
Metrol. Meas. Syst., Vol. 32 (2025) No. 2, pp. 1–19
DOI: 10.24425/mms.2025.154345

METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, ISSN 0860-8229
www.metrology.wat.edu.pl

NEURAL INERTIAL NAVIGATION METHOD FOR WHEELED ROBOTS BASED ON
SELF-SUPERVISED LEARNING

Fengrong Huang1) , Mengqi Gao1) , Qinglin Liu2) , Min Gao1)

1) School of Mechanical Engineering, Hebei University of Technology, Tianjin 300400, China
2) National Key Laboratory of Electromagnetic Space Security, Tianjin 300308, China (B lql980423@163.com)

Abstract
Low-cost Micro-Electro-Mechanical System Inertial Measurement Units (MEMS-IMUs) are plagued by large,
complex, and variable errors. Traditional strap-down inertial navigation systems that utilize MEMS-IMUs
are unable to meet the positioning requirements of wheeled robots. Although inertial navigation based on
deep learning has been explored, it necessitates a substantial amount of carefully selected and labelled
data, resulting in high costs. Consequently, this paper proposes a self-supervised neural inertial navigation
method for wheeled robots that solely depends on MEMS-IMU data. Firstly, a representation learning model
is established to extract general IMU features for self-supervised denoising. Subsequently, an intelligent
framework employing contrastive learning is adopted to explore the latent information of the IMU and acquire
the motion state of the robot. Specific motion state information is regarded as observations, and an invariant
extended Kalman filter (IEKF) is applied for information fusion to enhance positioning accuracy. Experiments
conducted on public datasets demonstrate that, in the absence of additional ground truth values, the Absolute
Trajectory Error (ATE) and Temporal Relative Trajectory Error (T-RTE) of the proposed method are 20.23%
and 30.71% lower than those of supervised learning-based methods, respectively. The proposed method
offers a more cost-effective and practical solution for the development of inertial navigation technology for
wheeled robots.
Keywords: MEMS-IMU, inertial navigation, self-supervised learning, wheeled robot navigation, motion state
recognition.

1. Introduction
Inertial navigation utilizes gyroscopes and accelerometers to measure the angular and linear

motion of a carrier in real time. It autonomously calculates the position, velocity, and attitude of
the carrier without any external reference or additional sensors. Although the positioning error of
high-precision inertial navigation systems is small, they are large in size, expensive, and require
a long initialization process. In contrast, MEMS-IMUs have been widely used in the inertial
navigation tasks of wheeled robots due to their advantages such as low cost, small size, and low
power consumption [1–3].
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To address the problem that Micro-Electro-Mechanical System-Inertial Measurement Units
MEMS-(IMUs) cannot be directly applied to navigation due to their large errors and complex error
sources, the inertial navigation field usually adopts the methods of calibration and compensation
based on physical/mathematical modelling to address sensor errors or the cumulative errors in the
inertial navigation solution process. However, such methods not only require dedicated calibration
equipment or observations from other sensors, but also the methods based on mathematical
modelling, which require dedicated calibration equipment or observations from other sensors, are
difficult to fully approximate the real sensor characteristics and motion states [4, 5], resulting in
low efficiency and poor versatility. In recent years, with the rapid expansion of database scale
and the enhancement of computer computing power, deep learning technology has flourished,
and researchers have begun to explore the potential of using large amount of data to generate
data-driven models. For example, the studies in [6, 7] achieved very good results by using ground
truth data such as those from higher-precision IMUs or attitudes as references and calibrating the
noise of inertial sensors and reducing the drift of inertial navigation systems with deep neural
network models. Tight Learned Inertial Odometry (TLIO) [8] uses a residual network to regress
the displacement increment and uncertainty of the carrier and combines it with the Extended
Kalman Filter (EKF) to obtain accurate attitude and 3D positioning. Lightweight Learned Inertial
Odometer (LLIO) [9] has implemented lightweight learning based on TLIO, making it more
suitable for mobile devices. Robust Inertial Navigation System on Wheels (RINS-W) [10] and
Symmetrical-Net [11] identify the special motion states of the carrier through neural networks and
use the constraint information of these special motion states as observations. Through Kalman
filtering for information fusion, the positioning accuracy of the navigation system is improved.

With extensive application of deep learning in various fields, deep learning has a great potential
in the inertial navigation field. However, in the inertial navigation applications of wheeled robots,
most deep-learning methods rely on supervised learning, and data preparation faces numerous
challenges. For public datasets like KAIST [12], S3E [13], and Fusionportablev2 [14], data
collection tasks are challenging. They need to cover precise data from multiple scenarios and
working conditions, which, in turn, requires a large investment of human resources, material
resources, and time. Data annotation also demands complex procedures and specialized knowledge
to ensure accuracy and consistency. In terms of hardware, GPS signals are prone to interference
in complex scenarios, which affects the continuous collection of data. Besides, high-precision
IMUs have large volumes, which is not conducive to the design of compact robots. Adding devices
such as vision sensors will increase costs and complicate the system design. At the software level,
different sensors have diverse data characteristics and coordinate systems, making processing and
calibration complex. Furthermore, coordinate transformation involves heavy computations, and
high-precision timestamp alignment is required. Minor errors can impact system performance. In
summary, hardware limitations and software complexity impede the practical application of deep
learning in inertial navigation. Therefore, exploring neural inertial navigation methods that do not
rely on real-world data is of great significance.

Consequently, this paper, using only raw MEMS-IMU data, proposes a self-supervised
neural inertial navigation method for wheeled robots. The network model of this method is
based on Transformer Bidirectional Encoder Representation (BERT) and consists of three parts:
IMU denoising, motion state recognition, and IEKF-based information fusion. In motion state
recognition, pseudo-labels and contrastive learning are added to help the network extract features.
By denoising IMU data and accurately identifying motion states, the accuracy of inertial navigation
based on MEMS-IMU is significantly improved. The main contributions of this paper are as follows:

1. Innovation in Self-supervised Denoising: In response to the fact that supervised-learning-
based IMU denoising methods rely on high-precision IMU data or other types of labelled
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data, this paper proposes a Self-supervised Learning (SSL) model for IMU denoising.
Through two key components, masked IMU modelling and next-moment IMU prediction, it
realizes the denoising of IMU data based on SSL. This approach circumvents the limitations
imposed by reliance on external data, enhancing the generality and autonomy of denoising.

2. Innovation in Motion State Recognition£ºIn the field of robot motion state recognition,
traditional methods such as RINS-W and Symmetrical-Net use neural networks to identify
special motion states but rely on a large amount of labelled data for supervised learning.
The intelligent framework proposed in this paper integrates the ideas of pseudo-labels and
contrastive learning. Without real data, it can accurately obtain the motion states of the
robot in different time periods by exploring the latent information of the IMU through
a contrastive learning algorithm.

2. System design

2.1. Coordinate frame and symbol

Inertial navigation measures the angular and linear motions of the carrier through an IMU
fixed on the vehicle. Under given certain initial conditions, the attitude, velocity and position
of the mobile platform relative to the starting point (𝑅0, 𝑣0, 𝑝0) are obtained through navigation
solution. As shown in Fig. 1, the carrier coordinate frame 𝑏 is a coordinate frame solidly attached
to the vehicle, which is denoted by (·)𝑏. In this application scenario, it is assumed that the carrier
coordinate frame is already aligned with the IMU coordinate system, and the effects of the Earth’s
rotation and Coriolis acceleration are ignored. The navigation coordinate frame is the reference
coordinate frame. 𝑅 is the rotation matrix from the carrier frame to the navigation frame. (·)𝑛 is
the data corresponding to time 𝑛, and (·̂) as the estimated value. Data corresponding to the frames
from the 1-st to the 𝑛-th is denoted by (·)1,𝑛.

2.2. System overview

The neural inertial navigation system for wheeled robots uses raw IMU data as input. Relying
on SSL, it outputs position, attitude, and velocity estimations. Comprising three key parts, as
shown in Fig. 2, it starts with IMU denoising. Here, the network predicts masked IMU data and
next-sequence values to clean up random noise in the original data.

Fig. 1. Coordinate frame definition. Fig. 2. Proposed system structure block diagram.
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Next, the motion state recognition step focuses on distinguishing the categories of motion
states. By segmenting denoised IMU data, labelling with pseudo-labels, and constructing sample
sets, it trains the network to distinguish different motion states.

Finally, the IEKF part obtains more accurate positioning information of the wheeled robot by
fusing the denoised IMU data and the motion state categories.

3. Network model based on SSL

3.1. IMU Denoising

3.1.1. Masked IMU modelling

BERT is an effective SSL model in natural language processing. It uses the bidirectional
transformer model and can better understand the context in the continuous measurements of
IMU. BERT has two pre-training tasks: Masked Language Modelling (MLM) and Next Sentence
Prediction (NSP). This paper adapts them as Masked IMU Modelling (MIM) and Next IMU
Prediction (NIP), with corresponding BERT models BERTMIM and BERTNIP and network
parameters 𝛼 and 𝛽. By masking, reconstructing, and predicting data, the network improves its
understanding of IMU noise and feature representation learning, enhancing its denoising ability.
As shown in Fig. 3, the BERT network’s main architecture has 4 stacked transformer encoders
and an additional decoder. Unlabelled IMU data is first contaminated with Gaussian noise, then
normalized, and finally 15% of its values are randomly masked. The processed data needs to
undergo data transformation via the projection function and then undergo layer normalization again
to further restrict the statistical variance. Before the data enters the encoder, it is also necessary to
perform positional encoding on the sequence data so that the model can capture long-distance
dependencies based on positional information.

Fig. 3. Network structure diagram
in IMU denoising.

Fig. 4. Construction method of motion state recognition
network structure.

The encoder consists of multi-head self-attention layers and feed-forward neural networks, with
each sub-layer followed by residual connection and layer normalization. A multi-head prob-sparse
self-attention mechanism [15] is used to reduce the time and space complexity of traditional
transformers and speed up model training. It probabilistically samples only part of keys 𝐾 and
queries 𝑄 for calculation, multiplying attention weights by a normalization factor to keep the sum
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at 1. The decoder is a linear layer with input and output dimensions of (72, 6). In the masked
IMU modelling task, 15% of IMU sequence values are randomly masked. After the decoder
generates the prediction vector, the values at masked positions are obtained, and the associated
loss is calculated

ℓMIM = Loss( 𝑓 (BERTMIM (𝑈𝛼)mask position)𝑈𝑀 ), (1)

where 𝑈 ∈ 𝑅𝐿×6 denotes an IMU sequence of sequence length 𝐿, 𝑈𝑀 represents the IMU
measurements at the masked position, mask position represents the mask position, and 𝑓 (·) is
a function extracting the corresponding value of the masking position from the prediction vector.

3.1.2. Next IMU sequence prediction

The original NSP task of BERT is to determine whether the second sequence is the subsequent
sentence of the first sequence when two sequences are provided. Thus, the original NSP task of
BERT is modified. When the IMU sequence of the current time period is given, the IMU sequence
of the next time period is directly predicted to enhance the generation ability of the model. The
next moment IMU sequence corresponding to𝑈 is denoted by𝑈𝐹 , and𝑈𝐿 = 𝑈𝐹

1 , meaning that
the last frame of the current IMU sequence is equal to the first frame of the future IMU sequence.
As the training progresses, the last frame of the reconstructed IMU sequence of BERTMIM should
be equal to the first frame of the future IMU sequence generated by BERTNIP. Furthermore, the
estimated values corresponding to (2) and (3) are equal:

𝑈̂MIM
𝐿 = BERTMIM (𝑈, 𝛼̂)𝐿 , (2)

𝑈̂NIP
𝐿 = BERTNIP (𝑈, 𝛽)1, 𝑈̂

𝑁𝐼𝑃+𝑀𝐼𝑀
𝐿 = BERTNIP (BERTMIM (𝑈, 𝛼̂), 𝛽)1. (3)

Equation (2) is the IMU estimation equation for the operation at the actual denoising time,
and𝑈𝑔𝑡

𝐿
represents the ground truth of IMU measurements, then the systematic error at the actual

denoising time is:

Error(1) = 𝑈
𝑔𝑡

𝐿
− 𝑈̂MIM

𝐿 = (𝑈𝑔𝑡

𝐿
−𝑈𝐿) + (𝑈𝐿 − 𝑈̂MIM

𝐿 ), (4)

where (𝑈𝑔𝑡

𝐿
−𝑈𝐿) is the error between the IMU outputs and the ground truth, and (𝑈𝐿 − 𝑈̂MIM

𝐿
)

is the BERTMIM’s estimation error. Similarly, the error Error(2) corresponding to (3) is:

Error(2) = (𝑈𝑔𝑡

𝐿
−𝑈𝐿) + (𝑈𝐿 − 𝑈̂NIP

𝐿 ). (5)

Since the model BERTMIM is utilized to denoise the original IMU data, it is necessary to
minimize Error(1) . However, when the ground truth𝑈𝑔𝑡

𝐿
of the IMU are unknown, training using

(2) can only reduce (𝑈𝐿 − 𝑈̂MIM
𝐿

) and cannot eliminate the measurement noise of the IMU.
Therefore, in order to offset the impact of the unknown𝑈𝑔𝑡

𝐿
on the training process, The following

transformation will be made to obtain:

min(Error(1) ) = min(Error(1) − Error(2) + Error(2) ). (6)

Further simplification of the formula gives:

min(Error(1) ) = min( [𝑈̂NIP
𝐿 − (𝑈̂MIM

𝐿 −𝑈𝑔𝑡

𝐿
) − (𝑈𝐿]) + min((𝑈𝐿 − 𝑈̂NIP

𝐿 )), (7)
min((𝑈𝐿 − 𝑈̂NIP

𝐿 ) → ℓNIP = Loss(BERTNIP (𝑈, 𝛽),𝑈𝐹). (8)
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By observing (7), it is known that during network training, when the loss function is set in the
manner of (8), the second half part of (7) can be minimized. As for the former part, a relationship
between BERTMIM, BERTNIP, and𝑈𝐿 needs to be established. The loss function is designed as
follows to endow the network model with the ability to denoise the IMU:

⟨𝛼̂, 𝛽⟩ = ℓMIM + ℓNIP + Loss(BERTNIP (BERTMIM (𝑈𝛼), 𝛽),𝑈𝐹). (9)

3.2. Motion State Recognition of Wheeled Robots

The well-trained network in Section 3.1 is utilized to denoise the original IMU data, and
the measurement of the denoised accelerometer 𝑎̂ and gyroscope 𝜔̂ are obtained. The denoised
IMU data will be employed to train the motion state recognition network. In this section, the four
specific motion states of the wheeled robot and the design principle of the motion state recognition
method will be introduced in detail.

3.2.1. Specific motion states

Four distinct specific motion states are considered, and their validity is encoded in the following
binary vector 𝑧𝑛, where 1 represents the emergence of a corresponding state of motion:

𝑧𝑛 =

(
𝑧VEL
𝑛 , 𝑧ANG

𝑛 , 𝑧LAT
𝑛 , 𝑧UP

𝑛

)
∈ {0, 1}4, (10)

where 𝑧𝑛 is the motion state, 𝑧VEL
𝑛 is the zero-velocity state, 𝑧ANG

𝑛 is the zero angular velocity state,
and 𝑧LAT

𝑛 and 𝑧UP
𝑛 represent the zero lateral and vertical velocity states, respectively. The latter two

assumptions effectively ensure the long-term estimation accuracy. The lateral and vertical velocities
should be expressed in the carrier coordinate frame. Table 1 shows the output characteristics of
IMU data corresponding to typical motion states. It is worth noting that when the wheels stop,
zero-speed does not imply zero angular velocity, and the two must be distinguished [10]. As shown
in Fig. 5, in the lateral zero-speed state, the lateral acceleration stabilizes at a value close to zero
(not always zero) for a certain period of time, making it a recognition feature for lateral zero speed.

Table 1. Typical motion states of wheeled robots.

motion state IMU features

𝑧VEL
𝑛

𝑧VEL
𝑛 = 1 ⇒


𝑣𝑛 ≈ 0

𝑅𝑛𝑎𝑛 + 𝑔 ≈ 0
(11)

𝑧VEL
𝑛 = 1 ⇒



𝑎1,𝑛




2 ≈ 9.8 (12)

𝑧ANG
𝑛 𝑧ANG

𝑛 = 1 ⇒ 𝜔𝑛 ≈ 0 (13)

𝑧LAT
𝑛

𝑧LAT
𝑛 = 1 ⇒ 𝑣LAT

𝑛 ≈ 0 (14)

𝑧LAT
𝑛 = 1 ⇒




𝑎LAT
2,𝑛 − 𝑎LAT

1,𝑛−1





1
≈ 0 (15)

𝑧UP
𝑛

𝑧UP
𝑛 = 1 ⇒ 𝑣UP

𝑛 ≈ 0 (16)

𝑧UP
𝑛 = 1 ⇒ 𝑎UP

1,𝑛 ≈ 0 (17)

6



Metrol. Meas. Syst.,Vol. 32 (2025), No. 2, pp. 1–19
DOI: 10.24425/mms.2025.154345

Fig. 5. Lateral acceleration characteristics when wheeled robots are the state of zero lateral speed.

3.2.2. Motion state recognition network structure

The motion state recognition network structure still employs the BERT network structure,
but with certain adjustments. As depicted in Fig. 4, “∗| ∗ | ∗ |∗” represents the input dimension,
output dimension, convolution kernel and dilation coefficient of the one-dimensional convolutional
neural network, respectively. The decoder is modified to a projection head, which functions
as the motion state recognizer. It is worth noting that motion state recognition requires highly
distinguishable features. However, during the process of IMU denoising, the network, in order
to minimize reconstruction losses and reconstruct sequences, tends to extract features with high
coincidence. Therefore, the parameters trained in the denoising process cannot be utilized in the
motion recognition step. Moreover, as the feature dimensions output by the encoder are more
similar to the size of the generated sequence, it is necessary to further compress and extract the
features generated by the encoder. First, a three-layer dilated convolutional network is used to
fuse the features, and the range of the receptive field of the network is changed by adjusting the
size of the convolution kernel and the dilation coefficient. Finally, the final category features are
generated through four fully connected layers.

The absence of precise motion state labels in this article makes it infeasible to construct a loss
function by minimizing the loss between the true and predicted labels. To address this issue, the
concept of contrastive learning is adopted, where the similarity of the same category is higher.
Contrastive loss is then employed for training the model. The specific approach is stated as follows:
with sample pairs as the unit, we aim to maximize the similarity of pairs that belong to the same
category and minimize the similarity of pairs from different categories. As depicted in Fig. 6a,
when the zero lateral velocity is selected as a positive sample, all other motion states that are
distinct from the zero lateral velocity are regarded as negative samples.

Before entering the network, data augmentation is carried out on both positive and negative
samples, generating two new sets of sequences. The neural network converts the IMU time series
into corresponding category probability distributions. Determining whether a sample belongs
to the same category can be regarded as a binary classification problem. Binary Cross Entropy
(BCE) is used as the loss function for optimization:

𝐿𝑖 𝑗 = BCE(𝑟𝑖 𝑗 , 𝑠𝑖 𝑗 ) = −𝑟𝑖 𝑗 · log(𝑠𝑖 𝑗 ) − (1 − 𝑟𝑖 𝑗 ) · log(1 − 𝑠𝑖 𝑗 ), (18)

where 𝑟𝑖 𝑗 represents the true value of the label for the binary classification problem, and back-
propagation is utilized to optimize the parameters of the entire model.
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(a) (b)

Fig. 6. a) Method of dividing positive and negative samples; b) method for constructing pseudo-labelled sample sets.

3.2.3. Construction of pseudo-sample set

Wheeled robots’ motion states far exceed the four above, with numerous hard-to-classify
categories. Thus, determining whether IMU sequences are positive or negative samples without
labels is crucial for the algorithm. Section 3.2.1 details typical IMU output features in different
motion states. Using these, most time series can be classified and pseudo-labels can be created.
Though unreliable pseudo-labels misclassify some data into the “other” category, they ensure
that different feature data belong to different categories, thus enabling contrastive learning.
Despite misjudgements caused by using them, the “other” category in training enhances network
discrimination, as will be demonstrated in subsequent experimental sections.

Figure 6b shows the pseudo-label sample set construction. In practice, as the four states may
overlap and disrupt feature extraction, single-characteristic time periods should be extracted. For
example, pure zero-velocity states without zero angular velocity. A separate category is made for
concurrent zero lateral and vertical speeds to avoid overlap. Only when no typical features exist is
it the “other” category. So, there are six categories in training. After training, the overlapping parts
are re-assigned in category statistics.

3.3. Network training details

The method needs three independent neural nets. As IMU sensor readings vary in distribution,
which affects model performance, appropriate normalization is needed before inputting sensor
data as well as processing only accelerometer values because gyroscope readings are small. In
motion state recognition, IMU data requires normalization and data augmentation (crucial for
contrastive learning). Data augmentation methods include:

1. Data translation: Shifting the time series on the time axis by a fixed interval while keeping
the same pseudo-label category.

2. Add noise: Adding random noise to the time series.
3. Data replacement: Replacing the original time series with a time series of the same

pseudo-label category but different source.
The model was implemented with PyTorch Lightning on an RTX3060 GPU. Training used

batch size 512, ADAM optimizer with initial learning rate 10−3, and cosine annealing warm restart
strategy (first restart after 500 iterations, subsequent restarts with more than 10 times previous
iterations, both 𝜆1 and 𝜆2 set to 1). For denoising, the IMU sequence length was 30 with a 15%
masking rate; for motion state recognition, it was set to 200.
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Table 2. Modifying the dynamic model based on observed values.

Dynamic model (19) Propagation Step (20) Update Step (21)

𝑅𝑛+1 = 𝑅𝑛 exp ( [𝜔𝑛d𝑡 ]× )
𝑣𝑛+1 = 𝑣𝑛 + (𝑅𝑛𝑎𝑛 + 𝑔) × d𝑡
𝑝𝑛+1 = 𝑝𝑛 + 𝑣𝑛 × d𝑡

𝑧̂VEL
𝑛 = 1 ⇒


𝑣𝑛+1 = 𝑣𝑛

𝑝𝑛+1 = 𝑝𝑛

𝑧̂ANG
𝑛 = 1 ⇒ 𝑅𝑛+1 = 𝑅𝑛

𝑧̂VEL
𝑛 = 1 ⇒


𝑅𝑇
𝑛+1𝑣𝑛+1

𝑏𝑎
𝑛+1 − 𝑅𝑇

𝑛+1𝑔

 =


0

𝑎𝑛


𝑧̂ANG
𝑛 = 1 ⇒ 𝑏𝜔

𝑛+1 = 𝜔𝑛

𝑧̂LAT
𝑛 = 1 ⇒ 𝑣LAT

𝑛 = 0
𝑧̂UP
𝑛 = 1 ⇒ 𝑣UP

𝑛 = 0

4. IEKF information fusion

The Extended Kalman Filter (EKF) has been widely utilized in information fusion in the field
of inertial navigation [16]. The original EKF often lacked rigorous convergence proof and suffers
from system divergence and inconsistency issues. In contrast, the IEKF has ameliorated these
issues [17]. Therefore, the denoised IMU measurements are integrated into its dynamic model,
and the constraint information of the detected motion state is used as observations. The IEKF is
then employed to fuse this information to refine its estimates. The system state 𝑋𝑛 is defined as:

𝑋𝑛 = [𝑅𝑛, 𝑣𝑛, 𝑝𝑛, 𝑏
𝜔
𝑛 , 𝑏

𝑎
𝑛], (22)

where 𝑣𝑛 and 𝑝𝑛 represent the velocity and position under the navigation coordinate frame,
respectively, d𝑡 is the time interval between two samplings, and the operator [·]× denotes a 3 × 3
skew-symmetric matrix. 𝑏𝑛 = [𝑏𝜔𝑛 , 𝑏𝑎𝑛]𝑇 represents the biases of the gyroscope and accelerometer.
Table 2 illustrates how the IEKF exploits the observed motion states during the propagation and
update stages to modify the corresponding dynamic model of wheeled robots. For a more detailed
description of the parameter setting methods and the iterative process, please refer to [18].

5. Experiments

In this section, to evaluate the effectiveness of the proposed method, experimental analyses were
conducted on both the publicly available KAIST dataset and a self-collected dataset. Three main
evaluation objectives were set to demonstrate that the proposed method generally approximates
the accuracy of IMU motion recognition methods based on supervised learning:

1. Verifying that the masked IMU modelling and next IMU sequence prediction tasks can
denoise the IMU.

2. Verifying that the motion states recognition method can accurately identify the specific
motion states of the IMU.

3. Validating the accuracy of the final position estimate.

5.1. Data sources

The KAIST URBAN dataset is vehicle data collected in complex urban environments. For
more detailed information about the dataset, please refer to [12]. The data was divided into
a training set (urban6-12) and a test set (urban13-17). The original KAIST dataset provides
medium-precision consumer-grade IMU data, which has higher accuracy compared to the more

9
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cost-effective MEMS-IMU. Therefore, a certain amount of noise and bias was added to the original
dataset to simulate the characteristics of MEMS-IMU. Specifically, Gaussian noise 𝑁 (0, 10−3)
with random bias 𝐵(0.015, 0.025) was added to the gyroscope data, and Gaussian noise 𝑁 (0, 10−2)
with random bias 𝐵(0.45, 0.55) was added to the accelerometer.

5.2. Baselines and metrics definitions

Due to the current lack of new research on SSL-based neural inertial navigation methods in
the industry, to demonstrate the performance of the system, it is compared with three typical
supervised learning-based neural inertial navigation methods applied in the field of wheeled robots,
namely RINS-W [10], AI-IMU [18], and the method proposed by Guo [20]. Each of these methods
encompasses some key components such as Inertial Measurement Unit (IMU) denoising, motion
state recognition, and information fusion. Given the special application scenario of the method
proposed in this paper, under the harsh condition of having no reference data at all, as long as it
can be proven that the positioning error of this method has no significant difference compared
with that of the supervised learning-based methods, the effectiveness of the method proposed in
this paper can be fully demonstrated.

Secondly, as the method proposed in this paper consists of three modules, the performance
of each module is evaluated separately. First, the performance of the IMU denoising module is
assessed using the absolute attitude error. To evaluate the recognition performance of the motion
state recognition network, the commonly used measurement 𝐹𝛽=0.5 indices for binary classification
are utilized, with precision as precision, recall as recall, and 𝛽 representing the relative weight of
precision and recall. Finally, the overall positioning performance of the proposed method is judged
using the Absolute Trajectory Error (ATE,m) and Temporal Relative Trajectory Error (T-RTE,m):

𝐹𝛽 = (1 + 𝛽2) · precision · recall/((𝛽2 · precision) + recall), (23)

ATE =

√√√
1
𝑁

𝑁∑︁
𝑛=1



𝑝𝑛−𝑝𝑛

2
, T − RTE =

√√√
1
𝑁

𝑁∑︁
𝑛=1



𝑝𝑛+Δ𝑡−𝑝𝑛 − (𝑝𝑛+Δ𝑡−𝑝𝑛)


2
. (24)

5.3. IMU denoising performance analysis

Among the baseline methods, only Guo’s method incorporates IMU denoising. Therefore, we
compare the attitude angle errors obtained from the original gyroscope inertial navigation solution
and those obtained with Guo’s method respectively. As can be seen from Fig. 7 and Table 3, with
reference information, this method reduces the average attitude estimation error by 67.17%. In
contrast, without any additional external reference information, the method proposed in this paper
reduces the average error by 52.06%. This is sufficient to demonstrate the effectiveness of the IMU
denoising module.

5.4. Analysis of Motion State Recognition Performance

The RINS-W method includes a motion state recognition module, so the motion state recognition
module of this paper is compared with that of the RINS-W method. Table 4 shows the accuracy rate
of motion state recognition of the method in this paper. It can be seen that the motion recognition
method based on SSL proposed in this paper is close to the accuracy rate of supervised learning.
This experiment explored whether adding the “other-motion-states” data benefits the motion state
recognition network’s training. By using t-SNE for dimensionality reduction, we visualized the
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Fig. 7. AAE of urban16.

Table 3. AAE of different methods on the test set.

Method Raw IMU Guo Ours
urban13 2.51 1.55 1.84
urban14 23.54 2.55 10.91
urban15 0.76 0.16 0.21
urban16 6.89 0.36 2.97
urban17 1.44 0.94 0.71
average 7.03 1.11 3.33

features in 2D (Fig. 8). Without the “other motion states” in training, the visualization result
showed low discrimination among category features. The actual accuracy was only 40%-60%,
which was far from the high accuracy rate shown in Table 4. Focusing only on four zero-velocity
types, gyroscope and accelerometer data had small numerical differences. Pseudo-labels limited
the amount of training data, and self-supervised denoising could not fully remove noise, making it
difficult for the network to distinguish data. In contrast, the “other-motion-states” data has distinct
numerical characteristics. Since contrastive learning amplifies data differences, including this data
in the training process boosted the network’s recognition accuracy and overall performance.

Table 4. 𝐹𝛽 of motion state recognition, before and after ("|") applying the methods proposed in this paper and RINS-W,
respectively.

Seq. Zero Speed Zero Angular Zero Lateral Zero Vertical Difference
13 0.72 | 0.95 0.98 | 0.99 0.88 | 0.94 0.73 | 0.95 0.13
14 0 | 0 0.98 | 0.99 0.93 | 0.96 0.92 | 0.97 0.04
15 0.85 | 0.97 0.98 | 0.99 0 | 0 0.90 | 0.98 0.07
16 0 | 0 0.98 | 0.99 0.94 | 0.97 0.95 | 0.97 0.02
17 0 | 0 0.99 | 0.99 0 | 0 0.95 | 0.98 0.02
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(a) (b)

Fig. 8. Visualization analysis of t-SNE clustering effect: a) the network training does not include the category of “other”;
b) the category of ’other’ included during network training.

5.5. Analysis of position

Table 5, Table 6, Fig. 9 and Fig. 10 compare the proposed method with the baseline method,
with ME representing maximum error. The proposed method is essentially on a par with RINS-
W in terms of motion state recognition accuracy. Meanwhile, its additional denoising step
further enhances the accuracy of the IMU. This advantage enables the proposed method to
exhibit excellent comprehensive performance in most driving scenarios, showing a remarkable
improvement compared with AI-IMU and RINS-W.

Table 5. Position errors of different methods on KAIST test set for urban13-16.

Method
Supervised learning

Ours
Supervised learning

Ours
AI-IMU RINS-W Guo average AI-IMU RINS-W Guo average

urban13 urban14
ATE 296.76 98.40 256.25 217.14 152.54 767.26 275.77 238.00 427.01 123.31

T-RTE 1.86 0.50 0.87 1.08 0.61 1.64 1.04 1.04 1.04 0.54

RMSE 616.27 102.00 325.28 347.85 164.68 785.75 273.08 470.25 509.69 126.45

STD 262.60 27.95 49.10 113.21 30.35 425.65 116.25 252.39 264.76 54.15

ME 1265.77 143.42 416.54 608.58 151.20 1429.91 581.66 825.38 945.65 263.92

urban15 urban16
ATE 421.87 386.52 170.68 326.36 174.24 2131.74 1960.23 538.25 1543.41 768.77

T-RTE 1.43 2.01 0.69 1.38 0.96 2.00 1.59 0.66 1.42 0.97

RMSE 430.94 390.04 276.44 365.81 173.57 2145.22 2150.20 1202.33 1832.58 968.89

STD 190.85 275.80 117.28 194.64 120.56 1102.31 1086.23 636.97 941.84 488.40

ME 637.49 718.43 404.11 586.67 316.58 3695.45 3866.49 2067.72 3209.89 1736.25
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Table 6. Position errors of different methods on KAIST test set for urban17 and all average.

Method

Supervised learning Supervised learning
AI-IMU RINS-W Guo average Ours AI-IMU RINS-W Guo average Ours

urban17 All averages
ATE 764.35 1286.63 201.45 750.81 583.53 876.40 801.51 280.93 451.91 360.48

T-RTE 1.91 3.74 0.59 2.08 1.76 1.73 1.82 0.79 1.40 0.97
RMSE 747.76 1301.57 775.68 941.67 560.36 945.19 843.38 609.99 673.47 398.79
STD 413.29 810.50 233.94 485.91 346.19 478.94 463.35 257.94 400.07 207.93
ME 1369.81 2565.12 775.68 1570.20 1108.78 1679.69 1575.02 897.89 1155.76 715.35

(a)

(b) (c)

(d)

Fig. 9. Position comparison for different methods: a) the 2D trajectory map, b) 3D trajectory map, c) thumbnails of the
ground truth, and d) position error maps of the 𝑥-axis for urban16.
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(a)

(b) (c)

(d)

Fig. 10. Position comparison for different methods: a) the 2D trajectory map, b) 3D trajectory map, c) thumbnails of the
ground truth, and d) position error maps of the 𝑥-axis for urban17.

Given that this study does not utilize any additional ground truth and the denoising ability of
the IMU is limited, among the five groups of data, the performance of three data groups is superior
to or close to that of Guo’s method.

From the perspective of comprehensive evaluation results, compared with the average per-
formance of supervised learning-based methods, the proposed method demonstrates significant
superiority in the overall average performance of various trajectory error metrics (ATE, T-RTE,
RMSE, STD, ME). Specifically, the errors in these metrics are reduced by 20.23%, 30.71%,
40.78%, 48.03%, and 38.11%, respectively. This outcome far exceeds the pre-set expectations.
It fully verifies that the proposed method has outstanding advantages in terms of the accuracy,
stability of trajectory estimation and error control, and can rival supervised learning-based IMU
neural inertial navigation methods.
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5.6. Real Scenario Evaluations

The method in this paper was also tested using self-made dynamic and static datasets. As
shown in Fig. 11, the dynamic data was collected by wheeled robots in a real campus environment.
The model of the MEMS-IMU is EPSON’s M-G370, and the zero-bias instability of the gyroscope
is 0.8◦/h, with a sampling frequency of 150 Hz. The sampling frequencies of the Global Navigation
Satellite System (GNSS) receiver and the camera were 1 Hz and 15 Hz respectively. The timestamps
among different sensors were synchronized by software.

When conducting static data collection work, a low-cost multi-IMU array module of the
MIMU48XC model produced by GT SILICON PVT LTD is selected. This module integrates 32
MEMS-IMUs of the ICM20948 model. The purpose of collecting the static data was to evaluate
the denoising effect of the IMU through Allan variance analysis. Both the dynamic data and the
static data were collected in 25 sets respectively. Among them, 20 sets were used for training and
the remaining 5 sets were reserved for testing.

The Allan variance method is a commonly used error analysis approach in the field of inertial
navigation [21]. Intuitively, the lower the curve is located, the smaller the error will be. Figure 12
and Table 7 demonstrate that the random errors of the gyroscope and accelerometer have been
significantly improved before and after applying the method proposed in this paper.

(a) (b) (c)

Fig. 11. Partial real scene diagrams: (a) is the wheeled robot used in the experiment, (b) is the MEMS-IMU module for
collecting static data and (c) is the outdoor collection scene.

(a) (b)

Fig. 12. Double logarithmic curve of Allan variance before and after denoising: (a) is gyroscope data and (b) is accelerometer
data.
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Table 8 and Fig. 13 display the comparison of the position estimation performance between the
proposed method and the baseline methods on the self-made dynamic dataset. It is worth noting
that even when the small wheeled robot and the cars used in the public datasets are traveling on
the same flat road, the small robot will be more significantly affected by vibrations. Therefore,
methods equipped with motion state recognition components will perform better in this scenario.
Thanks to the crucial role of the motion state components, among the 5 sets of test data, for four of
them, the position errors of the SSL-based method proposed in this paper are even smaller than
the average value of the supervised learning-based methods, which demonstrates the effectiveness
of the method proposed in this paper.

Table 7. Allan variance of output data before and after IMU denoising.

Noise type
Raw IMU Proposed method

x-axis y-axis z-axis x-axis y-axis z-axis
Angle random walk (̊/

√
ℎ𝑟 ) 1.980 1.919 4.461 0.005 0.006 0.003

Rate random walk (̊/
√
ℎ𝑟

3 ) ) 4543.728 >5000 >5000 16.854 21.274 10.722
Gyro bias instabilities (̊/ℎ𝑟 ) 163.298 141.562 177.411 0.517 0.626 0.319

Velocity random walk (𝑚/𝑠/
√
ℎ𝑟 ) 0.006 0.006 0.005 <0.001 <0.001 <0.001

Acceleration random walk (𝑚/𝑠/
√
ℎ𝑟

3 ) 7.001 7.54 4.096 2.566 1.859 1.535
Acceleration bias instabilities (𝑚/𝑠/ℎ𝑟 ) 0.190 0.166 0.107 0.075 0.0546 0.0438

Table 8. Position errors of different methods on self-made datasets.

Method
Supervised learning

Ours
AI-IMU RINS-W Guo average

denoise | motion | IEKF ×|×|
√ ×|

√
|
√ √

|×|
√ √

|
√

|
√

Test1
ATE 920.91 343.61 969.19 744.57 313.91

T-RTE 1.50 0.54 1.59 1.21 0.50

Test2
ATE 1039.09 777.37 1023.05 946.50 779.09

T-RTE 1.64 1.01 1.62 1.42 1.00

Test3
ATE 46.87 49.82 49.64 48.78 47.38

T-RTE 0.41 0.42 0.41 0.41 0.41

Test4
ATE 175.16 111.46 169.58 152.07 119.32

T-RTE 0.65 0.34 0.63 0.54 0.37

Test5
ATE 185.06 179.66 172.75 179.16 184.73

T-RTE 1.21 1.21 1.16 1.19 1.17

(a) (b) (c)

Fig. 13. (a), (b) and (c) are trajectory visualizations of the real-world.
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6. Conclusion

In this paper, a neural inertial navigation method is proposed for low-cost wheeled robots that
can achieve fully autonomous pose estimation without relying on external information. The feature
extraction capability of the BERT network is utilized to denoise the IMU. At the same time, based
on self-supervised contrastive learning and the method relying on unreliable pseudo-labels, the
motion state labels corresponding to the IMU sequences in different time periods are obtained,
and IEKF is used to further fuse the motion state information and IMU information to enhance the
reliability and accuracy of the system. The proposed method was verified on the public dataset
and self-collected dataset in real scenes. Experiments conducted on public datasets demonstrate
that, in the absence of additional ground truth values, the Absolute Trajectory Error (ATE) and
Temporal Relative Trajectory Error (T-RTE) of the proposed method are respectively 20.23% and
30.71% lower than those of supervised learning-based methods. The experimental results show
that our position estimation can be comparable to the existing supervised learning-based inertial
navigation methods for wheeled robots in both local and global accuracy.
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