; 

6) The skin friction coefficient 𝐶𝑓 enhances with increasing 

values of 𝑁, Ec, 𝜆 and 𝜆𝑢, while it reduces with a rise in 

values of 𝐾1, 𝛽, 𝑆, Fr, Pr and 𝜆𝑡; 

7) Nu enhances with increasing values of 𝑆, Pr, 𝛽 and 𝜆, but 

decreases with rising values of 𝐾1, Fr, 𝑁, Ec, 𝜆𝑢 and 𝜆𝑡.  

While the current study provides significant insights, several 

aspects require further exploration, such as three-dimensional 

flow effects, unsteady flow conditions, and nanofluid and hybrid 

nanofluid flow, chemical reaction and magnetic field effects. 
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