ARCHIVES
of Issue 4/2025

FOUNDRY ENGINEERING 5-9
10.24425/afe.2025.155373

AFE

check\@\

Powered by iThenticate

ISSN (2299-2944)
Volume 2025

1/4

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

Analysis of Anomalies in the Thermal-
Mechanical Fatigue Process Using Selected
IT Tools

K. Jaskowiec ™ *

, D. Wilk-Kolodziejezyk "

, K. Nosarzewski?

2} ukasiewicz Research Network - Krakow Institute of Technology, Krakéw, Poland
® AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakéw, Poland
*Corresponding author. e-mail address: krzysztof.jaskowiec@kit.lukasiewicz.gov.pl

Received 31.10.24; accepted in revised form 22.04.25; available online 27.10.2025

Abstract

The article uses the results obtained during the tests of a wide group of metal alloys using a device operating by the Coffin method. The
measure of resistance to thermal-mechanical fatigue is the number of cycles that the sample withstands before a macrocrack occurs, at a
fixed current and temperature range. The device offers the possibility of working in two modes of sample mounting. The first mode allows
the sample to freely elongate parallel to its axis, while the second mounting mode limits this elongation by using a transducer. The aim of
the publication is to present possible solutions for anomaly detection. Anomaly detection concerns traps that may occur during the
measurement process. Advanced machine learning methods were used to analyze and detect anomalies in data regarding thermal fatigue
resistance. Isolation Forest and One-Class SVM algorithms were used for anomaly detection, which allow for effective identification of
unusual patterns in the data. The conducted research confirmed the usefulness of one of the selected methods in the process of anomaly

identification using the example of elongation.
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1. Introduction

Thermal fatigue is the process of degradation of mechanical
parameters, the formation and development of structural defects
and damages (cracks) as a result of changes in internal energy under
the influence of a periodically changing temperature field. For this
reason, various modifications are introduced in the metallurgical
process, consisting of, for example, prior crushing of graphite
contained in cast iron or introducing additional elements such as
chromium, nickel, molybdenum or aluminum into the alloy, which
modify the properties of this material [1, 2]. To study the influence
of chemical composition modification and the method of cast iron
processing on strength parameters, it is necessary to conduct
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thermal fatigue tests of standard samples of casting material. Due
to the multitude of factors influencing the material's resistance to
thermal fatigue under the influence of a periodically changing
temperature field, there are currently no standard solutions for
devices for conducting this type of tests [3-5]. Some solutions are
based on the general solution presented by Coffin, in which the
tubular sample is fixed in a rigid holder in a frame that is non-
deformable in relation to the sample [6]. Thermal fatigue rarely
occurs in its pure form, more often it is a combination of: cyclic
mechanical stresses (thermal-mechanical fatigue), corrosive
processes (thermal-corrosive fatigue), abrasion, etc., which causes
the wear mechanism to be different compared to creep. In the
literature, one can find certain dependencies of thermal fatigue
resistance on material properties, the values of which should be as
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high as possible for: thermal conductivity, strength, elongation, and
the values of properties as low as possible for: modulus of
elasticity, expansion. However, these estimates are very general
and difficult to apply [7, 8]. For this reason, tests were carried out
to use selected computer tools for predicting phenomena occurring
during the thermal fatigue process. Prediction, often called the
prediction of future events based on the analysis of historical and
current data, is an important tool in many industries, including
casting production. This process involves the analysis of large data
sets, which allows for the prediction of future results and making
decisions based on them. Thanks to prediction, it is possible to
optimize production, minimize risk, reduce costs and increase
efficiency [9, 10].

Another interesting topic is the evaluation and detection of
deviations from the typical thermal fatigue process. Detection of
anomalies can be important in many aspects of casting production,
for example, monitoring the chemical composition of the metal
alloy. Deviations from established parameters can indicate that
materials arriving at the production facility are defective,
incomplete, of poor quality, or not as ordered. Real-time
temperature monitoring during the melting process is also essential.
Anomalies in temperature can signal furnace problems or
irregularities in the molten metal. Analysis of the casting shape
compared to expectations can help detect defects or deviations.
Anomaly analysis can include examining the casting surface to
detect defects such as cracks, pores, or excess material [11, 12].
Isolation Forest is a machine learning algorithm used for anomaly
detection, also known as iForest. It was developed by Fei Tony Liu,
Kai Ming Ting, and Zhi-Hua Zhou in 2008. Its unique method is to
isolate anomalies, rather than building a profile of normal data,
which is the typical approach in other anomaly detection
techniques [13]. One-Class SVM (Support Vector Machine) is a
machine learning technique for anomaly detection or classification
tasks where only data from a single class is available. It is a specific
case of the SVM algorithm, which is traditionally used to solve
classification and regression problems with data from multiple
classes. One-Class SVM focuses on finding a decision boundary
around data from one class, in order to best separate this data from
the rest of the feature space, where new, previously unseen data
points may appear [14].

Thermal fatigue of iron alloys is a very complex issue. It covers
many scientific fields, including: materials engineering, solid state
physics, chemistry, thermodynamics, mechanics. A number of cast
elements or finished mechanically processed products are operated
in a variable temperature field with varying intensity. The
development of the automotive, metallurgical (iron and non-ferrous
metals), glass, shipbuilding industries, etc. has revealed new
challenges for the development of increasingly better casting
materials resistant to the effects of variable temperature fields. The
possibility of using modern computer tools is an issue with great
development potential. Some computer tools may be helpful for
this purpose.

2. Description methodology and materials

2.1. Thermal-mechanical resistance

measurement

fatigue

The measurements were carried out on a device based on the
L. F. Coffin method, in the temperature range of 100 - 800°C (WP1
sample), for the warm8 sample a lower maximum temperature of
100 - 600°C was assumed. In this method, heating is carried out by
passing current through the tested sample. A constant current of
330 A was set, which flowed through a sample with a measuring
section cross-section of 30.6 mm?. The cooling rate was carried out
at an average rate of 10°C/s. The cycle consisted of heating and
cooling. The heating and cooling rates are not the same. The
heating rate is the highest at low temperatures and decreases until
the peak temperature. Then, after a rapid initial cooling, an
inflection point occurs with gradually slower cooling. The change
temperature for time is not the same for each cycle. Additionally,
slightly higher temperatures are achieved than at the set point (less
than 20°C).

Fig. 1. Sample damage

The measure of resistance to thermal-mechanical fatigue is the
number of cycles that the sample will withstand until a macro crack
occurs at a given current and temperature range. The cycle
measurement is completed when the sample is damaged as shown
in figure 1. During the tests, the following sample parameters were
recorded at 1 second intervals: temperature, force, elongation,
resistance, current, resistance.

2.2. Algorithm parameters

Table 1 shows the parameters of the Isolation Forest algorithm,
which were carefully chosen to provide optimal results for a given
sample. For example, for the sample "werm8", the parameter
analyzed was "Elongation". The time variable in this analysis is
"Cycle". The algorithm uses 150 isolation trees and builds each tree
using 256 data group. The window size, or the number of samples
considered at one time, is 100.
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Table 1.
Isolation Forest algorithm parameters

Name of the Tested Collection WP1 wermg
Name of the Analyzed Variable Elongation
Time Variable Cycle
Number of Insulation Trees 400 150
Number of Samples for Building 512 256
Each Tree

Window Size 100 100

Table 2 shows the parameters of the One-Class SVM algorithm,
which have been carefully selected to provide optimal results for a
specific sample. The name of the test is "werm8", and the parameter
analyzed is "Elongation". The value of the parameter v\nuv is 0.01,
and the kernel used is "rbf" (radial basis function). These carefully
selected parameters aim to maximize the efficiency of the One-
Class SVM algorithm to identify anomalies in the data from this
test as accurately as possible.

Table 2.

One-Class SVM algorithm parameters
Name of the Tested Collection WP1 werm§
Name of the Analyzed Variable Elongation
Nu 0.01 0.01
kernel rbf rbf

Table 3 presents data on the chemical composition of the tested
alloys. The WP1 sample was made of Maraging steel, while the
werm§8 sample was made of vermicular cast iron.

Table 3.
Chemical composition of selected samples
Chemical composition WP1 Werm§
C 0,02 3,75
Si 0,08 2,33
Mn 0,01 0,4
P 0,07 0,04
S 0,01 0,012
Mg - 0,013
Ni o 18,5 -
Mo 0, 4.8 -
\Y% - 0,23
Ti 0,6 -
Zr 0,01 -
Co 9 -
Al 0,1 -
Sb - 0,064

3. Description of achieved results of own
researches

3.1. Identification of anomalies

During the thermal fatigue resistance test, the sample gradually
degrades as shown in Figure 2. Figure 2a shows the microstructure
of the warm8 cast iron before the tests, while Figure 2b shows the
microstructure of the sample after the tests. Clear cracks and
"burnt" graphite are visible. Such changes in the microstructure
cause the material not to meet the basic design requirements.
Depending on the sample material and process parameters, the test
may last 57 cycles as was the case for the warm8 sample or 4000
cycles as was the case for the WP1 sample. In the case of nickel
alloys, these materials are characterized by even higher resistance
to thermal shocks. The thermal softening process takes time,
causing a gradual decrease in mechanical and functional properties.
An attempt to use computer tools to determine or identify events
deviating from the norm, i.e. potential moments affecting strength
parameters, was undertaken using two algorithms: Isolation Forest
and One-Class SVM. In this work, an analysis of anomaly values
was carried out in two sample samples: WP1 and werm8, in order
to identify significant cases changes elongation during cycle and
compeered to average value from thermal fatigue resistance test.
Anomaly values are an indicator of deviations from the norm,
which allows for the assessment of the degree of elongation or
shortening of materials. Anomaly is identification on raw data. This
data shows changes elongation samples.

In the case of the Isolation Forest algorithm, after receiving an
HTTP POST request, the program starts by obtaining the following
parameters: collection name in the database (collectionName),
value key (valueKey), time key (timeKey), number of trees
(nTrees), sample size (sampleSize) and window size
(windowSize). Then, using the MongoClient client, a connection is
established to the MongoDB database, from where the data is
retrieved. Data from the database is transformed into a format
useful for the Isolation Forest algorithm, and then the model is
trained on their basis. The model evaluates the data group,
returning results in the form of scores, which are the basis for
identifying anomalies. Anomaly detection is implemented using a
sliding window mechanism, which allows dynamic adjustment of
anomaly detection thresholds depending on changing data patterns.
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Fig. 2. Microstructure of werm8 cast iron: a) before the thermal
fatigue resistance test; b) after the thermal fatigue test

This approach increases the adaptability of the model to
evolving data conditions. The algorithm is equipped with error
handling, so that in the event of unexpected problems (e.g. database
connection errors or internal algorithm errors), it can react
appropriately and inform the user about them. One-Class SVM for
real-time anomaly detection was integrated on data from the
MongoDB database. This algorithm implemented support vector
machine (SVM) methods for one class, using child processes in
Node.js to run Python scripts that process the data and return
results. Variables and data structures, such as anomalies and values,
are defined at the module level. They are used to store the results
of data operations that can be used in different parts of the program.
The One-Class SVM model is configured and trained using the
passed parameters. It is important here to determine which
parameters are most relevant to the analysis and how they affect the
model performance.

Figure 3 shows the graph of elongation anomalies from cycles
for the WP1 sample, which covers a wide time interval from 0 to
4000. The anomaly values in this sample range from 2.19 to 2.22,
indicating significant elongation of the material. The graph shows
that the data are not evenly distributed over a long period of time,
with visible clusters of anomaly values in specific time intervals.
The anomalies occurring in the initial period of the study can be
explained by phenomena related to the deformation of the sample,
while the final stage is related to material degradation and
deformation decay. The middle anomalies was showing because
measurement, was stope by technical pause. The anomalies
occurring between 1000 and 1500 cycles are particularly
interesting, they occurred well before the sample fracture.
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Fig. 3. Elongation anomaly graph from cycles for sample WP1
determined using the Isolation Forest algorithm

Figure 4 shows the graph of elongation anomalies from cycles
for the werm8 sample, which covers the interval from 0 to 40. This
is significantly shorter than in the case of the analysis presented in
Figure 3. The anomaly values for this sample are negative and
range from -0.02 to -0.03. The data in the graph are scattered over
the entire time axis, with a visible accumulation at the end of the
studied interval. This phenomenon concerns a significant reduction
in elongation before the sample breaks.
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Fig. 4. Elongation anomaly graph from cycles for the werm8
sample determined using the Isolation Forest algorithm

Figure 5 shows the graph for the WP1 sample covering a wide
time interval from 0 to 4000. The anomaly values in this sample
range between 2.10 and 2.45, which indicates significant deviations
in the material. Similarly to the analysis of anomalies using the
Isolation Forest algorithm, Figure 5 shows a clustering of
anomalies at the final stage of the thermal fatigue resistance testing
process.

X == Anomalies
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Fig. 5. Elongation anomaly graph from cycles for sample WP1
determined using the One-Class SVM algorithm

Figure 6 shows the graph for the werm8 sample, covering the
time interval from O to 45. The anomaly values for this sample
range from -0.05 to 0.15, which indicates smaller deviations from
the norm. The obtained results are difficult to interpret. This may
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be due to the significantly smaller amount of data than in the case
of the WP1 sample.
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Fig. 6. Elongation anomaly graph from cycles for the werm8
sample determined using the One-Class SVM algorithm.

4. Conclusions

Compared to the One-Class SVM algorithm, the Isolation
Forest algorithm achieved better results, providing more stable and
precise anomaly values. The Isolation Forest algorithm proved to
be more effective in identifying and classifying anomalies
compared to the One-Class SVM, which suggests its greater
suitability for analyzing the thermal fatigue resistance testing
process. For both cases of the algorithms used, better results were
obtained for the WP1 sample, which was characterized by a
significantly larger number of cycles compared to the werm§8 sample.
The number of data suitable for training the algorithms is therefore
of great importance. However, it should be noted that in the case of
the Isolation Forest algorithm, it was possible to identify the moment
of approaching rupture of the werm8 and WP1 samples. Further
research can focus on understanding the mechanisms leading to the
observed deformations and on developing new materials with
desirable mechanical properties. Moreover, comparative analyses
with other samples can provide additional information on the
influence of various factors on the behavior of materials, which is
crucial for engineers and scientists working on innovative material
solutions. The Isolation Forest algorithm, due to its efficiency, is a
valuable tool in these analyses.
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