
Metrol. Meas. Syst., Vol. 32 (2025) No. 2, pp. 1–16
DOI: 10.24425/mms.2025.154341

METROLOGY AND MEASUREMENT SYSTEMS
Index 330930, ISSN 0860-8229

www.metrology.wat.edu.pl

LEVERAGING THE TRANSPORTATION ALGORITHM FOR ENERGY FLOW
OPTIMIZATION IN SMART HOUSEHOLDS

Piotr Powroźnik
University of Zielona Góra, Institute of Metrology, Electronics and Computer Science,
ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland (B p.powroznik@imei.uz.zgora.pl)

Abstract
This paper presents the application of a transportation algorithm to optimize energy flow within a smart grid
context. By leveraging this well-established optimization technique, it is demonstrated that energy efficiency
can be enhanced and costs lowered in individual households equipped with smart appliances and connected
to both traditional and renewable energy sources. Simulation studies have shown that the algorithm can
effectively determine optimal energy consumption patterns, leading to significant energy savings. Additionally,
the algorithm can provide valuable insights into network congestion and energy demand forecasting, enabling
distribution system operators to make informed decisions. The proposed solution aligns well with the
concept of smart homes. By integrating with smart devices, such as smart sockets and thermostats, energy
consumption can be optimized based on real-time pricing and renewable energy availability, ultimately
leading to lower energy bills and increased user comfort. Extending this approach to the distribution network
level, by applying the transportation algorithm to optimize energy flow at the medium and low voltage levels,
could further enhance grid stability and facilitate the integration of renewable energy sources.
Keywords: transportation theory, linear programming, elastic energy management, smart appliances, renewable
energy sources, linear inequality constraints.

1. Introduction

The phenomenon of peak demand (PD) [1], characterized by a rapid increase in electricity
demand within a short timeframe, poses a significant challenge to the stability of the electric power
system (EPS). In a smart grid (SG) environment, this issue can be addressed through a variety
of strategies aimed at optimizing energy consumption and enhancing network efficiency. One
such approach is demand management, implemented through pricing programs that incentivize
energy conservation and automation. Automation involves the deployment of intelligent systems
to automatically curtail or limit the operation of electrical devices during peak load periods.
Energy storage, the management of distributed energy generation, and the modernization of grid
infrastructure also contribute to optimizing energy consumption and improving network efficiency.

The intermittent nature of renewable energy sources (RES) poses significant challenges to
distribution system operators (DSOs). RES heavily rely on variable weather conditions and random
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natural phenomena. The unpredictability of weather patterns over extended periods makes it
difficult to accurately forecast energy generation from these sources. Additionally, the geographic
location of RES plays a crucial role. For instance, the efficiency of wind farms is highly dependent
on local wind conditions, which can vary significantly even over short distances. Wind energy
forecasting has been extensively studied [2]. Photovoltaic (PV) panels are susceptible to damage
from overheating, necessitating the implementation of cooling systems [3]. During periods of
high solar irradiance, PV systems can generate substantial amounts of electricity, potentially
overwhelming the grid. Existing protection mechanisms often respond abruptly by disconnecting
the PV system from the EPS. The criticality of this issue has been acknowledged through the
development of simulation models [4] Additionally, the degradation of PV modules over time
leads to a decline in efficiency, impacting overall energy generation capacity [5].

Energy harvesting has emerged as a promising approach in energy management [6]. Research
has explored the extraction of energy from cantilever beams using piezoelectric materials [7].
Electronic circuits designed to power Internet of Things (IoT) sensors through the utilization of
ambient energy have been developed [8]. Energy harvesting is increasingly recognized as a pivotal
component of energy management strategies, particularly in the context of rising energy demand
and the imperative to transition to sustainable energy sources.

Households equipped with smart appliances (SAs) offer opportunities for enhanced energy
management. The benefits of SAs have been documented in previous research, including im-
provements in power quality and energy efficiency [9]. Algorithms for monitoring household
energy consumption have been proposed, often employing smart energy meters (SEMs) to collect
data at regular intervals [10]. Extensive research has been conducted on SEMs, encompassing
a wide range of topics. Studies have focused on determining optimal inspection intervals for
economic reasons [11] and leveraging SEM data for water consumption monitoring [12]. SEMs
also play a crucial role in detecting energy theft [13], necessitating robust hardware and software
security measures [14]. Recent advancements in SEM technology have enabled bidirectional
communication, facilitating the exchange of electricity consumption data [15].

From the perspective of the SG, load levels, whether increased or decreased, should be
distributed over extended periods. Energy deficiencies also pose a challenge. They often arise
from heightened energy demand, particularly for heating, ventilation, and air conditioning (HVAC)
systems [16]. This phenomenon is prevalent during summer and winter seasons, impacting user
comfort as HVAC systems become indispensable. Beyond seasonal fluctuations, energy shortages
may coincide with household activity patterns throughout the day, a characteristic often termed PD
in the literature [1]. Household energy consumption typically peaks in the morning and afternoon
due to daily routines such as cooking.

To maintain equilibrium between energy supply and demand, distribution system operators
(DSOs) implement elastic energy management algorithms (EEM) [17] within the SG. Genetic
algorithms offer a promising approach for EEM development [18]. The proposed solution is
specifically designed for households, with all algorithmic operations executed within a SEM [19].
Leveraging the SEM’s computational capabilities, additional functionalities for energy supply and
demand management can be integrated. By estimating electricity consumption under nominal
operating conditions of SA-equipped appliances and identifying extreme consumption values within
specific timeframes, potential adjustments to electricity demand can be assessed. This information is
crucial for DSOs in mitigating grid imbalances caused by energy surpluses, deficits, or discrepancies
between supply and demand, particularly those arising from excessive RES generation. The article
advocates for the application of Transportation Theory (TT) [20] to realize this solution.

This paper examines two-way communication between DSOs and households equipped with
SEMs and SAs. A novel contribution is the quantification of potential electricity consumption
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adjustments within households. SEM-managed automation optimizes electricity costs by both
reducing and increasing consumption, aligning with the growing demand for dynamic electricity
tariffs. The ability to utilize household energy storage, using such devices as 𝑒.𝑔. electric vehicles,
further enhances this solution.

2. Methodology

Devices with SAs functionality offer the possibility of adjusting the power level at which they
work (𝑃SA). The range of allowable modifications is specified by the manufacturer of a given SA.
In this case, technical requirements are taken into account that will ensure the functionality of the
given SA at the expense of reduced user comfort. This means, for example, reducing the power of,
for example, a kettle, which will make it take longer to boil water. In a situation of excess energy,
it is also possible to increase the power of the kettle. The set of all SAs available in the household
is described by:

Ψ =

{
Ψ̃

}𝑁
𝑖=1

, (1)

where 𝑖 is the index, 𝑁 is the number of SAs.
On the other hand, the possible power selections for SA, which were specified by the

manufacturer, are described using: ∧
Ψ̃𝑖∈Ψ
𝑖=1...𝑁

Ψ̃𝑖 =
{
𝜓 𝑗

}𝐿
𝑗=1 , (2)

where 𝑗 is the index, 𝐿 is the number of power settings for 𝑖-th SA.
To be more exact, the set of Ψ̃𝑖 for selecting power settings for 𝑖-th SA can be written as

follows: ∧
Ψ̃𝑖∈Ψ
𝑖=1...𝑁

Ψ̃𝑖=1 ∈
{
𝑃SA𝑖 𝑗

}𝐿
𝑗=1

. (3)

In addition, for each Ψ̃𝑖 the dependency is provided by:∧
Ψ̃𝑖∈Ψ
𝑖=1...𝑁

(
𝑃SA𝑖min

∈ Ψ̃𝑖 ∧ 𝑃SA𝑖nom ∈ Ψ̃𝑖 ∧ 𝑃SA𝑖max ∈𝑖
)
. (4)

Equation (4) specifies three power values for each 𝑖-th SA. These powers are related to
the minimum

(
𝑃SA𝑖min

)
, nominal

(
𝑃SA𝑖nom

)
and maximum

(
𝑃SA𝑖max

)
operating mode with which

a given SA works.
In the remainder of the article, simulation studies will be devoted to the issue of obtaining

estimation of the possibilities at a given moment of time (𝑡). The research will concern the
increase or decrease of the load level in a given SG. In particular, the considerations will concern
households where user activities, 𝑒.𝑔. cooking, are carried out on SAs devices. For the purpose of
estimating the increase or decrease of the load level in the SG, a model was defined by describing
the respective devices: R and S. Rs are understood as SAs, which are energy receivers (5). An
exemplary R can be an SA for which it is possible to modify the power consumption. It can be
a kettle, an electric stove or an air conditioner. A source of energy is understood as S (6). This
group will include conventional electricity suppliers (CES), RES and energy storages (E). Taking
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into account the possibility of more than one E (7) in one household, a set was defined. The energy
storage can be an energy storage for photovoltaics and also an electric car. Individual sets are
described by (5), (6) and (7).

𝑅 = {SA𝑖}𝑁𝑖=1, (5)
𝑆 = {CES,RES,E}, (6)

𝐸 =
{
ES 𝑗

}𝑂
𝑗=1 , (7)

where 𝑂 is the ES number.
The cardinality of the set 𝑅 (5), 𝑆 (6) and 𝐸 (7) is: 𝑁 = |𝑅 |, 𝑀 = |𝑆 | and 𝑂 = |𝐸 |. For each

element of the set 𝐸 , the value of the maximum power 𝑃ES [kW] (8) is assigned, which can be
made available from individual ESs.∧

ES 𝑗 ∈E
𝑗=1...𝑂

ES 𝑗 =
[
𝑃ES1 , . . . , 𝑃ESO

]
. (8)

In order to estimate the possibility of increasing or decreasing the load level in a given SG,
TT was used.

3. The Transportation Theory implementation description

TT requires the determination of 𝑡 at given time points: the shipment cost matrix 𝐶 (𝑡) (9), the
consumer demands vector 𝐷 (𝑡) (10) and vector production capacities 𝐻 (𝑡) (11).

𝐶 (𝑡) =


𝑐1,1 · · · 𝑐1,𝑁
...

. . .
...

𝑐𝑀,1 · · · 𝑐𝑀,𝑁

 , (9)

𝐷 (𝑡) = [𝑑1, . . . , 𝑑𝑁 ] =
[
𝜓1, . . . , 𝜓𝑁

]
, (10)

𝐻 (𝑡) =


ℎ1
...

ℎ𝑀

 =


𝑃CES
𝑃RES
𝐻𝑇

 . (11)

The matrix𝐶 (𝑡) (9) contains the costs of supplying energy, 𝑖.𝑒. depreciation between individual
R and S. The consumer demands vector 𝐷 (𝑡) contains the power level requirements, which must
be offered by S for R. In this case, 𝐷 (𝑡) will contain one power value from the set 𝑖 (3) for 𝑖-th SA
where 𝑖 = 1 . . . 𝑁 . These values include 𝑃SA𝑖min

, 𝑃SA𝑖nom , or 𝑃SA𝑖max for 𝑖-th SA. Individual values
of power settings from the 𝑖 are based on the results from the assumptions of the manufacturer
of a given SA so as to ensure the possibility of proper operation. The vector 𝐻 (𝑡) (11) contains
the determination of the power levels that can be delivered from each S. It was assumed that in
the vector 𝐻 (𝑡) (11) will be given the power values that can be offered by: CES (ℎ1), RES (ℎ2)
and ESs ( [ℎ3, . . . , ℎ𝑀 ]𝑇 ). It was also assumed that there is only one CES per household. From
the practical point of implementing a RES installation in a household, the value of 𝑃RES will be
the total value of power that was generated from all installations (𝑒.𝑔. PV or wind turbines), with
ESs understood as devices for classic stationary energy storage. The E set will also include the
possibility of storing energy in electric cars. In order to protect the ESs against excessive discharge
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levels, there must also be a 𝜉 minimum energy level coefficient below which the given ES cannot
be unloaded. For this purpose, the vector Ξ (12) was defined.

Ξ = [𝜉1, . . . , 𝜉𝑂] . (12)

In vector 𝐻 (𝑡) (11), the correction of the unloading capacity of individual ESs is carried out
using: ∧

𝛼=𝑃ES1 ,...,𝑃ESO ∈𝐻 (𝑡 )
𝛽∈ 𝜉ES1 ,..., 𝜉ESO ∈Ξ

𝑖=1...𝑂

𝛼𝑖 =

{
𝛼𝑖 if 𝛼𝑖 ≥ 𝛽𝑖 ,

0 otherwise. (13)

As a result of the operation of TT, solutions 𝑋 (𝑡) (14) are obtained for subsequent time
moments 𝑡.

𝑋 (𝑡) =




𝑥1,1 · · · 𝑥1,𝑁
...

. . .
...

𝑥𝑀,1 · · · 𝑥𝑀,𝑁

 if
𝑀∑︁
𝑖=1

ℎ𝑖 ≥
𝑁∑︁
𝑗=1

𝑑 𝑗 ,

Ø otherwise.

(14)

In order to solve the problem of energy consumption estimation, the objective function of TT
(15) was defined:

𝑓TT (𝑡) = min
𝑥

{ ∧
𝑖, 𝑗∈𝑁,
𝑖=1...𝑀,
𝑗=1...𝑁

𝑐𝑖, 𝑗𝑥𝑖, 𝑗

}
. (15)

Equation (15) is aimed at minimizing the costs of supplying power from a given S to each R.
In practice, it will be possible to supply power first from RES, E, and in the absence of power, then
and also from CES.

Solutions cannot be obtained by TT
(
𝑋 (𝑡) = Ø

)
if power demand for R exceeds supply for S.

If 𝑋 (𝑡) ≠ Ø, then the value of the solution 𝑥𝑖 𝑗 is the power that will be delivered from S (ℎ𝑖) to

R (𝑑 𝑗 ). If
𝑀∑︁
𝑖=1

ℎ𝑖 >

𝑁∑︁
𝑗=1

𝑑 𝑗 . It means that there will be unused production capacities ((𝑡)) (16).

𝐻̆ (𝑡) =


ℎ̆1
...

ℎ̆𝑀

 (16)

The values of ℎ̆𝑖 mean unused power for 𝑖-th 𝑆. Similarly as for 𝐻 (𝑡) (11), then in 𝐻̆ (𝑡) (16) the
power values that have not been used are defined from: CES

(
ℎ̆1

)
, RES

(
ℎ̆2

)
and

( [
ℎ̆3, . . . , ℎ̆𝑀

]𝑇 )
.

Individual values are calculated using:∧
𝑖∈𝑁,

𝑖=1...𝑀

ℎ̆1 = ℎ𝑖 −
𝑁∑︁
𝑗=1

𝑥𝑖, 𝑗 . (17)

Excess RES power
(
ℎ̆2 > 0

)
will be allocated to ESs boost in the first place. If all ESs are

fully charged, the remaining power will be sold to CES. This problem can be solved with linear
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programming [21]. Linear inequality constraints [22] are written with:

𝑥1 + . . . + 𝑥𝑂 + 𝑥𝑂+1 ≥ ℎ̆2. (18)

In linear inequality (18), 𝑥𝑂+1 is the amount of excess power to be resold to CES. The remaining
values of the 𝑥 solutions refer to the power that is transferred to charge the individual ESs. In
addition, boundaries are set with:

0 ≤ 𝑥1 ≤

∑︁𝑁

𝑗=1
𝑐3, 𝑗

𝑁
. . .

0 ≤ 𝑥𝑂 ≤

∑︁𝑁

𝑗=1
𝑐𝑘+2, 𝑗

𝑁
0 ≤ 𝑥𝑂+1 ≤ 𝜏

. (19)

The value of 𝜏 from (19) is the maximum value of power that can be transferred to the SG.
This value results directly from the contract signed with CES.

Solving the linear programming problem also requires specifying the objective function. In the
case of power distribution for charging CES and ES, the objective function

(
𝑓ℎ̆2

(𝑡)
)

is assigned
the task of finding the minimum of the problem defined by:

𝑓ℎ̆2
(𝑡) = min

𝑥̆


∑︁𝑁

𝑗=1
𝑐3, 𝑗

𝑁
𝑥1 + . . . +

∑︁𝑁

𝑗=1
𝑐𝑂+2, 𝑗

𝑁
𝑥𝑘 + 𝜏𝑥𝑂+1

 . (20)

The solutions of excess power distribution at a given moment 𝑡 are written to the vector:

𝑋̆ (𝑡) = [𝑥1 + . . . + 𝑥𝑂 + 𝑥𝑂+1] . (21)

Unused consumer demands (𝐷̆ (𝑡𝑜)) for the obtained solutions 𝑋 (𝑡) (14) are described by:

𝐷̆ (𝑡) =


∧
𝑗∈𝑁,

𝑗=1...𝑁

𝑑 𝑗 :

(
𝑑 𝑗 −

𝑀∑︁
𝑖=1

𝑥𝑖, 𝑗

) . (22)

𝑋 (𝑡) (14) solutions are allowed by TT if
∑︁𝑀

𝑖=1
= 0. If

∑︁𝑀

𝑖=1
≠ 0, it would mean that the

required power was not provided for some SAs.

4. Simulation research

Thirteen SAs were used in simulation studies. Figure 1 shows a summary of 𝑃SA profiles for
thirteen SAs. Individual SAs may represent activities that are performed in a generic household.
For example, it could be cooking or cleaning. 𝑃SA draw values range up to 3.5 kW. The operation
time of individual SAs is defined from several minutes to nearly two hours. Profiles of individual
SAs were determined based on data collected in a household using the Voltcraft Energy Logger
4000 and Voltcraft SEM 8500 measurement devices. The collected data was imported into the
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Fig. 1. Profiles for individual SAs.

MATLAB environment directly from the device or via the Tuya Smart platform for further analysis.

Figure 2 shows the level of consumed energy 𝐸 (𝑡) in individual hourly time intervals 𝑡.
Based on the data presented in Fig. 2, it can be concluded that the operation of some of the
SAs is characterized by periodic energy consumption. One such example of SAs is the boiler
and refrigerator. A similar behaviour in a narrower time interval is also characteristic of the air
conditioner. For the remaining SAs, their mode of operation can be assigned to be triggered
periodically. For the data presented in Fig. 1, the highest consumption of 𝐸 (𝑡) occurs in the
morning and afternoon (𝑇 = {07:00, 08:00, 17:00, 18:00}). Individual hours from the 𝑇 set result
from everyday activities such as preparing meals or cleaning.

The summary of the total power consumed in specific time intervals
(∑︁

𝑃(𝑡)SA

)
is shown

in Fig. 3. Individual values are grouped for three SAs operating modes: nominal
(
𝑃(𝑡)SAnom

)
,

minimum
(
𝑃(𝑡)SAmin

)
and maximum

(
𝑃(𝑡)SAmax

)
. The division into three modes provides the

possibility of estimating the energy demand of the SAs during their operation in extreme and
standard conditions. In order to conduct simulation research, uniformly distributed random numbers
were used. Values

(
𝑃(𝑡)SAmin

)
and

(
𝑃(𝑡)SAmax

)
were determined using (23) and (24).

𝑃(𝑡)SAmin ∼ 𝑈
(
0.9𝑃(𝑡)SAnom𝑃(𝑡)SAnom

)
, (23)

𝑃(𝑡)SAmax ∼ 𝑈
(
𝑃(𝑡)SAnom , 1.15𝑃(𝑡)SAnom

)
. (24)

After determining 𝑃(𝑡)SAmin and 𝑃(𝑡)SAmin for individual SAs, the total power demand values
were obtained for the minimum

(∑︁
𝑃(𝑡)SAmin

)
and maximum

(∑︁
𝑃(𝑡)SAmax

)
.

For the purpose of simulation research, the power from RES was additionally determined
(𝑃(𝑡)RES). This value would be included in S. The 𝑃(𝑡)RES values shown in Fig. 4 were obtained
for an example PV installation.
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Fig. 2. Heatmap of the nominal energy consumption of individual SAs
(
𝐸 (𝑡 )SAnom

)
.

Fig. 3. List of
∑︁

𝑃SA values at given times 𝑡 , for three operating modes of SAs: nominal, minimum and maximum.

Simulation studies were carried out based on the TT algorithm. The implementation of the TT
algorithm and simulation tests were carried out in the MATLAB environment. The idea of the TT
algorithm is to ensure the possibility of correct operation R by the power available from all sources S.

8



Metrol. Meas. Syst.,Vol. 32 (2025), No. 2, pp. 1–16
DOI: 10.24425/mms.2025.154341

Fig. 4. Generation values 𝑃 (𝑡 )RES for the example PV.

For matrix 𝐶 (𝑡) (9) the following assumptions were made:

∧
𝑐𝑖, 𝑗 ∈𝐶 (𝑡 )
𝑗=1...𝑁

𝑐𝑖, 𝑗 =


0.99, if 𝑖 = 1,
0.01, if 𝑖 = 2,
0.05, if 𝑖 = 3,
0.1, otherwise.

(25)

The assumptions made for the cost function 𝐶 (𝑡) (9) aimed to account for practical operational
aspects. Specifically, we sought to model a scenario where the user prioritizes self-consumption
of E, with selling to the DSO as a secondary option. Additionally, the goal was to determine the
optimal sequence for utilizing different energy storage units in the system. The costs associated with
E, incorporated into the 𝐶 (𝑡) (9), primarily include life-cycle costs, related to battery degradation
and the need for periodic replacement. Based on the adopted assumptions (25), it was ensured
that the power from the RES would be taken first. Then, in case of power shortage from RES, the
power will be taken from the available E. As for E, the sequence of charging and discharging
of individual ESs was established. In this case, ES1 was used first before ES2. The following
assumptions were also made as to the minimum energy level coefficient 𝜉 below which a given ES
cannot be discharged. In this case, the vector Ξ = [0.2, 0.2].

The values of the vector consumer demands 𝐷 (𝑡) (10) and the vector production capacities
𝐻 (𝑡) (11) were different depending on a given time point 𝑡. The time set for simulation studies
was defined by:

𝑇 = {𝑡1, . . . , 𝑡1440} ⇐⇒ {00 : 00, 00 : 01, . . . , 23 : 59}. (26)

Values of the vector consumer demands 𝐷 (𝑡) (10) varied with respect to 𝑡 and depended on
the data adopted for simulation tests (Figs. 1, 2 and 3).

For the vector production capacities, 𝐻 (𝑡) (11) refer to ℎ1 = 12. This assumption corresponded
to the possibility of obtaining power from CES of no more than 12 kW. The ℎ2 values were
variable and depended on the power generation at a given time 𝑡 from RES (Fig. 4).
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Values ℎ3 and ℎ4 depended on the charge level of ES1 and ES2. The individual values of ℎ3
and ℎ4 were determined using:∧

𝜉𝑖∈ Ξ

ℎ𝑖+2∈𝐻 (𝑡 )
𝑖={1...𝑘}

𝑐𝑖, 𝑗 =

{
2.5, if 𝐸𝑖 ≥ 𝜉𝑖𝐸 (ES𝑖)max,
0.0, otherwise. (27)

Individual values of 2.5 kW for ESs resulted from the example ES parameters. For the purposes
of simulation tests, two ESs were selected with the following capacities: 𝐸 (ES1)max = 5 [kWh]
and 𝐸 (ES2)max = 10 [kWh].

Figure 5 shows a histogram of the number of iterations of the TT algorithm needed to determine
the way of power distribution from S to individual R. In most cases, the results were obtained for
no more than five iterations.

Fig. 5. Histogram of the number of iterations of the TT algorithm.

During the simulation tests, the charging and discharging characteristics of ES1 and ES2 were
also determined. The characteristics are shown in Fig. 6. Within the respective time intervals, the
effect of charging to the maximum capacity of a given ES and discharging it to the level of 𝜉 can
be observed. Determining which ESs are to be loaded is done using defined inequalities (19). In
the case of simulation studies, ES1 was defined as 𝑥1, and ES2 was defined as 𝑥2. In the case of
𝑥3 > 0 (value 𝑥𝑘+1 from (19)), there was excess power that had to be submitted to CES.

In addition, Fig. 7 shows a situation where the excess energy produced from the RES could
not be stored in the two ESs. The energy had to be transferred (sold) to CES. This happened at
𝑡 = {12 : 19, . . . , 16 : 00}.

Figure 8 shows detailed results of 𝑋 (𝑡) (14) from the operation of the TT algorithm for
𝑡 = 18 : 08. The time moment 𝑡 was selected for detailed analysis, among others, due to the
increased demand for power by several SAs. In this case, it was necessary to provide power for all
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Fig. 6. Charging and discharging characteristics of ES1 and ES2.

Fig. 7. Characteristics of selling excess energy 𝐸 (𝑡 ) from RES that cannot be stored in ES1 and ES2.

active SAs from all Ss. The TT algorithm minimized the power consumption for ℎ1 ∈ 𝐻 (𝑡) (CES)
relative to the other S. For SA6, SA9 and SA12 the algorithm found it necessary to supply power
from two and three Ss respectively.

In Fig. 9 below, again for 𝑡 = 18 : 08 the results of the TT algorithm are presented. Figure 9
also shows the relationship between 𝑋 (𝑡) and (𝑡). Based on the data presented in Fig. 9, it can be
concluded that the TT algorithm correctly selected the values of 𝑋 (𝑡), because all elements of
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Fig. 8. Distribution of power from individual S to R at a given time 𝑡 = 18 : 08.

the vector 𝐷̆ (𝑡) were equal to zero. It follows that consumer demands were fully met. For unused
production capacities for 𝑡 = 18 : 08, only ℎ̆1 > 0. In this case, the power consumption from 𝑃CES
was not fully utilised. The power from the remaining S was enough for R.

Fig. 9. Determination of consumption and reservation for 𝐷 and 𝐻.
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Figure 10 shows a summary of results for 𝑋 (𝑡) and 𝑋 (𝑡) + 𝐻̆ (𝑡) obtained during the operation
of the TT algorithm. The obtained results were determined for the set 𝑇 (26). Based on the data
presented in Fig. 10, it can be confirmed that the TT algorithm first selected power consumption
from RES, and only then from E. In the absence of power from RES and ES, only CES was selected.

Fig. 10. Determination of consumption and reservation for 𝐷 and 𝐻.

5. Conclusions

In the paper, an approach to estimate electricity consumption for EPS is presented. The
estimation was made for households. Two groups were distinguished, S and R. For S, CES, RES
and ESs were defined. In this case, ESs may be S as well as R. Here R is defined as the function of
storing excess energy from RES so as not to transfer its excess to CES. As much energy will be
transferred to CES as could not be stored in available ESs. This approach was aimed at reducing
the risk of aperiodic EPS overload for many prosumers. As Rs, devices with SA functionality
were selected, for which it is possible to modify their operating mode. In the simulation studies
carried out, three modes were focused: nominal, minimum and maximum. The selection of these
modes enables energy consumption estimation for the full range of power consumption control
possibilities. In this case, the elastic energy management algorithm, having data from individual
layers of the SG, will be able to determine control decisions that will be transferred for execution.
Selected values of energy consumption by sample SAs in the simulation studies were identified
with activities that are performed during the day.

The conducted simulation studies took into account the specification of ESs, which can only
be discharged to a certain level so that they are not damaged. For the purpose of conducting the
research, an exemplary characteristic of energy generation from RES was analysed. Based on the
results obtained from the simulation studies, the possibility of estimating the value of electricity
consumption in a household using TT was confirmed.
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The proposed TT algorithm is characterized by simplicity and computational efficiency.
A small number of computational steps required to achieve the optimal solution makes it an
attractive alternative to more complex algorithms. The algorithm requires a small amount of
input data, such as the shipment cost matrix 𝐶 (𝑡) (9), the consumer demand vector 𝐷 (𝑡) (10),
and the production capacity vector 𝐻 (𝑡) (11). This allows it to be successfully implemented on
devices with limited computational resources, such as smart electricity meters. The ability to
communicate with other devices in a home network using the lightweight JSON format enables easy
data exchange. Compared to other solutions, the proposed algorithm is characterized by a small
number of iterations and a simple structure, which facilitates its implementation and analysis. The
results provided by the algorithm can serve as a basis for further analysis, 𝑒.𝑔., using machine
learning algorithms. In a broader context, these algorithms can be used for energy production
optimization, energy storage management, load balancing, demand management, distribution
network optimization, integration of renewable energy sources, and data analysis and forecasting.
The proposed solution fits perfectly into the concept of a smart home. An example of the benefits
of its application is increasing user comfort through integration with systems that adjust lighting or
temperature. Energy consumption optimization allows for reducing electricity bills by increasing
energy consumption during periods when it is cheaper (𝑒.𝑔. as a result of excess energy from
renewable sources) or reducing consumption by switching receivers to the energy-saving mode.
The proposed solution is a decision-making system based on measurement and control solutions,
such as smart sockets or thermostats. Extending this solution to the distribution network level, by
applying a transportation algorithm to optimize energy flow at the medium voltage (MV) and low
voltage (LV) transformer level, would enable better management of renewable energy and increase
network stability. The considerations presented in the article regarding the estimation of energy
consumption in EPS networks can be extended to include an analysis of energy consumption
by the industrial sector. This research topic is planned for future investigation. In particular, the
considerations will concern households where user activities, such as cooking, are carried out
on SAs. This research direction involves investigating human-computer interaction in cooking
environments, designing intuitive interfaces for smart appliances, addressing privacy and security
concerns, examining the impact of these devices on cooking habits and energy consumption, and
exploring the specific characteristics of smart appliances.
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