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Abstract

Structural Health Monitoring (SHM) of pipe infrastructures is of paramount importance to prevent catastrophic
failures induced by defects such as corrosion. Conventional damage identification methodologies are
frequently faced with challenges, including baseline dependency, limitations inherent in single-sensor data,
and considerable economic expenditure. This paper presents a novel, baseline-free, multi-modal damage
identification methodology developed for Level 3 assessment of multiple damages, encompassing their
detection, localisation, and quantification. Initially, Level 1 damage identification is accomplished through
observation of the Regional Resonance Pair (RRP) phenomenon. Subsequently, potential damage regions
are predicted by a Multilayer Perceptron (MLP) model that uses vibration modal frequencies, generating
a Macro-F1 score of 0.8131 on the test set; this prediction is then integrated with a high-precision local point
cloud, acquired via Line Structured Light (LSL) technology, to achieve precise Level 2 damage location, with
a reported error as low as 1.78%. Following localisation, Level 3 quantification of the damage is performed
using point cloud registration, fusion, and voxelisation techniques, enabling accurate prediction of damage
volume with a quantification error of merely 2.47%.

Keywords: regional resonance pair, multiple damage, line structured light, multimodal, vibration modal
analysis.

1. Introduction

Structural Health Monitoring (SHM) of infrastructure, such as pipes, constitutes an extensive
and significant field of research, primarily focused on the identification of structural defects,
monitoring of structural conditions, and assessment of structural safety based on sensor data [1-3].
Pipes are frequently situated in corrosive environments and, with continued usage, undergo an
aging process that could precipitate pipe failure [4, 5], thereby engendering severe environmental
and socio-economic ramifications [6]. Corrosive defects not only inflict substantial environmental
damage but also incur considerable maintenance costs [7]. This inevitable process underscores
the importance of early damage identification and maintenance, as structural damage typically
induces alterations in its dynamic characteristics, consequently affecting modal properties.
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To mitigate economic losses, researchers have proposed various global and local damage
identification methods [8—10]. Global methods are generally based on the vibrational characteristics
of the pipe [11-14], whereas local methods use a point cloud acquired by cameras as an alternative
to traditional visual inspection techniques [15—17]. This paper proposes a scheme for the further
assessment of the severity of local damage using data derived from global methods, in contrast to
conventional damage identification methods that rely on baseline [18, 19].

The damage identification process typically encompasses three principal stages: detection,
localisation, and quantification. Within these stages, classification methods based in Machine
Learning (ML) have been favoured by researchers [20-23] to further improve the accuracy of
damage identification. Methodologies such as Artificial Neural Networks (ANN) [24], Support
Vector Machines (SVM) [25], Logistic Regression (LR) [26], Random Forests (RF) [27], and
eXtreme Gradient Boosting (XGB) [28] have been extensively applied in these tasks. With
the continuously increasing demand for SHM, the development of more efficient and robust
identification methods is urgently required to construct ML models capable of correlating extracted
damage-sensitive features with damage detection.

Multi-modal identification methods, through the integration of data from disparate sources,
could effectively address certain limitations encountered by traditional single-sensor approaches.
For instance, reliance solely on vibration modal analysis can result in incomplete or erroneous
measurement data due to environmental factors or improper sensor deployment [29-31]. In contrast,
if all damage assessments depend entirely on 3D scanning, the cost of identification would be
significantly elevated [32—34]. Compared to conventional methods, the adoption of multi-modal
methods could markedly improve the precision and reliability of damage identification [35], as
it synthesises information provided by different signal sources, thus enhancing the capability to
recognise damage.

To address this issue, the present study proposes a multi-modal damage identification method
that combines vibration modal analysis with Line Structured Light (LSL) technology. By amal-
gamating dynamic response data from vibration modal analysis with a 3D surface point cloud
from LSL, this approach not only compensates for the deficiencies of individual techniques, but
also enables complementarity between different data sources, further augmenting the accuracy
and reliability of identification. In this paper, ML classification algorithms are also effectively
applied in Level 2 damage localisation, which, when combined with LSL, facilitates rapid and
precise localisation of specific damage sites. ML algorithms can establish the relationship between
damage localisation bands and modal frequencies, and they enhance the efficiency and intelligence
level of damage identification.

In prior research [11], during vibration modal testing of pipes with single damage, the Regional
Resonance Pair (RRP) phenomenon is observed, as illustrated in Fig. 1. Damage disrupts the axial
symmetry of the pipe, leading to a divergence in the originally identical modal frequencies of an
RRP, thereby forming active and passive components, denoted by subscripts A and P, respectively.
The primary focus of the current study is the influence of multiple non-axisymmetric damages on
the vibrational modes of pipes, and a Level 3 multiple-damage identification method applicable to
clamped-clamped pipes is proposed. The method integrates vibration analysis, machine learning,
and 3D laser scanning as shown in Fig. 2. The process starts with a modal test to acquire vibration
data. First, if a specific frequency ratio is less than 1.0, damage is confirmed; otherwise, a detection
method based on LSL is activated. Next, if the centroid cannot be found within a predefined
tolerance, a machine learning model is deployed to predict a general damage location band. Finally,
the damage is quantified by creating a unified 3D point cloud from multiple LSL scans and
applying voxelisation [36] to calculate its precise volume. Compared to traditional methods, this
approach significantly enhances the efficiency of detecting multiple damages. Specifically, the
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damage localisation bands of the pipe are first predicted using an ML model; subsequently, depth
information is extracted from the point cloud, and data from different sources are fused, ultimately
enabling the prediction of damage volume. The efficacy of this method is validated through modal
hammer excitation tests and LSL scanning experiments, revealing high accuracy across all three
stages of damage detection, localisation, and quantification.
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Fig. 1. Regional resonance pair examples of the pipe: (a) undamaged, (b) non-axisymmetrically damaged.

2. Methodology

2.1. Overview

To effectively address the problem of multiple damage identification in pipes, this study
proposes a novel Level 3 identification method based on pipe modal frequencies and LSL; the
specific workflow of this method is illustrated in Fig. 2. The determination of damage presence,
designated as Level 1 damage identification, is based on the observation of the RRP phenomenon
within the acquired pipe modal frequencies. If such a phenomenon is present, LSL is employed
exclusively within the region up to 0.1L0 of the pipe to localise the damage centroid position. This
focused application is necessary because the constructed damage localisation bands are incapable
of detecting damage within this 0.1L0 proximal region. LO represents the effective length of the
pipe. Level 2 damage identification involves addressing the multi-label classification problem
for damage localisation bands through ML, thereby establishing a relationship between damage
localisation band labels and the pipe’s modal frequencies and their ratios. Subsequently, the rapid
acquisition of the damage centroid position is achieved by utilising LSL to gather pipe depth
information. For Level 3 damage identification, point clouds acquired by monocular LSL are
registered and fused. The damage centroid position obtained from Level 2 is then conveyed to the
point cloud voxelisation process, which ultimately enables the prediction of the volume of the
damaged pipe section.

The training procedure and algorithm selection for the ML model are illustrated in Fig. 3.
This process comprises three principal stages: model training, threshold optimisation, and model
inference. Initially, feature extraction is performed, in which various features (e.g., frequency
ratios) are extracted from the input data. The annotation of the damage localisation band is
subsequently conducted based on predefined damage states (e.g., [0, 1, 0, 0, 0, 1]). The training set
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Fig. 2. Flowchart of the multiple damage identification method (detection, localisation, and quantification) in pipes.

is then subjected to standardisation to ensure data homogeneity. Finally, a One-vs-Rest algorithm
is configured and trained; this model is designated for handling multi-class classification problems.
The trained model is used to predict the probabilities in the validation set, and based on these



predictions, an optimal threshold is searched. To enhance the model’s generalisability in practical
applications, the list of optimal thresholds for each damage localisation band is preserved for
subsequent utilisation during the inference phase. The test set is standardised to ensure its similarity
with the training set data. The probabilities are then predicted for the test set using the trained model.
Subsequently, by applying the previously preserved thresholds to these predicted probabilities, the
damage localisation band label for each data point is determined and the set of damage localisation
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band labels is eventually outputted.

Fig. 3. Machine learning workflow for predicting damage localisation bands and optimisation of thresholds.
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2.2. RRP

The Regional Resonance Pair (RRP) describes a specific physical vibration phenomenon that
arises from local damage in a structure. In an ideal, undamaged, and symmetrical structure, such as
a uniform pipe, a particular vibration mode typically corresponds to a single, well-defined resonant
frequency. However, when a local defect (such as a corrosion pit, crack, or dent) is introduced,
it breaks the physical symmetry at that location. This disruption of symmetry causes the original
single vibration mode to split into two new vibration modes that are very close in energy but have
slightly different frequencies. This pair of new resonant frequencies, which are induced by the
damage and appear together with extremely close frequency values, is defined as a “resonance pair”.

The term “regional” highlights another critical physical property of this phenomenon: its
localised nature. Unlike an undamaged structure, where vibrational energy is distributed throughout
the entire body, the energy associated with this new resonance pair becomes highly concentrated in
the confined area around the damage point that caused the frequency split. In other words, when the
structure vibrates at these two specific frequencies, the point of maximum amplitude and energy
concentration coincides exactly with the location of the physical damage. Consequently, an RRP is
more than just a pair of frequency values; it represents a localised vibrational state that is strongly
correlated with the damage location, inherently carrying physical information about the position
of the defect itself. For the RRP discovery process, please refer to the previous research [11].

The pipe damage localisation bands are predicated upon the ranking of RRPs for pipes
exhibiting a single damage, in conjunction with the ranking of intercepts obtained from the linear
fitting of damage volume. The five resulting damage localisation bands are depicted in Fig. 4. The
RRP ranking for pipes with single damage centroids at various locations is simulated; a change
in the RRP ranking signifies a corresponding alteration in the damage localisation band. The
boundary between two adjacent damage localisation bands is consequently defined as the average
of the two damage centroid positions associated with this change. As illustrated in Fig. 4, the
centroid positions selected for the simulation spanned from 0.1L0 to 0.5L0, with an incremental
step size of 0.05L0. Given that pipes with fixed-fixed boundary conditions are chosen as the
subject of this investigation, the overall pipe structure is inherently axisymmetric. Consequently,
the damage localisation bands also exhibit axial symmetry, as shown in Fig. 4.

Pipe Clamp

Band | Band 2 Band 4 Band 5

X
O

, 0151, 02L, 025L, 03L, 035L, 04L, 0.45L, 0.5,

AL

LUK

SO

0.1L
Damage Centroid Locations, M,

Fig. 4. Five damage localisation bands for a clamped-clamped pipe.

2.3. Multiple-damage pipe

In practical service, pipes commonly encounter issues related to multiple damages; therefore,
this study employs scenarios involving multiple damages to assess the applicability of the method
illustrated in Fig. 1. The parameters for a pipe with two damages are defined as shown in Fig. 5.
The positions of the two damage centroids are denoted by My and M, respectively; the damage
depths are Tz, and T,,; the damage lengths are L,y and Lg;; the angles corresponding to the
damages are @4 and @4; and the angle between the two damage centroids is 3.
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(a) (b)

Damage
Centroid

Fig. 5. Damage parameters for a pipe with double damage: (a) axial, (b) radial.

The parameters for a pipe with three damages are defined as depicted in Fig. 6. The positions
of three damage centroids are represented by M1, M 4>, and M43, respectively; the damage depths
are T,41, T2, and T43; and the damage lengths are L, Lgo, and Lg3; the angles corresponding to
the instances of damages are @1, @42, and @g43. Due to the increased complexity of combinations
involving three damages compared to two, and the prerequisite of first validating the RRP
phenomenon for multiple-damage pipes, the subsequent database construction in this paper will
be confined to pipes with two damages. For pipes with three damages, a specific scenario is
constructed wherein the angle between each of the three damage centroids is 60°. This configuration
is intended to validate the phenomenon of modal aliasing in high-frequency modes, which is
posited to occur when three damage centroids are equidistantly spaced, according to theoretical
research on circumferential modes [37, 38].

(a) (b)

Damage
Centroid T

Fig. 6. Damage parameters for a pipe with triple damage: (a) axial, (b) radial.

The damage parameter settings for the database are detailed in Table 1. To conserve computa-
tional resources while simultaneously verifying the applicability of the proposed method, this study
used the principles of Uniform Design experimentation. Specifically, Latin hypercube sampling is
utilised to generate 1000 distinct sets of conditions, intended to represent the entirety of possible
combinations. In this design, the two damages are configured to ensure mutual non-interference,
i.e., the distance between their respective centroids is consistently maintained at a value greater than
half the sum of their lengths. It is generally acknowledged that the occurrence of two identically
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configured damages is highly improbable in real-world scenarios; consequently, the dimensions of
the two damages are not set to be exactly the same. Existing theoretical research on circumferential
modes [39] has indicated a propensity to modal aliasing when the angle 8 between two damages is ei-
ther 90° or 180°; therefore, these two specific angular configurations are excluded. These operations
are implemented through automated Python scripting for Ansys Discovery and Ansys Mechanical.

Table 1. Parameters of damaged pipes in the database.

Mgy (mm) | g1 (°) | Tgr (mm) | Ly (mm) | B(°) | Mgy (mm) | ag (°) | Tg2 (mm) | Ly (mm)
90 22.5 1.30 40 30 517.5 22.5 1.30 40
180 45 2.60 80 60 540 45 2.60 80
270 67.5 3.90 120 120 630 67.5 3.90 120
360 90 5.20 - 150 720 90 5.20 -

382.5 - - - - 810 - - -

3. Experiment with a multiple-damage pipe

3.1. Test setup

A total of two experiments are configured in this study: one is the modal hammer excitation test
mentioned above, and the other is a monocular LSL scanning experiment. These two experiments
collectively constitute the Level 3 damage identification method proposed herein. For both
experiments, pipes made of AL 6063 T5 material are selected. The undamaged pipe, designated
as Pipe 1, possessed an effective length Ly of 900 mm, an outer diameter of 103 mm, and a wall
thickness of 6.5 mm. The volume of this undamaged pipe is determined to be 1734630.384 mm?, a
value that will be used for subsequent Level 3 damage quantification error calculations. Furthermore,
the active component of the i-th RRP of the pipe is denoted by f; 4, and the passive component by
fip. For subsequent modal and mode shape analysis of multiple-damage pipes, the first three pairs
of RRPs for this undamaged pipe are obtained through simulation as 542.63 Hz, 1318.6 Hz, and
2283.1 Hz, i.e., fia = fip = 542.63 Hz, o4 = fop = 1318.6 Hz, and f34 = f3p = 2283.1 Hz.
The parameter settings for the double-damage and triple-damage pipes employed in the modal
hammer excitation tests are presented in Table 2 and Table 3, respectively.

Table 2. Parameters of a double-damage pipe under modal excitation test, where dbl is double damage.

Pipe Test Man g Ta La Mg 773 Ta La> B o
Label Case (mm) ©) (mm) | (mm) | (mm) ©) (mm) | (mm) ©) ©)
2a_dbl 0

2 2b_dbl 30 45
2c_dbl 90

3a_dbl 0

3 3b_dbl 60 45
3c_dbl 90

Za_dbl 200 30 2 100 450 60 4 50 0

4 4b_dbl 120 45
4c_dbl 90

5a_dbl 0

5 5b_dbl 150 45
5c_dbl 90
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Table 3. Parameters of triple-damage pipe in modal excitation test, where trp is triple damage.

Pipe Label 6
Test Case 6a_trp 6b_trp 6¢_trp
Mg (mm) 200

aq1 () 30
T4 (mm) 2
L4, (mm) 100
M 4> (mm) 450

aqz (°) 60
Tg> (mm) 4
Lg> (mm) 50
M 43 (mm) 700

aq3 (°) 90
T3 (mm) 3
L3 (mm) 80

5(°) 0 45 90

Previous research [11] had already observed the RRP phenomenon in pipes with a single
damage. The RRP phenomenon in multiple-damage pipes is further investigated through modal
hammer excitation; the setup for this modal hammer excitation experiment is illustrated in Fig. 7.
Figure 7(a) shows the angle ¢ formed by the accelerometer and the damage, as well as the direction
of the excitation of the modal hammer. Figure 7(b) shows all the equipment used in the entire
experimental platform. The positions of the six accelerometers are established at 150 mm, 250 mm,
350 mm, 450 mm, 650 mm, and 750 mm. This sensor placement strategy is designed to avoid the
node point of the vibration modes identified in the simulation results, thereby facilitating a more
effective observation of the mode shape test results. Moreover, to prevent significant deviations in
the frequency response, the occurrence of double hits, as illustrated in Fig. 8, must be avoided
when exciting the pipe with the modal hammer; specifically, the double-hit scenario depicted in

Fig. 8(a) should be averted.

(a) (b)

Damage
Centroid

0°
1
i
i

Direction of

90 Excitation 250mm | 450mm 750mm
™~ ——
Accelerometers 150mm \\\:35\0113[11 650mm

180°

Fig. 7. Modal hammer excitation test setup: (a) location of accelerometers, (b) layout of other equipment.
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Fig. 8. Time domain signal of modal hammer excitation: (a) double, (b) normal.

In the monocular LSL experiment, two industrial cameras are employed to scan a partial point
cloud of the same pipe from two distinct angles. This experiment is designed to validate whether
LSL could quantify multiple damages; consequently, only the damage at the M position is
scanned. The process for multiple damages would merely involve repeating the scanning procedure
based on the localisation results. The damage centroid is positioned at 200 mm; the damage length
is 125 mm; its central angle is 90°, and its depth is 4 mm. All equipment used is shown in Fig. 9.
During the scanning process, the laser and the industrial cameras were kept in a stationary position,
while a servo motor drove a sliding stage to move the pipe horizontally at a set speed of 1 mm/s.
The industrial cameras acquired an image every 0.1 seconds, resulting in a point cloud precision
of 0.1 mm. All point clouds obtained from monocular LSL scanning are processed using Python
for registration, fusion, and voxelisation.

Light source

el " N ndustrial camera
Laser A

Slide platform

Fig. 9. Test setup for monocular line structured light.

10
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Point cloud preprocessing encompassed downsampling, normal vector estimation, and outlier
removal. Voxel downsampling is utilised to reduce the point cloud density from over two million
points to approximately 3000 points. The normal vector for each point is calculated for subsequent
analysis, and noise points are removed through statistical filtering. Subsequently, the Iferative
Closest Point (ICP) method, provided by CloudCompare, is employed to complete the registration
operation. Finally, overlapping regions are detected, and a weighted average is applied to these
overlapping regions, followed by a removal of duplicate points to maintain point cloud quality.
Furthermore, during the prediction of damage volume via point cloud voxelisation, potential
depression points are first identified by examining the radial distance from points to the pipe
centroid, based on the results for Level 2 damage centroid localisation.

3.2. Modal analysis and damage detection

The test results of the modal hammer excitation experiments for the six pipes are presented in
Fig. 10, where Fig. 10(a) displays the test results for the undamaged pipe, serving as a reference for
observing the RRP phenomenon in multiple-damage pipes. During testing, the RRP phenomenon in
multiple-damage pipes is more effectively observed by varying the angle between the accelerometer
and the damage. Different observation effects for different vibration mode RRPs are noted at
varying angles. As shown in Figs. 10(b) to 10(f), the RRP patterns of multiple-damage pipes could
be more comprehensively analysed. The results of the modal test for the six pipes reveal that the
deviation between the active and passive components of the first RRP is minimal, as detailed in
Table 4. This indicates that multiple damages increase the resonance interval, i.e., they enlarge the
difference between the active and passive parts of the RRP.

Table 4. Frequency values of the RRP modal tests for the first four pairs of six pipes.

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)
Test Case

fia N fip foa f2 fop f3a f3 f3p Jaa Ja Jfap

1 - 355 - - 1164 - - 2180 - - 3613 -

2a_dbl 363 - 457 - - - - - - - - -

2b_dbl - - - 1009 - 1315 - - - - - -

2c_dbl - - - - - - 2163 - 2518 | 3012 - 3603

3a_dbl - - - - - - 2117 - 2516 | 3074 - 3618

3b_dbl - - - 1005 - 1294 - - - - - -

3c_dbl 358 - 458 - - - - - - - - -

4a_dbl - - - - - - 2156 - 2522 | 3077 - 3661

4b_dbl - - - 1020 - 1301 - - - - - -

dc_dbl | 358 | - | 459 | - - - - - - - - -

Sa_dbl - - - 976 - 1285 - - - - - -

Sb_dbl | 361 | - | 457 | - - - - - - - - -

Sc_dbl - - - - - - 2152 - 2514 | 2981 - 3597

6a_trp - - - - - - 2093 - 2530 | 3073 - 3637

6btrp | 362 | - | 459 | - - - - - - - - -

6¢_trp - - - 960 - 1302 - - - - - -
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Fig. 10. Results of the RRP modal test of the first four pairs of six pipes: (a) undamaged, (b) Pipe 2, (c) Pipe 3, (d) Pipe 4,
(e) Pipe 5, and (f) Pipe 6.

Although the mode shape results for the multiple-damage pipes exhibit considerable similarity
to those of the undamaged pipe, as depicted in Fig. 11 (where NP; ; represents the j-th node of
the i-th RRP), it is still necessary to incorporate the calculation results of the modal assurance
criterion (MAC) [40] to ascertain whether modal aliasing has occurred, as shown in Fig. 12. The
results indicate that the fourth RRP has already deviated from the modal shape of the undamaged

12
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pipe. This suggests that low-frequency modes are consistent with previous theoretical research,
while two damages can lead to modal aliasing in high-frequency modes [37]. For example, in
fourth RRP and that of the undamaged pipe, while the frequency difference of the passive part of
the RRP relative to the undamaged pipe is considerably smaller. This is in contrast to the results
for the other three RRPs, implying that the experimental results for the fourth RRP will not be
included in the subsequent damage identification.

Table 4, a significant difference could be observed between the frequency of the active part of the
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Fig. 12. MAC of vibration mode shapes for double-damage pipes and an undamaged pipe.

Furthermore, research findings [37] have indicated that three equidistantly spaced damage
centroids exacerbate modal aliasing in high-frequency modes, as illustrated in Fig. 13. However,
such equidistant spacing is rarely encountered in practical situations; therefore, this issue does
not interfere with the applicability of the method proposed in this study. MAC calculations are
also performed on the mode shape results of the active and passive parts of the four RRPs of
a multiple-damage pipe, as shown in Fig. 14. The results demonstrate a high degree of similarity
between the mode shapes of the RRP active and passive parts, thereby indicating that the RRP
phenomenon does not interfere with the MAC calculation results. Consequently, multiple damages
are identified as the primary cause of modal aliasing in high-frequency modes for pipes.

The results of the modal hammer excitation tests demonstrate that the occurrence of RRPs
could facilitate the identification of Level 1 damage for multiple-damage pipes. The difference
between the active part and the passive part of the i-th pair of RRP is represented by AF;. By
analysing the difference, a qualitative relationship with the angle between the damage centroids
and the number of damages is identified. As shown in Table 5, a negative correlation is observed
between the absolute value of the 180° difference for multiple damages and the range, i.e., a larger
range corresponds to a smaller angle between the two damage centroids. The number of damages,
on the contrary, could be roughly estimated by the magnitude of the mean; a larger mean value
suggests a greater number of damages.
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Fig. 14. MAC of vibration mode shapes for active and passive parts of RRP.

Table 5. Difference, range and average of RRP frequency of five damaged pipes.

100+

80+
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401

204

88.85

93.09

95.52

89.75

Pipe 2a_dbl Pipe 3c_dbl

Pipe_6a_dbl

Pipe Label

Pipe_6¢_dbl

Pipe Label Mode 1 Mode 2 Mode 3 Range Mean
AF1 (%) AF5 (%) AF3 (%) Ry (%) AVG r (%)
2 25.9 30.3 16.4 13.9 24.2
3 27.9 28.8 18.8 10.0 252
4 28.2 27.5 17.0 11.2 24.2
5 26.6 31.7 16.8 14.9 25.0
6 26.8 35.6 20.9 14.7 27.8

3.3. Training of the One-vs-Rest model and damage localisation

Model training is based on the 1000 sets of simulation results detailed in Section 2.3. The
damage localisation band, where the damage is situated, is represented in matrix form. Damage
localisation bands the exhibit damage are marked as 1, while others are marked as 0, resulting
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in an annotation on the damage localisation band such as [0, 1, 0, 0, 0, 1]. This labelled damage
localisation band served as the model’s output. Given that only the ratio of the RRP active and
passive components, along with the specific RRP values, could be acquired during the modal
excitation tests, these variables are designated as the input of the model. The relationship between
modal frequencies and damage localisation bands is established using a One-vs-Rest model.

Numerous One-vs-Rest models are currently available. Five algorithms demonstrating superior
performance are selected for comparative analysis and the model predictions are evaluated based
on the Macro-F1 score. These five algorithms are: LR, SVM, RF, XGB, and Multilayer Perceptron
(MLP). Except for the MLP, the hyperparameters for the other four algorithms are maintained at
their default settings. The optimisation function for the MLP is AdamW, with an initial learning
rate set to 0.001. The hidden layer architecture of the MLP consisted of four layers, with neuron
counts of 256, 128, 64, and 32, respectively; the activation function for each layer is ReLu. The
final Macro-F1 scores, recall rates, and precision values for the five algorithms in the test set are
presented in Fig. 15 and Table 6. The MLP achieved the highest overall Macro-F1 score (0.8131)
among the five algorithms, as shown in Fig. 15(a). Consequently, the MLP model will be used for
subsequent assessment of accuracy of Level 2 damage localisation.
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Fig. 15. Evaluation results of five algorithms on the test set: (a) overall Macro-F1 score, (b) Macro-F1 score, (c) recall
score, (d) precision score.

16



Metrol. Meas. Syst.,Vol. 32 (2025), No. 4, pp. 1-23
DOI: 10.24425/mms.2025.155807

Table 6. Evaluation of five algorithms in five damage localisation bands in the test set

Damage Evaluation
Localisation . LR SVM RF XGB MLP
Indicators

Band
Macro-F1 0.7067 0.7682 0.8489 0.8611 0.8905

Band 1
Recall Score 0.7465 0.8169 0.8310 0.8732 0.8841
Precision Score 0.6709 0.7250 0.8676 0.8493 0.8971
Macro-F1 0.6892 0.6239 0.6667 0.7226 0.8197

Band 2
Recall Score 0.6892 0.9189 0.8649 0.7568 0.7576
Precision Score 0.6892 0.4722 0.5424 0.6914 0.8929
Macro-F1 0.7081 0.7448 0.7857 0.8120 0.8652

Band 3
Recall Score 0.8143 0.7714 0.7857 0.7714 0.7821
Precision Score 0.6264 0.7200 0.7857 0.8571 0.9683
Macro-F1 0.5270 0.4968 0.5986 0.5988 0.7531

Band 4
Recall Score 0.5417 0.5417 0.6111 0.6944 0.7722
Precision Score 0.5132 0.4588 0.5867 0.5263 0.7349
Macro-F1 0.6135 0.5548 0.6483 0.6626 0.7368

Band 5
Recall Score 0.6849 0.5890 0.6438 0.7397 0.6622
Precision Score 0.5556 0.5244 0.6528 0.6000 0.8305

3.4. Point cloud voxelisation and damage quantification

After the completion of Level 2 damage localisation, scouldning of the point cloud for the
corresponding damage localisation band is required. Based on the depth information from the
point cloud, the centroid position is further determined to be 203.56 mm. The volume of the
damaged pipe section is then predicted using this damage centroid position and the results of
point cloud voxelisation. The registration, fusion, and voxelisation process of point cloud data
is shown in Fig. 16. The two point cloud datasets for registration originated from two distinct
cameras and are represented by different colours. The RMSE for registration is 2.96 mm, and
the quality of the point cloud is discernibly improved post-fusion. By calculating the distance
deviation between the actual point cloud and the ideal pipe surface, the approximate extent and
volume of the damage could be effectively estimated. Damaged points are coloured red, while
normal points are coloured blue. The setting of the voxel size is based on the average density of all
points in the fused point cloud. The average density of the fused point cloud is 4.03 mm. To avoid
issues of point cloud discretisation and to ensure volume continuity, the voxel size is set to be
slightly larger than the average point cloud density, specifically 4.04 mm. Finally, after point cloud
voxelisation, the volume of the damaged pipe section is calculated to be 37915.08 mm?>. This
value will be used for the subsequent evaluation of accuracy of Level 3 damage quantification.
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Fig. 16. Flowchart of the results of point cloud processing for a damaged pipe.

4. Accuracy of damage identification

The assessment of pipe damage identification in this paper encompasses damage detection,
localisation, and quantification. Among these, damage identification is predicated on the presence
or absence of the RRP phenomenon. The results of the modal test presented in Section 3.2 indicate
that all five multiple-damage pipes exhibited damage. Furthermore, a qualitative determination
of the distance between two damage centroids and the number of damages could be performed.
As the localisation and quantification of multiple damages merely involve a repetition of the
operations for a single damage, the results for M are presented as an illustrative example for
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damage localisation. Based on the MLP model trained in Section 3.3, its output is determined to
be [0,1,0,0,1], signifying the presence of damage in Band 2 and Band 5. M is indeed situated
in Band 2, and the point cloud depth information indicated its specific location at 203.56 mm,
which is remarkably close to the actual position of 200 mm, as shown in Table 2. Consequently,
the error for localisation of Level 2 damage is only 1.78%. The damage volume predicted by
point cloud voxelisation in Section 3.4 is 37915.08 mm?>. The actual damage volume, calculated
after modelling in SolidWorks, is 38877.209 mm?, indicating that the error for Level 3 damage
quantification is merely 2.47%.

5. Conclusions

This study proposes a multimodal baseline-free pipe multiple damage identification method.
The presence of damage is effectively determined through observation of the RRP phenomenon in
multiple-damage pipes, thus achieving Level 1 damage identification. A model establishing the
relationship between modal frequencies and damage regions is constructed based on a Multilayer
Perceptron (MLP). Testing revealed a Macro-F1 score of 0.8131 on the test set, indicating that
modal frequencies could effectively ascertain the approximate location of damage. Furthermore,
by integrating depth information from a point cloud acquired via LSL, the precise position of the
damage centroid could be accurately determined, thus achieving Level 2 damage identification.
Finally, point cloud registration and fusion techniques are employed to enhance point cloud quality.
By combining point cloud voxelisation methods with the known damage centroid position, the
extent and volume of the damage are calculated, thereby realising Level 3 damage identification.
The experimental results have demonstrated that the error in damage quantification is only 2.47%.
Additionally, it is found that the absolute value of the 180°difference between multiple damages and
their centroids exhibits a negative correlation with the damage range i.e., a larger range corresponds
to a smaller angle between the two damage centroids. The number of damages could be roughly
estimated by the mean value of the damage region; a larger mean value suggests a greater number
of damages. This method is particularly well-suited for early damage identification; when the RRP
phenomenon is not pronounced, it may indicate that the damage is in a complex state or of a smaller
scale. Compared to traditional methods, the present study significantly enhances identification
accuracy and reduces identification costs. By directly focusing LSL on the damaged area and
eliminating the need for a baseline, identification efficiency is markedly improved. Through this
strategy of integrating multi-modal technology with ML, the proposed method not only offers
higher precision than traditional damage identification methods but also provides data support for
the implementation of intelligent SHM systems.
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