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Abstract

To address the disordered inspection paths and long inspection time encountered when coordinate measuring
machines (CMMs) inspect free-form surface parts, an improved ant colony algorithm was proposed to optimize
the inspection path and thereby improve inspection efficiency. To enhance the optimization performance of
the ant colony algorithm and overcome its shortcomings, such as low search speed and susceptibility to local
optimal solutions, this work improves the initial pheromone distribution, pheromone evaporation factor, and
pheromone update strategy and introduces a local search strategy. The experimental results revealed that
the improved ant colony algorithm had strong search directionality in the early stages of iteration, higher
search speed, and an enhanced ability to escape from local optimal solutions; the inspection paths of the
free-form surface optimized by the improved ant colony algorithm were neat and aesthetically pleasing, and
the inspection efficiency increased by up to 14.75%, 23.59%, and 34.21% compared with those of the classic
ant colony algorithm, artificial bee colony algorithm, and genetic algorithm, respectively.

Keywords: free-form surface, path planning; ant colony algorithm, coordinate measuring machine.

1. Introduction

Free-form surfaces find extensive application across multiple sectors, including but not limited
to aeronautics, tooling, automotive, and medical industries, owing to their varied configurations
and other contributing aspects [1]. Coordinate measuring machines (CMMs) are commonly used
for inspecting the size and shape accuracy of free-form surface parts to determine whether they
meet the expected requirements because of their high inspection accuracy and simple operation.
When CMMs are used to inspect free-form surfaces, the number of measurement points (MPs),
the arrangement strategy of the MPs, and the quality of the inspection path (IP) plan are important
factors that determine the inspection efficiency. Consequently, it is essential to devise an optimal IP
for the MPs prior to conducting the inspection. The number and distribution of MPs determine the
effectiveness of the inspection (that is, whether the inspection results can reflect the form error of
free-form surfaces). The optimization of the IP does not affect the effectiveness of the inspection.
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The purpose of optimizing the IP is to further improve the inspection efficiency. Therefore, this
paper does not use the inspection results (the form error of free-form surfaces) as an indicator to
evaluate the performance of the proposed algorithm. Instead, the experiments are conducted under
the hypothetical condition of using 100, 200, and 300 randomly distributed MPs.

In order to effectively improve the inspection efficiency of CMMs, many scholars have
conducted in-depth research on the number and layout of MPs. Kamrani et al. [2] determined
the number and position of MPs for prismatic parts and some axially symmetric parts through
methods such as feature recognition and accessibility analysis. Abdulhameed et al. [3], basing on
node vectors, divided surfaces into regions of different complexities and recursively determined
the number and distribution of MPs in each region according to curvature, effectively reducing
the number of MPs to improve inspection efficiency. He et al. [4] proposed an adaptive sampling
strategy based on a machining error model, which improved both inspection efficiency and accuracy.

At the same time, a large number of scholars have improved the inspection efficiency of CMM
for free-form surfaces through path optimization. For example, Virgil et al. [5] used an optimization
algorithm based on matrix relaxation and the nearest neighbour method to optimize the IP of car
bodies, which significantly improved inspection efficiency. Li and colleagues [6] introduced an
enhanced search algorithm that leverages the concepts of adjacent feature mapping and convex hulls,
which performed well in IP planning for structural aerospace parts and effectively avoided collisions.
Liu ez al. [7] used a local path generation method based on the probe trajectory and its rotation to
quantify the inspection time (IT) in the IT matrix, this led to a substantial enhancement in the in-
spection process of free-form surface components and substantially diminished the count of virtual
points required. And a hybrid path optimization algorithm based on ant colony optimization (ACO)
and genetic algorithm (GA) was proposed by Tsagaris, which reduced the IT by 50% compared
with the GA [8]. Yi et al. [9] introduced an all-inclusive strategy for optimizing the IPs of free-form
surfaces, which employs a specialized algorithm to expedite the computation of the probe’s reacha-
bility cone using graphical processing capabilities. This method effectively reduced the number of
rotations of the probe head by grouping the MPs that use the same inspection posture and inspecting
them in order, thereby shortening the IT. Li et al. [ 10] divided the MPs into different regional groups
on the basis of the orientation relationship of the points to be measured and optimized the IP of
the points within the group via the Lin—Kernighan algorithm, whereas the path between the groups
was globally optimized via the greedy algorithm. Although the optimized IP was significantly
shortened, the probability of this algorithm getting into a local optimal solution was relatively high.

Abdulhameed et al. [11] combined artificial neural networks with GAs and applied them to
the optimization of IPs for free-form surfaces, which shortened the IP by approximately half
and greatly improved the inspection efficiency. Han er al. [12] applied the ACO to local path
optimization and optimized multitarget inspection through a path reoptimization algorithm, which
significantly improved the CMM inspection efficiency and achieved an intelligent inspection
process. Stojadinovic et al. [13] optimized the IP of prismatic workpieces via the ACO and
proposed an inspection model for prismatic parts via a CMM, which effectively improved the
inspection efficiency; however, the model was limited to prismatic parts and had a large limitation.
Zhao and colleagues [14] utilized the ACO to refine the IP for substantial surface components,
demonstrating a reduction in IP length and an increase in inspection efficiency when contrasted
with the conventional zigzag algorithm. Zakharov et al. [15] used the ACO to optimize the
trajectory length of the probe to minimize it and to effectively reduce the time cost when the
CMM inspects parts and compared it with the branch and bound algorithm in experiments. The
experiments revealed that the solution optimized by the ACO was closer to the optimal solution,
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and the optimization process took less time, indicating that the inspection efficiency of the CMM
was effectively improved. He and team [16] harnessed the Kuhn—Munkres algorithm to refine the
IP for enhanced CMM safety and efficiency. They introduced an automatic collision inspection
algorithm which proved adept at preventing probe-to-part collisions during the inspection. Zhao et
al. [17] proposed a high-efficiency comprehensive IP optimization method through the exploration
of the random tree algorithm and GA for multinode search, which included the calculation
algorithm for the inspection direction cone and probe reachability cone, classified the MPs to be
measured, and finally applied the method to the five-axis coordinate-measuring machine, which
effectively improved the inspection efficiency. Han et al. [18] used the ACO for local and global
IP optimization and proposed a spherical model for collision inspection and avoidance in the
inspection process. Empirical results demonstrated that the approach significantly enhanced both
the efficiency and safety of the measurement process using the machine. Lin ef al. [19] proposed a
workpiece inspection system based on 3D graphic scanning recognition of MP coordinates, in
which the adaptive group-based differential evolution (AGDE) algorithm proposed for optimization
of the IP integrated the concept of grouping and determined the search method in the algorithm
search iteration process by referring to the optimal solution for each group, thereby effectively
improving the local search ability and overall search efficiency. The experiments revealed that the
above method could obtain the shortest collision-free IP, ensuring a high-efficiency inspection
process under safe inspection conditions.

The path planning problem of free-form surface MPs is actually also a combinatorial
optimization problem. In the realm of combinatorial optimization challenges, the well-known
travelling salesman problem (TSP) serves as a quintessential instance, with numerous experts and
academics having delved into its intricacies. After years of research on combinatorial optimization
problems, intelligent algorithms, such as GAs [20,21], ACOs [22-26], simulated annealing
algorithms [27,28], artificial bee colony algorithms (ABC) [29,30], cuckoo search algorithms [31],
and bat algorithms [32] have become the mainstream methods for solving this type of problem.
Among the many intelligent search algorithms, the ACO is widely used because of its high search
accuracy, simple structure, and good performance in solving combinatorial optimization problems.
This work also improves the ACO and applies it to the path planning of free-form surface inspection.

To address the issues of slow search speeds and a propensity for local optima in the ACO,
this research introduces several modifications. These include refining the initial pheromone
distribution, adjusting the pheromone evaporation rate, and updating the pheromone update
strategy, along with the integration of a local search tactic. The resulting improved ant colony
algorithm (IACO) exhibits enhanced search directivity in the early phases of iteration, rapid
convergence, a reduced likelihood of getting trapped in local optima, and improved search
precision. Two intricate free-form surface workpieces were crafted, and a variety of MPs were
randomly produced to evaluate the algorithm’s efficacy. Comparative simulation and inspection
experiments were conducted against the ACO, ABC, and GA.

The paper is arranged as follows. The Section 2 details the composition of the IP when the
CMM inspects free-form surfaces and analyses the mathematical model of the IP to be optimized.
Section 3 summarizes the basic structure of the ACO and introduces the specific strategies of the
TACO in this paper. Section 4 discusses the experimental simulation results and experimental
inspection results as well as analyses the experimental effects of the IACO. Section 5 provides
a summary of the work of this paper. This paper is one of the outcomes of our research project. The
scope of our research project is the efficient and high-precision inspection of free-form surfaces,
with the aim of providing theoretical and technical support for precision inspection in the context
of intelligent manufacturing.
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2. Mathematical model of the free-form surface inspection path

When the CMM inspects free-form surfaces, the moving trajectory of the probe is as shown in
Fig. 1. The figure only illustrates the probe movement process for two MPs, but other MPs can also
be used as an example. At the beginning of the inspection work, the probe moves from the waiting
position to the positioning point (PP) of the first MP (the PP aligns with the normal vector of the
MP, at a certain safe distance from the MP), then approaches the MP along the normal direction of
the MP, then retreats to the retreat point (RP), and moves to the next PP; the probe experiences
changes in speed and acceleration during the movement and inspection process, reaching high
positioning speed, touch inspection speed, and retreat speed.

o Positioning points: Py, ;, Pp i1
o Retreat points: Py ;, P i+1
® Measurement points: Py, i, Py i1

Probe

Workpiece

Fig. 1. Schematic diagram of the local inspection path on a free-form surface.

Figure 1 shows that when two MPs are inspected, the probe movement path can be divided
into three subpaths, namely, d|, d» and /;. Among them, the distances d; and d; can be considered
constant and are set by the experimental personnel for the equipment parameters, but /; is not
a constant value. Therefore, when inspection work is implemented, the total distance of the probe
movement path is as follows:

n—1
D:(d1+d2)n+Zli (1)
i=1

where n is the number of MPs, d; is the distance from the PP to the corresponding MP, d; is the
distance from the corresponding RP to the MP, /;(i = 1,2, ...,n — 1) is the distance from the RP
of MP i to the PP of MP i + 1, and D is the total distance of the probe movement trajectory when
the equipment inspects n MPs.

When the CMM is performing inspection work, because the distance d; from the PP to the
corresponding MP and the retreat distance d, are known fixed values, only the distance /; between
the RP of MP i and the PP of MP i + 1 needs to be optimized. To make the probe movement
trajectory distance as short as possible during inspection work, it is necessary to optimize the total
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MP distance L of n MPs, which can be taken as the optimization objective function and expressed
as follows:

n—1 n—1
L= Z li = Z \/(Xi+1 —xi)7 + (yir1 =¥ + (zin1 — 22)°, 2
i=1 i=1
where (x;, y;, z;) are the spatial coordinates of MP i and where (x;+1, yi+1, Zi+1) are the spatial
three-dimensional coordinates of MP i + 1.

3. Overview and improvement of the ant colony algorithm

3.1. Classic ant colony algorithm

The ACO refers to the foraging behaviour of ants in nature, which discretizes the problem
and optimizes it into a node model, abstracts the artificial ants to randomly traverse each node to
construct possible solutions, and then uses a positive feedback mechanism to reasonably adjust the
pheromone content of the search path to gradually search for the optimal solution. When the ACO
is used to optimize the IP of free-form surfaces, it is assumed that m ants are randomly placed on
n MPs; set C represents the node set of all MPs; d;; represents the distance between MP i and MP
J; and 7;; represents the pheromone value on path (ij) at a certain moment, where 1;; = 1/d;;
reflects the expected degree of ants transferring from MP i to MP j at a certain moment. The basic
model of the ACO is as follows:

1. Pheromone initialization

7;7(0) = const, 3)

where 7;;(0) means that at the initial moment, all paths have the same pheromone concen-
tration; const is a constant.

2. State transition probability At moment #, ant k independently selects the next unvisited
MP according to the transfer probability PZ (1) calculated by (4) and records the currently

selected MP in the tabug (k = 1,2,--- ,m) list:

allowedy = {C — tabuy }

701 UZYC) S
PEO=1 ST 01 01 . @

seallowedy

0, J ¢ allowedy

where allowedy, is the set of MPs that ant k can currently choose; a represents the pheromone
heuristic factor, which indicates the extent to which pheromones affect the path chosen by
the ants; 8 denotes the expected heuristic factor, signifying the significance of the heuristic
function in determining the ants’ path selection.

3. Pheromone update After all ants have completed a complete traversal, that is, they have
independently completed the construction of a complete path solution, the pheromone on
the nodes of the current feasible solution is updated according to (5):

T[j(l+ 1) = (1 —pzn' T,‘j(l‘) +AT,'J'([)
AT,']'(I) = ZAT{CJU) ’ (5)
k=1
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where p € (0,1) is the pheromone evaporation coefficient; At;; (¢) is the pheromone
increment released by all ants on path (ij) during this search, which is usually defined by
the ant cycle model via global path information updating:

0 .
K L—, k e (l,])
Atin) = bk , (6)
0, others

where Q is the total amount of pheromone and where Ly is the path length searched by ant
k in this search.

3.2. Improved ant colony algorithm

3.2.1. Improvement of the initial pheromone

In the ACO, when ants start searching, the initial pheromone of each search path is an equal
constant value, which makes the ACO very blind at the beginning of the iteration, resulting in
a low search speed. To enhance the algorithm’s search capabilities during the early phases, the
configuration of the initial pheromones has been optimized in the following manner:

Qi s j
7,;(0) =4 dij . (7)
0, others

As depicted in (7), the initial pheromone concentration at each MP is set to be inversely related
to the distance separating the MPs at the commencement of the iteration process, which gives
the algorithm a certain directionality at the beginning of the iteration, effectively reducing the
interference of invalid paths and increasing the search speed of the algorithm.

3.2.2. Improvement of the pheromone evaporation factor

The pheromone evaporation factor p is an important parameter that ascertains whether the
ACO can search for the optimal solution because it determines the pheromone content on each
search path after each iteration of the ACO. The value of the pheromone evaporation factor p
should be set reasonably. If the pheromone evaporation rate is set too high, the pheromones on
the paths identified during each cycle of the algorithm will dissipate rapidly. This can lead to the
ACO converging too swiftly, which may result in the omission of potentially superior solutions.
Conversely, if the evaporation rate is set too low, the ACO might become fixated on suboptimal
solutions, thereby hindering the discovery of more optimal paths. Therefore, it is crucial to adjust
the pheromone evaporation rate to an optimal level that prevents premature convergence while
avoiding stagnation in local optima. This section improves the pheromone evaporation factor p
so that it conforms to the normal distribution. The advantage of the improvement is that at the
beginning of the iteration, the pheromone is an important reference for ants to choose the search
path, so a smaller pheromone evaporation factor p value can ensure that the algorithm passes
through the initial iteration quickly and increases the search speed. During the central phase of the
algorithm’s iterative process, the pheromone levels on each potential path remain relatively stable,
with minimal numerical fluctuations. This constancy can lead the ACO to a local optimum. At this
juncture, increasing the pheromone evaporation factor p can enlarge the solution space explored
by the ants, facilitating an escape from local optima. As the iteration process advances, once all
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probable paths that could contain the optimal solution have been explored, the optimal solution is
ascertained. At this point, reducing the pheromone evaporation factor p enhances the pheromones’
guiding influence, thereby hastening the algorithm’s convergence towards the optimal solution.
The improved pheromone evaporation factor is determined by (8):

1  (ky=)?

p(k) = e 2, ®)

2no

where ky, is the index of the ant that has currently found the shortest path.

D,
p=— ©)
(- n)’
= (10)

where 7, is the pheromone amount of the shortest path currently found by the ant; u is the average
pheromone amount of the shortest path found by the ant after completing one iteration; o is the
variance of the pheromone amounts of the best path and the worst path after completing one
iteration; and m is the total number of ants.

3.2.3. Differentiated pheromone updating strategy

The positive feedback mechanism significantly influences the iterative search routine of
the ACO, dictating the search trajectory of each ant during every iteration by modulating the
pheromones along the potential paths. The downside is that the adjustment of pheromones only
takes the path length as a reference standard and does not evaluate the quality of all known
paths, which makes the adjustment blind and leads to a decrease in the search speed of the
algorithm. Therefore, this section improves the pheromone updating strategy. After each iteration
is completed, the best path length Ly, the worst path length Ly, and the average path length
Laye are calculated; then, a certain amount of pheromone incentive is given to the better paths
with lengths less than L,,., and the pheromone amount of the worse paths with lengths greater
than L,y is reduced. The pheromone increment is calculated via (11):

Lae— L 1
_fave 7 Bk —, Lig < Lae
Alej (1) = Lave — Lpest Ly (11)
Liy—-L 1
- k =~ s Lk > Lave’

Lave - Lbest Lworst

where A‘rl’.‘j(t) is the path length of ant k found in this iteration and Ly is the average path length
after this iteration is completed.

To ensure that the ants in the next iteration continue to search along the better paths, the shortest
path found in each iteration is given a pheromone reward AT;‘j, and the improved pheromone
updating strategy is shown in (12), where it is calculated according to (13):

Tij(t+1):(1—p)'Tij(l‘)+ATij(l‘)+AT?j, (12)
* o

Ati, = = (13

/ Lbest )
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Equations (11) to (13) adjust the pheromones on the basis of the known quality of each path.
Positive feedback adjustment is applied to better IPs, and negative feedback adjustment is applied
to worse IPs, resulting in a differentiated adjustment of IP pheromones which exploits the better
paths that have been searched and increases the search speed of the algorithm to a certain extent.

3.2.4. Local search strategy

To boost the ACO’s capability to escape local optima and to refine its search precision, a local
exploration is conducted on superior paths that exhibit path lengths below the average value Ly
during each cycle of iteration. First, two random numbers r; and ro(r; # rp,r; > 1,7y < n) are
generated via logistic chaotic mapping, and MPs 7 and r, on the path are swapped. If the new
path length is shorter after the position exchange, the result is accepted; otherwise, it is not. The
principle of the local search strategy is represented by (14) to (15):

R = {P(1)7P(2)’ ,P(V]),P(rl + 1), 9P(r2)7P(r2+ 1)» »P(n)}7 (14)
R, = {P(l)’P(2)7 ,P(r2)’P(r1 + 1)’ ’P(rl)’P(r2+ 1), ’P(n)}9 (15)
where R is an IP with a path length less than L,y.; R’ is the new IP after the local search; P(n)
represents MP n on a certain path; and n(n > 2) is the number of MPs.
3.2.5. Steps of the improved ant colony algorithm

Upon incorporating the aforementioned enhancements into the ACO, the improved version,
referred to as TACO, demonstrates superior search capabilities and increased search velocity
compared with the original ACO. The detailed procedure of the IACO is outlined below, with
a corresponding flowchart depicted in Fig. 2.

Yes

Initialization parameters: No
m, Q, N, Nyax, Tij, AT;j
l:
Start iterations
Differentiated
:l pheromone update

T

Local search

T

Record the Lpest, Lave
a'nd LWO]"St

Select node

All nodes
visited ?

Fig. 2. Flowchart of the improved ant colony algorithm.

Step 1: The parameters are initialized. The number of ants m and pheromone total Q are
initialized, the maximum number of iterations Ny, is set, the initial pheromone concentration
7;;(0) of each path is calculated according to (7), the initial pheromone increment At;;(0) = 0 is
set, and the tabu list is initialized such that it is empty.

Step 2: The initial positions of m ants from n MPs are randomly selected and added to the tabu list.
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Step 3: Each ant selects the next MP according to (4) and updates the tabu list.

Step 4: If each MP has been traversed, the shortest path Lyeg, the longest path Ly, and the
average path L,y are recorded.

Step 5: According to (14) and (15), a local search is performed on the better paths with lengths less
than L,y.. If the new path is shorter, it is accepted, and the path record is updated; otherwise, it is not.

Step 6: The pheromone concentration of each path is updated according to (11) to (13).

Step 7: It is ascertained whether the iteration has attained the maximum allowable count. If it
has, the iteration is ended, and the shortest path is output; otherwise, Step 2 is repeated, and the
next iteration is started.

4. Experiments and analysis of results

4.1. Simulation experiment

To assess the practicality of the IACO within this study, two specimens with intricate free-
form surfaces were fabricated for simulation purposes, as illustrated in Fig. 3. Here, the base
dimensions of Workpiece 1 are 110 mm X 110 mm X 8.2 mm and the main body dimensions are
80 mm X 80 mm X 7.3 mm; while the base dimensions and main body dimensions of Workpiece
2 are 120 mm X 120 mm X 10 mm and 100 mm X 100 mm X 75.9 mm, respectively. The figure
shows that there is a large difference in the complexity of the two workpieces, among which
workpiece (b) has a more complex surface shape, a large span in the height direction, and a large
change in curvature. To simulate complex inspection conditions, MPs were randomly generated
on each surface model, taking 200 MPs as an example, as shown in Fig. 4.

Main body N

Base

Fig. 3. CAD model for the simulation experiment: Workpiece 1 (left) and Workpiece 2 (right).

Fig. 4. MP distribution: Workpiece 1 (left) and Workpiece 2 (right).
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The program was written in MATLAB 2022b software, and the IACO was compared with
the ACO, GA, and ABC. The algorithm parameters were set as follows: m = 30, O = 30,
N =0, Npax = 500 and 7;;(0) = 0. For illustrative purposes, this study utilizes 200 MPs that are
randomly dispersed to exemplify the optimization process. Figures 5 and 6 present the optimization
outcomes for the IP of two free-form surface workpieces, labelled as Workpiece 1 and Workpiece 2,
respectively, using a variety of optimization algorithms. Additionally, Fig. 7 illustrates the iterative
progression of each optimization algorithm as they perform IP optimization on the two workpieces.

Figures 5 and 6 show that, compared with those of the ACO, GA, and ABC, the IP optimized by
the IACO is neater and more aesthetically pleasing, and there is no local intersection in the IP, which
can effectively reduce unnecessary IP consumption. The iterative process of the various algorithms
in Fig. 7 shows that, compared with the ACO, the IACO has a better initial solution due to the
reasonable improvement in the initial pheromone distribution, has a strong search directionality,
and can search for the optimal solution more quickly. Thanks to the application of a differentiated
pheromone update approach and an optimal pheromone evaporation rate, the IACO manages to
secure a higher quality of optimal solutions. In contrast, the ACO frequently encounters issues with
local optima and suffers from reduced search precision. The GA exhibits a sluggish convergence
rate and inferior solution quality, with a propensity for a decline in population diversity as the
iteration progresses. Meanwhile, the ABC exhibits a heightened dependency on the initial solution,
and while it demonstrates better convergence and search accuracy than the GA, it still falls short
when compared to the IACO. In conclusion, the [ACO demonstrates superior overall performance
over the ACO, GA, and ABC, showcasing robust directional search capabilities early in the iteration
process, rapid convergence, robustness against local optima, and high search precision.

GA optimized path results: 1166.78 (mm) ABC optimized path results: 954.88 (mm)

ACO optimized path results: 936.55 (mm) IACO optimized path results: 858.13 (mm)

Y (mm) 7 X (mm) Y (mm) ; e X (mm)
0

Fig. 5. Optimization results of the inspection path for Workpiece 1 via various algorithms.
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GA optimized path results: 1262.38 (mm) ABC optimized path results: 1247.92 (mm)

Z (mm)
Z (mm)

Z (mm)

> 4 P
. 20

B0 X (mm)
100 ©

Y (mm)

Fig. 6. Optimization results of the inspection path for Workpiece 2 via various algorithms.

8000

- a-GA - =-GA
7000 | -4~ ABC 10000 -4~ ABC
\ - e~ ACO ' - *- ACO
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804000 - 2]
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- -
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Iterations Iterations

Fig. 7. Iteration process of various algorithms for optimizing the inspection path: Workpiece 1 (left) and Workpiece 2
(right).

Table 1 shows the experimental simulation results of different MP quantities for the two
free-form surface workpieces. In the text, Diaco represents the IP length optimized by the IACO,
with the optimization results of the other algorithms following suit. Compared with that optimized
by the ACO, when the MPs is 100, the IP optimized by the IACO is shortened by at least 2.2% and
by 2.41% at most; when the MPs is 200, the IP optimized by the IACO is shortened by at least
8.37% and 8.74% at most; and when the MPs is 300, the IP optimized by the IACO is shortened by
at least 3.53% and 9.29% at most. Compared with that optimized by the ABC, when the MPs are
100, 200, and 300, the IP optimized by the IACO is shortened by 3.85%, 10.13%, and 28.68% at
most, respectively; compared with that optimized by the GA, when the MPs are 100, 200, and 300,
the IP optimized by the IACO is shortened by 9.18%, 26.45%, and 48.9% at most, respectively.

11
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Table 1. Simulation results for different MP quantities on each workpiece.

Results Workpiece 1 Workpiece 2
MPs 100 200 300 100 200 300

Dga(mm) 681.85 1166.78 2261.33 907.62 1262.38 2198.03

D ppc(mm) 627.47 954.88 1570.25 863.87 1247.92 1574.01

D aco(mm) 634.54 936.55 1203.26 849.23 1249.06 1237.53
Diaco(mm) 619.25 858.13 1160.75 830.58 1139.84 1122.52

1 — Diaco/Dga 9.18% 26.45% 48.67% 8.49% 9.71% 48.9%
1 — Diaco/Dasc 1.31% 10.13% 26.08% 3.85% 8.66% 28.68%
1 — Diaco/Daco 2.41% 8.37% 3.53% 2.2% 8.74% 9.29%

Table 2 shows the time spent on optimizing the IP by each optimization algorithm. In the text,
Tr-1aco represents the time expenditure of the IACO, with the time costs of the other algorithms
being analogous. The data in Table 2 indicate that because the IACO has a good search directionality
from the beginning of the iteration, the time required for optimization is relatively short.

Table 2. Time spent on optimizing the inspection path by different optimization algorithms.

Results Workpiece 1 Workpiece 2
MPs 100 200 300 100 200 300
Tr-gA (8) 69 135 187 72 133 191
Tr-ABC (8) 95 198 310 97 196 305
Tr-aco (s) 59 113 165 61 111 162
Tr-1ACO (8) 37 41 54 38 43 58

4.2. Inspection experiment

Free-form surface Workpiece 1 and Workpiece 2 were placed on a German Hexagon Leitz
Reference HP CMM for inspection experiments. The software used by this CMM is PC-DMIS. The
accuracy of the CMM: MPEE = 0.9 + L/400um. The diameter of the probe standard is 5 mm, and
the positioning distance and retreat distance of the probe are both 10 mm. The moving speed of the
probe is set to 20 mm/s. The IPs optimized by the IACO, ACO, GA, and ABC were experimentally
inspected. The experimental process is shown in Fig. 8, and the IT spent on each workpiece is
shown in Table 3. Table 4 shows the total time spent on each optimization algorithm, where
Tr-1aco represents the total time spent by the IACO, including the time spent on the optimization
process Tr-1aco and the inspection process T1_jaco, and the time spent by the other optimization
algorithms is similarly defined.

Table 3 shows that under basically the same experimental conditions, the shorter the IP of the
free-form surface, the shorter the IT required for the CMM inspection experiment. Among them, the
IP optimized by the IACO takes the shortest IT. Compared with that optimized by the ACO, when the
MPs is 100, the IT of the IP optimized by the IACO is shortened by at least 5.08% and 5.27% at most;
when the MPs is 200, the IT of the IP optimized by the TACO is shortened by at least 10.85% and
10.86% at most; and when the MPs is 300, the IT of the IP optimized by the IACO is shortened by at
least 14.42% 14.75% and at most. Compared with that improved by the ABC, when the MPs are 100,
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Fig. 8. CMM inspection process: Workpiece 1 (left) and Workpiece 2 (right).

Table 3. Inspection time for different inspection paths.

Results Workpiece 1 Workpiece 2
MPs 100 200 300 100 200 300
Ti—Ga (8) 620 1176 2540 709 1149 2668
Ti—aBC (8) 580 1090 2038 678 1132 2215
Ti—aco (s) 586 1075 1771 667 1133 1873
Ti-1aco (8) 574 1018 1605 653 1066 1598

Table 4. Total time spent and efficiency comparison.

Results Workpiece 1 Workpiece 2

MPs 100 200 300 100 200 300

Tr—ga (5) 689 1311 2727 781 1282 2859

Tr-aBc (8) 675 1288 2348 775 1328 2520

Tr—aco (s) 645 1188 1946 728 1244 1935

Tr_1aCO () 611 1059 1659 691 1109 1656

1 — Tr_1aco/Tr—ca 11.32% 19.22% 34.21% 11.52% 13.49% 32%
1 — Tr_1aco/Tr-ABC 9.48% 17.78% 23.59% 10.84% 16.49% 22.86%
1 = Tr_1aco/Tr-aco 5.27% 10.86% 14.75% 5.08% 10.85% 14.42%

200, and 300, the IT of the IP optimized by the IACO is shortened by 10.84%, 17.78%, and 23.59% at
most, respectively; compared with that optimized. By the GA, when the MPs are 100, 200, and 300,
the IT of the IP optimized by the [ACO is shortened by 11.52%, 19.22%, and 34.21% at most, respec-
tively. On the other hand, the data in Table | show that the more MPs there are in the optimization
of the IP of the free-form surface workpiece by the IACO, the more obvious the optimization effect.

5. Conclusions

To address the disordered IPs and long IT encountered when CMMs inspect free-form surface
parts, this work uses the IACO for the IP planning of free-form surfaces, which can effectively
shorten the IP and time. The ACO suffers from prolonged search duration and susceptibility to
getting trapped in local optima. This work has made improvements, including ones in the initial
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pheromone distribution, the pheromone evaporation factor, the pheromone update strategy, as well
as introduced a local search strategy. After simulation experiments and inspection experiments,
compared with those optimized by the ACO, ABC and GA, the inspection efficiency optimized
by the IACO increased by up to 14.75%, 23.59% and 34.21%, respectively. The experimental
results show that the IACO of this paper can improve the work efficiency when the CMM inspects
free-form surfaces and can effectively shorten the IT.

However, the factors that determine the inspection efficiency of free-form surfaces are not
only the length of the IP but there are also others closely related to the number and distribution
of MPs. In the actual inspection of free-form surfaces, only a reasonable number of MPs and an
appropriate layout can accurately reflect the form error of free-form surfaces. The experiments
in this paper used 100, 200, and 300 randomly distributed MPs, which cannot fully reflect the
errors of free-form surfaces. This paper merely provides a reference algorithm for optimizing the
IP of free-form products (such as blades, impellers, moulds, etc.) to further improve inspection
efficiency. The actual number and layout of MPs used in the inspection process should still be
determined based on specific circumstances. This paper does not consider the impact of different
numbers and layouts of MPs on the inspection accuracy of free-form surfaces, and the IACO
proposed in this paper is only applicable to the optimization of IPs for free-form surfaces with
a small number of MPs. Therefore, for future work, we will explore large-scale MP inspection
technologies for free-form surfaces and include the impact of different numbers and distributions
of MPs on the inspection accuracy of free-form surfaces in the scope of consideration.
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