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Abstract

Kinematic parameter errors of parallel robots are affected by manufacturing errors, assembly errors, and shape
errors caused by heavy loads, resulting in a gradual decrease of their kinematic accuracy. This study proposes
an online learning method for the kinematic parameter errors based on a six-degree-of-freedom (6-DOF)
in-situ tracking system, which achieves their online identification. This method uses six high-precision
measurement legs that are embedded in the parallel robot to achieve in-situ data measurement and adopts
an online learning method to identify the kinematic parameter errors. Experimental results compared with
the least squares method demonstrated that the proposed method effectively achieves online identification
of the kinematic parameter errors, with position and orientation accuracy improved by 85.3% and 79.2%,
respectively. Moreover, it can also maintain small position deviations even under varying loads, thus sustaining
the high-accuracy motion of the parallel robot.

Keywords: kinematic parameter errors, online learning, parallel robot, in-situ tracking system.

1. Introduction

Parallel robots utilize a distinct closed-loop structural design [1, 2], compared to serial
mechanisms, which exhibit faster dynamic response, higher payload-to-weight ratio, and better
repeatability. Consequently, parallel robots are widely utilized in the fields of manufacturing [3-5],
biomedical engineering [6], and aerospace [7], which, in turn, demands higher precision perfor-
mance. Due to the manufacturing errors, assembly errors, and shape errors caused by heavy loads,
the kinematic parameters of parallel robots vary over time, resulting in a gradual decrease in their
kinematic accuracy. Therefore, it is crucial to develop a method capable of real-time measurement,
online identification, and correction of kinematic parameter errors for the parallel robot.

Currently, kinematic calibration is the primary method to enhance precision. The principle
involves constructing an error function between the measured information and the control model
output. Through optimization algorithms, kinematic parameters are identified to correct the
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control model. This identification process achieves error compensation. Kinematic calibration
generally comprises four steps: modelling of kinematic parameter errors, measurement of pose,
identification of kinematic parameter errors, and compensation of the parameter error. Based on
the different measurement approaches, kinematic calibration can be further classified into three
methods: external calibration, constrained calibration, and self-calibration [8]. Correspondingly,
the current kinematic calibration methods of parallel mechanisms are summarized in Table 1. The
measurement devices mainly include laser trackers [9—11] and vision sensors [12—15], where the
laser tracker is the most commonly used. Kong et al. [16] utilized an API-T3 laser tracker to achieve
external calibration of a 3-DOF parallel robot, Marko et al. [17] obtained the spatial coordinates
of the robot through a stereo vision system for external calibration. Although external calibration
methods can provide high-precision calibration results, the implementation process is relatively
complex and easily affected by environmental factors. Li er al. [18] proposed a calibration method
for over-constrained spatial translational parallel mechanisms, which significantly improved the
calibration accuracy. However, the calibration accuracy relies on the precision and stability of the
constraint conditions. Self-calibration techniques can be classified into motion constraint methods
and redundant sensor methods. The former reduces the mobility of the system by fixing one or
more passive joints or constraining partial degrees of freedom of the manipulator, enabling the
execution of the calibration algorithm. Khalil ez al. [19,20] achieved self-calibration by locking
the fixed passive universal joint or passive spherical joint of parallel robots. However, due to the
presence of motion constraints, some parameter errors associated with the locked passive joints
may become unobservable in the calibration algorithm, limiting the accuracy of the calibration.
Another approach is the redundant sensor method, which utilizes excess sensors or measurement
information in the system, which enable identification of kinematic parameter errors and calibration
can be achieved. Zhang et al. [21-23] proposed using redundant encoders and additional cameras
for the self-calibration of cable-driven parallel robots. However, these methods suffer from complex
data processing procedures, difficulties in integrating external auxiliary devices (cameras and
lasers) with the system, and are unable to monitor changes in kinematic parameter errors online.

Table 1. Summary of related works on parallel mechanism kinematic calibration.

Parallel mechanism Measurement device Achieved Identification method
accuracy (mm)
3-PRRU parallel manipulator [16] laser tracker 0.21 Total least-square
double ball bar and
Tri-pyramid robot [18] 3 axes linear stage with 0.16 Least-square
micrometres
6-DOF hybrid robot [20] laser tracker 0.05 Least-square Liu-estimation
6-DOF cable-driven parallel robots [21] camera 1.65 Least-square

laser displacement

6-DOF cable-driven parallel robots [22] Sensors

1.40 Genetic algorithms

Stewart platform [23] laser tracker 0.20 Levenberg-Marquardt

This study has developed an in-situ pose measurement system for a 6-DOF parallel robot. Based
on this measurement system, an online learning method for identifying the kinematic parameter
errors of the 6-DOF parallel robot is proposed. The method achieves online identification of the
parallel robot’s kinematic parameter errors through the in-situ pose measurement system and an
extended Kalman filter (EKF) algorithm. Compared with traditional offline identification methods,
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the EKF can estimate parameter changes online. The main contributions of this research include: (a)
The design of a 6-DOF in-situ tracking system integrated within the parallel robot, which enables
online measurement of the pose of the parallel robot. (b) Proposal of an online learning method
for kinematic parameter errors, based on the 6-DOF in-situ tracking system to achieve online
identification of kinematic parameter errors in the parallel robot. (c) Verification of effectiveness
of the proposed method through comparative experiments, demonstrating its capability to monitor
kinematic parameter errors online and maintain high kinematic accuracy of the parallel robot.

The rest of the manuscript is organized as follows: Section 2 presents a detailed description of
the 6-DOF in-situ tracking system. Section 3 presents the kinematic parameter error model of the
parallel robot and the online learning algorithm. Section 4 describes the kinematic calibration
experiments conducted on the parallel robot. Section 5 presents the conclusions.

2. The 6-DOF in-situ tracking system

Figure 1 shows a schematic diagram of kinematic parameter errors online identification for
a parallel robot based on a 6-DOF in-situ tracking system. (I) represents the processing unit, (II)
denotes the parallel robot, and (II) signifies the 6-DOF in-situ tracking unit. The processing unit
controls the parallel robot to perform spatial trajectory motions through a human-machine interface.
The measurement legs of the 6-DOF in-situ tracking unit consist of high-precision grating rulers,
sliders, reading heads, and guide rails. The measurement legs and the driving legs are connected to
the same moving platform and fixed base. The guide rails move linearly in a reciprocating motion
with the moving platform. This motion drives the grating rulers to move accurately thereby achieving
real-time tracking of the parallel robot motion trajectory. The combination of the measuring legs
with the moving platform and fixed base of the parallel robot can be considered another parallel
mechanism. Through forward kinematics [24-26], the current leg length data of the six measuring
legs can be converted into the actual pose of the parallel robot. The tracking system has been
precisely calibrated using stereo vision technology [27]. The nominal kinematic parameters of the

. . . . T
six measurement legs are listed in Table 2. Specifically, h; = [hxi, hyi, hzi] denotes the upper
joint bearing position information, z; = [zx,-, Zyis zz,-] denotes the lower joint bearing position
information, and Ig; represents the initial length information of the measurement legs. Finally, the
processing unit reads the tracking data. It then achieves online identification of the 42 kinematic
parameter errors of the parallel robot through an online learning method based on the EKF.

Table 2. Nominal kinematic parameters of the measurement legs.

i hi/mm hjy/mm h;;/mm Zix/Mm Zjy/mm Ziz/mm I/ mm

1 231.600 —-104.850 -127.210 728.280 41.410 108.790 1029.480
2 206.600 —-148.150 -127.210 328.280 -651.410 108.790 1029.480
3 —206.600 —-148.150 -127.210 —328.280 -651.410 108.790 1029.480
4 —231.600 —-104.850 -127.210 —728.280 41.410 108.790 1029.480
5 —25.000 253.000 -127.210 —400.000 610.000 108.790 1029.480
[§ 25.000 253.000 -127.210 400.000 610.000 108.790 1029.480
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3. Kinematic parameter error identification based on the online learning algorithm

3.1. Kinematic error model of the parallel robot

As shown in (IT) of Fig. 1, the Hooke joints at both ends of the driving legs connect the
moving platform and the fixed base. Under the drive of the servo motors, the moving platform
can translate and rotate along each axis. As shown in Fig. 2, coordinate systems {D}and {J}are
established on the moving platform and the fixed base of the parallel robot, respectively. Here, the
coordinate system {D}serves as a local coordinate system, with its origin located at the geometric
centre of the upper surface of the moving platform of the parallel robot. Meanwhile, coordinate
system {J}is located on the fixed base of the parallel robot, serving as the global coordinate system
for the entire system. It provides a unified reference for describing the position and motion of
various components within the system, and its origin is located at the geometric centre of the
upper surface of the base. D; and J; are the hinge connection points of the Hooke joints with the
moving platform and the fixed base. The length /; is the distance between the upper hinge point
d; = [dxi,dyi,dZ[]T and the lower hinge pointj; = [jxi,jy[,jZ[]T.

Parameter identification (ID o ﬁ

@

Data
Processing

Data collection

1\ Measurement leg

' Joint bearing

Fixed base

Fig. 1. Schematic diagram of kinematic parameter error online identification in parallel robots: (I) processing unit, (IT)
parallel robot, (IIT) 6-DOF in-situ tracking unit.

The kinematic parameter errors of the aforementioned parallel mechanism include the hinge
error of the moving platform dd;, the hinge error of the fixed base ¢j;, and the length error of the
driving leg 6l;. By compensating for these 42 kinematic parameter errors, the accuracy of the
parallel robot can be ensured across various motion trajectories, which enables precise control
and high repeatability. As illustrated in Fig. 2(b), the closed-loop vector equation for the i path
within the kinematic error model is

lini =h+R¢,di _ji’ (1)
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Fig. 2. Kinematic analysis of the parallel robot: (a) kinematic scheme, (b) closed-loop vector of /;.

where n; is defined as the unit vector of /;, and & denotes the position vector oriented from the origin
of the base coordinate system to the origin of the moving platform coordinate system. Additionally,
R, represents the rotation matrix involved. The left and right of (1) are fully differentiated to
obtain the closed-loop differential equations:

l;6n; + n;ol; = Sh + (5R¢di +R¢6di - 5ji, (2)
l;ion; + n;ol; =6h+a)XR¢di+R¢6di —6jl~, 3

where the rotation matrix Ry is usually determined by Euler angles @ — 8 — vy, with the detailed
rotation definitions provided in the Appendix, the relation between w and Euler angles is

w=Té6, “)

where the T matrix represents the conversion between the angle w in radians and the angular
velocity 66, T and R, can be expressed as

cBcy —-sy O cBcy sasBcy —syca sPcacy + sasy
T=| sycB cy O Ry =| sycB sasfsy+cacy sPsyca—sacy [, (5)
—-sp 0 1 -sB sacP cacf

where ¢ and s represent cos and sin, respectively. When we substitute (4) into (3), and then multiply
both sides by n!, we get

n!l;o6n; +n!'n;6l; = n! 5h+n! (T50) x Ryd; +n! Ryéd; — n! dj;, (6)

where niTlién,- =0, nl.Tni(Sli = 6l;, and then

6l; =n! 6h + (Ryd; x n;)"T56 + n! R ,6d; — n! 5j;, (7)

T
[ ni  (Rydixm) T ] [ 56 ] =[nf -niR, 1] (js‘l’i ’ ®)
6E = J ,6M, ©)

where 6E = [6h, 66]" € R®! represents the pose error vector, which indicates errors in position
and orientation. Meanwhile, 6M = [6le, 6d1T, ol ... 6jg, 6d£, 5lg)T, oM € R4x1 represents 42
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kinematic parameter errors, which include 6 leg length errors and 36 positional errors of the Hooke
joints. J p denotes the error Jacobian matrix, with Jp = J,J, and Jp € R®*2_ the definition of
the error Jacobian matrix is detailed in the Appendix:

-1

an (R(/,d] an)TT
Ir=| : , (10)
n6T (Rz{/d6 X n6)TT
an —anRlp 1 -+ 0 0 0
L= oo (11)
0 0 0 -+ nl -nfR, 1
The j; and d; can be expressed as
Ji = Ui Jyidl"s i={1,2,...,6}, (12)
di = [dydyidy)", i={1,2,..,6}. (13)

The online learning algorithm discussed in the subsequent section will utilize (9) for the
precise estimation of these parameters.

3.2. Online learning algorithm

The EKEF is an online learning algorithm that relies on the assumption of independent and
identically distributed (IID) data. The EKF algorithm can accurately and effectively perform state
estimation and prediction only when the IID assumption is satisfied. In this study, the position
points of the upper Hooke joints (denoted as d;) in the 6-DOF parallel robot are defined as fixed
points in the local coordinate system, with these positions determined by the pose of the moving
platform. Therefore, the position points d; of the upper Hooke joints and the leg lengths /; can be
considered mutually independent. This ensures that the error model satisfies the IID assumption
required by the EKF algorithm. In this framework, the kinematic parameter errors dM and the
pose error OF are treated as the state and observation variables of the EKF, denoted respectively
by X = 6M and Y = 6E. The algorithm includes two main phases: prediction and update. During
the prediction phase, the state vector X and the prediction covariance matrix P are governed by the
following linear differential equations, based on (9), with Xz _1jx—1 = 6M, and Ji = J p. The state
transition equation of EKF is

Kijk-1 = Kg_1jk-1> (14)
Prix—1 = Pr_1jx-1 + Qs 1, (15)

where Xk*llk*l € R42Xl

represents the prior estimate at the (k — 1), and X klk—1 denotes
the posterior estimate. Additionally, Px_jjx-1 € RA>42 signifies the covariance matrix, and
Q1 € R i5 the covariance matrix of the system noise.

The measurement equation of the EKF is
Yi =JiKy + Ey, (16)

where Y, € R®1 s the pose error vector, and Ey € R is the measurement noise vector.
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The Kalman gain can be expressed as
T T -1
Ky =Pyi1Jy (JkPk\k—IJk +Rk) , (17)

where K; € R** is the gain matrix, and R = E (EkEg) € R®*% is the measurement noise

covariance matrix.
The state update equation and the covariance update equation are as follows:

Kk = Xejk-1 + Kie (Yie=JiKk-1) » (18)
Py = (I - KiJy) Prji-1, (19)

where I € R¥%*42 i the identity matrix.

During the online identification process of kinematic parameter errors, the computational
complexity of the algorithm directly affects its real-time performance. Consequently, a detailed
analysis of the computational complexity of the EKF was conducted, with the specific results
summarized in Table 3.

Table 3. Computational complexity of the EKF.

Equation Complexity X[+ +/-
Prir-1= Proqjr-1+ Q-1 0(n?) 0 1764
Y =Ji X +Ex O(mn) 252 252
Kk = Prji1Jy JiPri—1J7 +Ri) ™! O(mn® + m*n + m®) 24408 21924
Xik = Xpgro1 + K (Yie = JiXpj—-1) O(mn) 504 504
Prjr = (I — KiJ k) Prji-1 o1 +mn?) 84672 84420

Table 3 quantifies the computational cost of the EKF method using the number of multi-
plication/division (x/+) and addition/subtraction (+/—) operations as metrics. Among these,
the calculation of the Kalman gain and the covariance update account for the majority of the
computational overhead. However, the computational cycle remains shorter than that of the control
system, meeting the requirements for online identification of kinematic parameter errors in the
parallel robot.

During each iteration, the covariance matrices  and R of the EKF are iteratively updated [28].
The accuracy of the measurement devices can be used as the initial estimate for the covariance
matrix R. Based on the aforementioned error model and the EKF algorithm, the identification
process of the kinematic parameter errors for the parallel robot is shown in Fig. 3. The detailed
steps of this process include:

Step 1: To determine the actual pose P,, of the parallel robot, we first collect length measure-
ments from the six grating rulers while the robot is held in a static pose. These leg length values
are then used as inputs for forward kinematic calculations using the Newton—Raphson method [29].
This process converts the leg length data into the corresponding pose, represented by P,,.

Step 2: Calculation of the difference between the current nominal pose P,, and the actual pose
P, as well as the error Jacobian matrix J; under the current nominal pose P,,.

Step 3: Inputting the pose error P, — P, and the error Jacobian matrix J into the EKF to
achieve online identification of the 42 kinematic parameter errors.

Step 4: After identifying the error v in the kinematic parameters, adding the error value 6v to
the nominal parameter v thereby updating the kinematic model of the parallel robot for calibration.
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Fig. 3. Calibration procedure of the proposed method.

4. Experimental validation and results

4.1. Experimental system

To verify the feasibility of the proposed online measurement method based on the 6-DOF
in-situ tracking system and the online learning algorithm described in Section 3, a kinematic
calibration experiment was designed using a Stewart platform. The experimental setup is shown
in Fig. 4. Figure 4(a) presents the Beckhoff controller, which comprises an embedded control
module and a power module. This controller connects to the motion control software TwinCAT3.0
to achieve system control and data transmission. Figure 1(b) illustrates the Renishaw reading head.
Its working principle involves emitting a light beam with a high-intensity light source, which is
converted into parallel light by a collimating lens. The beam is then separated with a beam splitter
and directed onto a grating. The grating modulates the beam which alters its path and intensity.
The modulated beam is focused with a detection lens onto a high-speed custom detection array

(@) Beckhoff

Status LEDS

TwinCAT3.0 Information
acquisition interface

() Reading head

Absolute scale
LT T T

Beam -splitting : Reading head
prism \I\ window

Collimating Ml v

lens

High - intensity High - speed
lightsource customdetector array

= Detector lens

° Massblock * °

Fig. 4. Experimental setup: (a) controller module, (b) internal structure of the reading head, (c) motion generation device.
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which converts the light signal into an electrical signal. After signal processing, the system outputs
precise position information. The resolution of the grating ruler is 50 nm, and the measurement
range is —276 to 318 mm. Figure 4(c) displays the Stewart platform, with displacement ranges
along the x, y, and z axes of —200 to 200 mm and orientation ranges of —20° to 20°.

The experiment consists of two parts: a static pose comparison and a dynamic trajectory
comparison. Throughout the load variation process, the EKF was employed to perform online
identification of kinematic parameter errors. Subsequently, the Stewart motion platform was
calibrated using the identified parameters. The calibration results obtained from the EKF were
then compared and analysed against those derived from the least squares method. During the
identification process using the EKF, the system noise covariance matrix  was initialized as
1073 X I4px42, and the measurement noise covariance matrix R was initialized as 4 x 1072 X Igxe.

Additionally, prior to conducting the experiments, a comparative study was performed with
a high-precision binocular vision instrument (AICON Movelnspect XR) to validate the accuracy
of the proposed measurement device. The experimental results showed that, compared to the
binocular vision instrument, the proposed measurement device had an average position error of
0.036 mm and an average orientation error of 0.022.

4.2. Comparison of static poses

The EKF was applied to identify the kinematic parameter errors of the Stewart platform,
according to the identification process depicted in Fig. 3. The identified kinematic parameter
errors under the no-load conditions are presented in Fig. 5.

Figure 5 shows six subplots, each with seven curves representing the kinematic parameter
errors for each drive leg, including errors in the positions of the upper and lower Hooke joints
and the lengths of the drive legs. Additionally, Fig. 5 demonstrates the rapid convergence of the
EKEF in identifying kinematic parameter errors. Table 4 lists the 42 kinematic parameter errors
identified by both the EKF and the least squares method under no-load conditions.

As the primary external disturbance, the payload can cause variations in the kinematic
parameter errors of parallel robots, which significantly affects the kinematic accuracy [30,31].
Traditional methods were incapable of monitoring the variations of kinematic parameter errors
online. To address this, the Stewart platform was first calibrated using the data from Table 4. Then,
a payload was applied, and the variations of kinematic parameter errors under payload conditions
were identified using the EKF method. The experimental results are shown in Fig. 6.

Table 4. Identified kinematic parameter errors (mm).

LS EKF
Legi| 6jy | Yy Ofy | Odyi | 6dyi | Ody ol; SJxi | Oy Oy | Odyi | Ody; | Ody ol;
1 | 0.146 |-1.560|-2.819|-2.564 |-2.675| 0.006 |-0.413| 0.118 |-1.374|-2.660|—2.285|-3.207 | 0.281 [-0.186
2 [-0.237|-0.160|-2.762 | -3.379 | -2.941|-0.190| 0.276 | 0.427 | 1.754 |-0.219|-3.148 |-3.205| 0.266 |-2.631
3 | 0.018 |-0.071]-2.398|-3.296| 2.561 |-0.017| 0.686 | 0.140 | -0140 |-2.243|-3.251| 2.046 |-0.463 |-0.143
4 | 1.348 |-1.765| 3.271 |-1.041| 3.339 | 0.287 |-1.384| 0.195 |-0.484| 1.876 |-1.949| 3.756 |-0.789|-0.531
5 | 1.574 |-0.254| 3.774 | 2.361 | 0.723 | 0.949 |-1.788|-0.472|-0.397| 1.514 | 1.459 | 1.399 | 0.378 | 0.126
6 |0.225 |-1.046|-2.167| 2.033 |-0.928| 0.977 | 0.746 |-0.797|-2.545|-0.861| 2.745 |-0.729|-0.351 | -2.352
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Fig. 5. Identification of kinematic parameter errors with the EKF algorithm.
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Fig. 6. Online identification of kinematic parameter errors.

As shown in Fig. 6, the kinematic parameter errors of the Stewart platform changed significantly
after the payload was applied. To address the impact of variations in kinematic parameter errors
on the kinematic accuracy of the Stewart platform, calibration experiments were conducted under
payload conditions of 20 kg and 40 kg, respectively. The experimental results are presented in
Fig. 7 and Table 5.

10
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Table 5. Comparison of pose errors before and after kinematic calibration.

After calibration
Pose errors Before calibration LS EKF

Datal Data2 Data3 Datal Data2 Data3
Position (mm) 3.9243 0.0734 0.1926 0.3854 0.0403 0.0398 0.0156
Orientation (°) 0.8524 0.0459 0.0552 0.0661 0.0124 0.0123 0.0103

In Fig. 7, since the least squares method was unable to identify the variations in kinematic
parameter errors, only the initial calibration under no-load conditions was performed. In Table 5,
Datal represents the calibration data under no-load conditions, Data2 represents the calibration
data with a 20 kg load, and Data3 represents the calibration data with a 40 kg load. Before the
calibration, the Stewart platform had a position error of 3.9243 mm and an orientation error of
0.8524°. After the calibration, the least squares method increased the average position error from
0.0734 mm to 0.1926 mm, and eventually reached 0.3854 mm. The mean value of the position
errors across the three trials was 0.2171 mm. The average orientation error increased from 0.0459°
to 0.0552°, and eventually reached 0.0661°. The mean value of the orientation errors across the
three trials was 0.0557°. In contrast, the proposed method reduced the average position error
from 0.0403 mm to 0.0398 mm, and eventually lowered it to 0.0156 mm. The mean value of the
position errors across the three trials was 0.0319 mm. The average orientation error decreased
from 0.0124° to 0.0123°, and eventually dropped to 0.0103°. The mean value of the orientation
errors across the three trials was 0.0116°. Compared to the least squares method, the proposed
approach improved position accuracy and orientation accuracy by 85.3% and 79.2%, respectively,
in terms of average position and orientation errors over three calibrations.

4.3. Comparison of dynamic trajectories

The aforementioned experimental results clearly demonstrated that the motion accuracy of
the Stewart platform gradually decreased over time when the traditional calibration method was
applied. To more intuitively monitor this change, a circular trajectory experiment was specifically
designed. Under the application of an external load, the deviation of the parallel robot’s motion
trajectory was observed, while the proposed kinematic calibration method was employed and
compared with the traditional calibration method. All experimental settings were kept consistent
with those of the static pose comparison experiment to ensure the uniformity of experimental
conditions and the reliability of the results thereby enabling a more accurate evaluation of the
performance differences between the different calibration methods.
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Figure 8 clearly illustrates the variation of the Stewart platform trajectory before and after
the calibration. After the calibration using the least squares method, the actual motion trajectory
diverged from the theoretical trajectory due to external loads. To show this deviation data more
clearly, the position deviations between the actual and theoretical trajectories are represented in
a polar coordinate system, as shown in Fig. 9. The corresponding data are summarized in Table 6.
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Fig. 8. Comparison of circular trajectories before and after the calibration: (a) trajectory comparison before the calibration,
(b)—(d) trajectory comparison after the calibration.
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Table 6 illustrates the influence of load on the kinematic accuracy of the Stewart platform. After
the calibration using the least squares method, the position deviation increased from 0.0771 mm to
0.2937 mm, and ultimately reached 0.6223 mm, with an average position deviation of 0.3310 mm.
In contrast, the proposed method consistently maintained the required kinematic accuracy, with
position deviations were 0.0515 mm, 0.0769 mm, and 0.0564 mm, with an average position
deviation of 0.0616 mm. Compared to the least squares method, the proposed method reduced the
average position deviation by 81.4%, across three trials.

Table 6. Comparison of deviation before and after the kinematic calibration.

After the calibration
Deviati Traiect Before the
eviation ajectory | o ation LS EKF
Stage 1 | Stage2 | Stage3 | Stage1l | Stage2 | Stage3
Position Circle 2.5334 0.0771 | 02937 | 0.6223 | 0.0515 | 0.0769 | 0.0564
deviation (mm)

4.4. Discussion

In the static pose comparison experiment, Fig. 5 demonstrates the rapid convergence of the
EKEF in identifying kinematic parameter errors. The applied load on the motion platform of the
Stewart platform caused gradual changes in the 42 kinematic parameter errors, as shown in Fig. 6.
The co-axial error curves on each drive leg were symmetrical, whereas the error curves for the
lengths of the six legs did not exhibit the same variation trend. This discrepancy was likely because
the load was not centred on the motion platform. Figure 7 illustrates the variation of pose errors
during the continuous change of kinematic parameter errors in the Stewart platform. As the least
squares method fails to identify the kinematic parameter errors of the Stewart platform online, the
pose error gradually increases. Compared to the least squares method, the EKF not only corrected
errors using observations (e.g., pose errors) but also dynamically updated state estimations through
an error prediction model. In contrast, the method proposed in this study effectively monitored the
changes in kinematic parameter errors, which enabled the pose error to decrease progressively.
The position error decreased from an initial 0.0403 mm to 0.0398 mm and finally reached 0.0156
mm. Simultaneously, the orientation error also reduced from 0.0124° to 0.0123° and ultimately
decreased to 0.0103°.

To clearly observe the influence of kinematic parameter error variations on the motion trajectory,
a dynamic trajectory experiment was designed. As clearly shown in Fig. 8, under the influence of
external loads, the actual motion trajectory of the Stewart platform gradually deviated from the
predetermined nominal trajectory. In contrast, the motion trajectory obtained using the proposed
method highly coincided with the nominal trajectory. Furthermore, by comparing Fig. 9(a) and 9(b),
it was observed that the smoothness of the compensated trajectory was suboptimal, primarily due
to external disturbances.

5. Conclusions
In this study an in-situ measurement system for a 6-DOF parallel robot was developed,

which enables online pose measurement. Based on this system, an online learning method for
kinematic parameter errors of the 6-DOF parallel robot was proposed. This method utilized the

13


https://doi.org/10.24425/mms.2025.154344

F.Renetal.: A 6-DOF IN-SITU TRACKING SYSTEM-BASED KINEMATIC PARAMETERS ONLINE LEARNING METHOD.. ..

measurement system and the EKF algorithm to obtain current kinematic parameter errors of the
parallel robot online. To validate the effectiveness of the proposed method, calibration experiments
were conducted and compared with the traditional least squares method. Through the analysis of
experimental results, the following conclusions are drawn:

1. Compared to traditional measurement methods, the proposed approach enabled online
measurement of the pose of the parallel robot and was more easily integrated with the
parallel robot system. Moreover, this method demonstrated significant advantages in terms
of data processing.

2. This method enabled online monitoring of the variations in kinematic parameter errors of
the parallel robot thereby ensuring its kinematic accuracy.

3. The experimental results demonstrated that the proposed method effectively identified the
kinematic parameter errors of the Stewart platform online. In the calibration experiments,
compared to the least squares method, the proposed method significantly improved the
positioning accuracy and orientation accuracy by 85.3% and 79.2%, respectively, for static
poses. In addition, it reduced positional deviations by 81.4%, for dynamic trajectories. The
experimental results further validate that the proposed method effectively maintains high
kinematic accuracy under varying external loads.

Future work will focus on further optimizing the online learning algorithm to improve
computational efficiency and enhance disturbance resistance. Additionally, efforts will be made
to extend the application of this method to various types of parallel robots, exploring broader
application prospects.
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7. Appendix

In this study, Euler angles (RPY) are used to represent the orientation of the parallel mechanism
due to their clear physical interpretation, which enables an intuitive description of the mechanism’s
rotation about three mutually perpendicular spatial axes: roll, pitch, and yaw. Specifically, roll
represents rotation around the x-axis, pitch represents rotation around the y-axis, and yaw represents
rotation around the z-axis. The rotation sequence of the Euler angle transformation is as follows:

Ry = RPY(a,B,y) = R(z,7)R(y, B)R(x, ). (20)

The rotation sequence first involves a rotation by an angle y around the z-axis, followed by
a rotation by an angle 8 around the y-axis, and finally a rotation by an angle o around the x-axis.
The corresponding rotation matrix expressions are as follows:

cy =sy O cB 0 s 1 0 O
R(z,y)=|sy cy O R(yv.,8/)=| 0 10 R(x,a)=10 ca —sa|. 2D
0 0 1 —sB 0 ¢cp 0 sa ca
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The rotation matrix is utilized to describe the rotational state of the moving platform relative

to the fixed platform. Additionally, during the coordinate transformation process, it facilitates
the conversion of points on the moving platform from the local coordinate system to the global
coordinate system.

In the kinematic error modelling of the Stewart platform, the kinematic parameter errors

primarily include the drive leg length errors, the centre point position errors of the upper Hooke
joint, and the centre point position errors of the lower Hooke joint. The error Jacobian matrix is
derived by taking partial derivatives of the Stewart platform’s kinematic equations, and it is used
to describe the relationship between the platform’s pose errors and kinematic parameter errors.
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