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ARABIDOPSIS CYCLIN-DEPENDENT KINASE GENE CDKG;2
IS INVOLVED IN ORGANOGENIC RESPONSES INDUCED IN VITRO
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The Arabidopsis CDKG;2 gene encodes a putative cyclin-dependent Ser/Thr protein kinase of unknown biologi-
cal function. This gene shows structural similarity to animal and human cyclin-dependent (PITSLRE) kinases.
This study used the homozygous knockout cdkg;2 mutant based on T-DNA insertional line SALK_090262 to study
the effect of mutation of the CDKG;2 gene on explant response and in vitro plant regeneration. For callus induction
and proliferation, hypocotyls and cotyledons of 3-day-old seedlings of cdkg;2 and A. thaliana ecotype Col-0 were cul-
tured on solid MS medium supplemented with 2,4-D (2 mg l-1). Organogenesis was induced after callus transfer on
MS + TDZ (0.5 mg l-1). The initiation time of callus and shoot induction differed between the mutant and control
cultures. Shoot regeneration after callus transfer on MS + TDZ was delayed in cdkg;2 (31 days versus 7 days in Col-
0). Shoots formed on callus derived from Col-0 hypocotyls but not on cotyledon-derived callus; in cdkg;2, shoots
developed on both callus types. Mutant shoots did not form roots, regenerants were dwarfed, and inflorescences had
small bud-like flowers with a reduced corolla and generative organs. Abnormalities observed during cdkg;2 organo-
genesis suggest a role of CDKG;2 as a regulator of adventitious root initiation.

KKeeyy  wwoorrddss:: Arabidopsis thaliana cyclin-dependent kinases, CDKG;2 gene, callus formation, organo-
genesis.
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INTRODUCTION

Cell division is a key process which determines
plant growth and morphogenesis. Reversible phos-
phorylation by highly specific serine-threonine pro-
tein kinases and phosphatases, modulated by the
binding of additional regulatory and scaffolding pro-
teins, is a mechanism crucial for control of cell cycle
progression and is conserved in all eukaryotic
organisms (Dewitte and Murray, 2003). In particu-
lar, cyclin-dependent kinases (CDK) that require
complexation with a cyclin subunit for their activity
play a pivotal role in phosphorylation of target pro-
teins, which are indispensable for the orderly pro-
gression of cells through the phases of the cell cycle
(Inze and de Veylder, 2006). Over 150 putative CDK-
encoding genes have been identified in numerous
plant species. Based on motifs conserved within the
sequences of cyclin-binding domains, the broad
family of putative CDK proteins has been catego-
rized into eight classes labeled CDKA-CDKG and

cyclin-dependent kinases (CKL) (Tank and Thaker,
2011). Products of these genes are essential in, for
example, G1/S and G2/M transitions (Hemerly et al.,
1995), integration of developmental pathways
(Boudolf et al., 2004), cell expansion in leaves and
cell fates in floral organs (Inze and de Veylder,
2006), but the biological function of most CDKs
remains largely unknown. 

In Arabidopsis the CDKG class includes two
putative kinases containing the conserved PLTSLRE
motif (Tank and Thaker, 2011). The CDKG;2 gene
(ID At1g67580), encoding a product with a predict-
ed molecular weight of 85.2 kDa, is located on the
first chromosome (Swarbreck et al., 2008) and
shows significant similarity to genes of animal and
human PITSLRE kinases – p34cdc2 family members
(Kuta et al., 2008). In animals and humans, PIT-
SLRE kinases play a role in RNA processing, regula-
tion of transcription, apoptosis induction, oncogen-
esis, and dopamine/glutamate signaling in the nerv-
ous system (Knockaert et al., 2002; Trembley et al.,



2004). A global expression analysis of cell cycle reg-
ulators revealed that CDKG;2 in Arabidopsis is
expressed predominantly in emerging seedlings and
in suspension/callus cells (Menges et al., 2005), and
therefore it has been suggested to play a role in cell
differentiation processes (Tank and Thaker, 2011).

Arabidopsis thaliana (L.) Heynh is used as a
model plant to study different processes including
genetic control of plant development (Bowman et al.,
2012; Enugutti et al., 2012; Petricka et al., 2012 and
references therein), response to biotic and abiotic
stresses and the genetics of local adaptation (Gaut,
2012). It also is a model in plant proteome and
genome research (Joshi et al., 2012; Liu et al., 2012;
Yandell and Ence, 2012 and references therein). 

Work employing in vitro culture of Arabidopsis
thaliana began in the 1970s, focusing on direct and
indirect organogenesis from different explants in
various media (Negrutiu et al., 1975; Masson and
Paszkowski, 1992; Gaj 2001a and references there-
in). More recently, in vitro technique has been
applied to study somatic embryogenesis in
Arabidopsis ecotype Columbia and mutants (Gaj
2001a,b, 2004; Gaj et al., 2005, 2006; Kurczyńska
et al., 2007; Fraś et al., 2008; Baster et al., 2009;
Kraut et al., 2011; Nowak et al., 2012). Studies of
the effect of in vitro culture conditions on MEA and
FIE/FIS gene expression analyzed induction of egg
cell and central cell divisions without fertilization in
cultures of unfertilized ovules of Arabidopsis eco-
types (Columbia, Landsberg) (Rojek et al., 2005;
Kapusta et al., 2007).

In vitro culture techniques enable laboratory
study of the effect of mutation on cell division, tissue
differentiation, organogenesis and somatic embryo-
genesis. Mutants with plant hormone response
defects (Catterou et al., 2002; Gaj et al., 2006; Qiao
et al., 2012), embryo-lethal mutants (Baus et al.,
1986), and lec mutants controlling Arabidopsis
zygotic embryogenesis (Gaj et al., 2005) have been
studied in vitro to assess the biological function of
genes involved in developmental process regulation.

In this study we characterized callus induction
and subsequent plant regeneration in vitro in an
Arabidopsis insertional T-DNA knockout line with
inactivated CDKG;2 in order to determine whether
CDKG;2 is required for organogenesis and/or cell
proliferation in culture

MATERIALS AND METHODS

PLANT MATERIAL AND SELECTION 
OF THE KNOCKOUT LINE

Arabidopsis seeds of the parental line Columbia-0
ecotype (CS60000, referred to as Col-0) and
N590262 (T3 generation of T-DNA insertional line
SALK_090262; Alonso et al., 2003) were obtained

from the Nottingham Arabidopsis Stock Centre
(UK). Plants were cultivated in soil under standard
conditions: 22±2°C, 65% RH, and 12 h photoperiod
under daylight fluorescent lamps (Sylvania, Luxline
plus; fluence rate 80–120 μmol·m-2s-1).

The homozygous line was isolated at generation
T4 based on PCR mapping (Young et al. 2001) using
primers complementary to the flanking position of
the coding region of full-length cDNA clone RAFL-07-
13-L20 obtained from RIKEN (Tsukuba, Japan)
(Seki et al., 1998; Seki et al., 2002): (cdkg2-for: 5'
ATGGCGGCTGGGAGGAATATAA3'; cdkg2-rev: 5'T-
CAGCCAAACAGACCGCCAGA3') and to flanking
regions of the T-DNA insert (LBa1: 5'TGGTTCACG-
TAGTGGGCCATCG3', Rba1: 5'CCAAACGTAAAAC-
GGCTTGT3') in generation T4. Homozygosity was
tested in generation T5. All PCRs were done with
high-fidelity Marathon polymerase (AA Biotechnology,
Gdynia, Poland). The position and orientation of the
T-DNA insert were identified after sequencing of
selected PCR products. DNA was isolated with a
plant genomic DNA isolation kit (AA Biotechnology).
Isolation of total plant RNA and RT-PCR was per-
formed using commercial kits (Fermentas, LT). 

EXPLANT ISOLATION FOR IN VITRO CULTURE 

Seeds of both genotypes were sterilized by vortexing
in 70% EtOH for 3–5 min and then in 50% solution
of commercial bleach (Ace) with added Triton X-100
detergent for 3–5 min, followed by 3 rinses in sterile
distilled water. Sterile seeds were placed in sterile
Petri dishes filled with 0.15% solution of agar (MP
Biomedicals), sealed with parafilm and refrigerated
at 4°C for 3 days. Culture media and tools were
autoclaved for ~30 min in a steam autoclave (121°C,
pressure 1.05 bar). 

Hypocotyls and cotyledons of 3-day-old
seedlings of both genotypes were excised under a
laminar flow hood and placed in medium-filled Petri
dishes (10 explants per dish); 620 hypocotyls and
660 cotyledons were cultured in vitro. The experi-
ment was repeated five times in 2009–2012. 

CULTURE MEDIA AND CONDITIONS

The explants of both genotypes were cultured ini-
tially on MS medium (Murashige and Skoog, 1962)
containing 3% sucrose (w/v), solidified with 0.8%
agar (w/v) and supplemented with 2,4-dichlorophe-
noxyacetic acid (2 mg l-1 2,4-D, Fluka), medium 
pH 5.7–5.8, for callus induction and proliferation.
After 4 weeks, non-morphogenic callus was trans-
ferred to MS basal medium supplemented with
thidiazuron (0.5 mg l-1 TDZ, Sigma-Aldrich).
Regenerated shoots were rooted on MS + 0.5 mg l-1

IBA (Sigma) or on half-strength MS with reduced
sucrose concentration (2% w/v). Then the cultures
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were transferred to fresh medium at 2–3-week inter-
vals. Cultures were maintained in a growth chamber
at 25±3°C under a 16 h photoperiod (cool-white flu-
orescent lamps, 60–90 μmol·m-2s-1). Rooted
plantlets were transplanted to plastic pots with an
autoclaved 3:1 mixture of garden soil and perlite
and kept in a plastic mini-greenhouse for 2 weeks.
The hardened plants were maintained under room
conditions until flowering and seed set.

HISTOLOGICAL ANALYSIS 

Explants and callus fragments were fixed in 10%
glutaraldehyde for 24 h, washed 4 times in phos-
phate buffer (PBS; pH=7.2) and then dehydrated in
a graded ethanol series (10%, 30%, 50%, 70%, 96%;
15 min each) and kept overnight in absolute ethanol.
Fixed tissue samples were embedded in Technovit
7100 (2-hydroxyethyl-methacrylate) (Heraeus
Kulzer) followed by infiltration in a mixture of
absolute ethanol and Technovit (3:1, 1:1, 1:3 v/v; 
1 h each) and finally stored for 12 h in pure
Technovit. The resin was polymerized with the addi-
tion of hardener. The material was sectioned 5 μm
thick with a rotary microtome (Microm, Adamas
Instrumenten), stained with toluidine blue and
mounted in Entellan (Merck). LM sections were pho-
tographed with a Zeiss Axio Cam MRc digital cam-
era with Zeiss Axio Vision 3.1 software.

SCANNING ELECTRON MICROSCOPY 

Calluses of Col-0 and mutant explants were prefixed
in 5% buffered glutaraldehyde (0.1 M phosphate
buffer, pH 7.2) for 2 h at room temperature. After
dehydration in a graded ethanol series, samples
were CO2 critical-point dried (EMITECH K850 sys-
tem), sputter-coated with gold (SPI SUPPLIES ion-
sputtering system) and observed with a PHILIPS XL
30 scanning electron microscope. 

RESULTS

We selected the Arabidopsis knockout cdkg;2 line
from generation T4 based on PCR analysis using
primers cdkg2-for and cdkg2-rev, complementary to
flanking positions of the coding region of its full-
length cDNA clone isolated by Seki et al. (2002). In
Col-0 genomic DNA, PCR with cdkg2-for and cdkg2-
rev primers gave a single 3.3 kbp product attributa-
ble to the CDKG;2 coding sequence. This product
was shown to be absent from the cdkg;2 line when
genomic DNA was used as template (Fig. 1a). Further
analysis using combinations of these primers and
primers complementary to flanking regions of 
T-DNA showed the presence of a T-DNA insertion
within the CDKG;2 coding sequence (Fig. 1b). The

homozygosity of the isolated line was confirmed in
generation T5. The position of the T-DNA insertion
localized in the first exon of the CDK;2 sequence
(Fig. 1c). The T-DNA insertion prevented accumula-
tion of the specific transcript (data not shown). The
knockout cdkg;2 plants grown in soil under stan-
dard conditions produced viable seeds. The cdkg;2
plants produced slightly larger rosettes and greener
leaves than Col-0 (Fig. 1d,e).

Callus induction and proliferation was achieved
on MS + 2 mg l-1 2,4-D. The response of hypocotyl
and cotyledon explants of Col-0 and cdkg;2 was sim-
ilar, but callus proliferation was earlier in mutant
than in Col-0 explant culture: in mutant culture,
8.7% of the hypocotyl and 44% of the cotyledon
explants started to produce callus after 3 days; pro-
liferation of callus tissue on Col-0 explants was
noted at day 7 of culture (Tab. 1).

The callus was compact and whitish or bicolor
whitish green (Fig. 2). Neither roots nor shoots
formed on auxin-supplemented medium. On some
explants of the Col-0 ecotype and cdkg;2, hair-like
structures appeared on the tissue surface (Fig. 2
a,e,k). 

Shoots were formed after transfer of 21- and
28-day-old callus to MS medium supplemented with
TDZ (0.5 mg l-1). On Col-0 hypocotyl-derived callus
the first shoots were observed after 7 days; in
cdkg;2 mutant culture the first shoots were not
observed until day 31 of culture. The frequency of
mutant explants producing shoots (6.8%) was much
lower than for Col-0 (63.9%). Shoots did not form
on Col-0 cotyledon-derived callus, whereas 12.8% of
the mutant explants developed shoots after 31 days
of culture (Tab. 2; Fig. 3). The number of shoots on
hypocotyl-derived callus of Col-0 was very high: the
whole explant surface was covered by developing
shoots (Fig. 3a). The frequency of shoot formation
was higher on cdkg;2 explants at the end of culture
(Tab. 2).

Histological analysis of Col-0 hypocotyl-derived
callus after 28 days of culture on MS + TDZ showed
meristematic centers forming shoot apices (Fig.
4a,b), sporadic embryo-like structures (Fig. 4b), and
organs visible in transverse section (Fig. 4c). In con-
trast, hypocotyl-derived callus of the cdkg;2 mutant
was heterogenous, with parenchymatous cells, dif-
ferentiated xylem elements, large vacuolized cells at
the periphery of callus tissue (Fig. 4d,e), and easily
identified groups of small meristematic cells scat-
tered within the callus tissue (Fig. 4e). The surface
of Col-0 and mutant hypocotyl- and cotyledon-
derived calluses cultured 28 days on MS + TDZ was
covered with a membranous structure resembling
extracellular matrix (ECM) (Fig. 5). 

Twelve regenerated shoots of Col-0 formed on
hypocotyl-derived callus were rooted on MS + IBA
or 1/2 MS + 2% sucrose and then acclimatized. 
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FFiigg..  11.. Selection of the knockout cdkg;2 line. (aa) Presence and absence of 3.3 kbp PCR product in Col-0 and cdkg;2 genotypes,
respectively. (bb) Identification of T-DNA insert in cdkg;2 line. Lane 1: cdkg2-for/LBb1, lane 2: cdkg2-for/Rba1, lane 3: cdkg2-
rev/Lba1, lane 4: cdkg2-rev/Rba1. (cc) Map of CDKG;2. In the selected cdkg;2 knockout line, T-DNA is inserted in the first exon.
21-day-old mature plants of Col-0 (dd) and cdkg;2 mutant (ee) grown in soil under controlled conditions. Bar = 1 cm. 

TABLE 1. Effect of 2,4-D (2 mg l-1) on callus production of Arabidopsis thaliana Col-0 and cdkg;2 mutant explants.
Values [%]) are averaged from five replicates 

* The number of explants declined on successive days due to explant necrosis and sampling for histological analysis.
** Some explants were cultured 28 days.
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FFiigg..  22.. Arabidopsis thaliana Col-0 (aa––ff) and cdkg;2 mutant (gg––ll). Callus induction on MS + 2 mg l-1 2,4-D on hypocotyls
(aa––cc;;  gg––ii) and on cotyledons (dd––ff;;  jj––ll) after 3 days of culture (aa,,  dd,,  ,,jj), 14 days (bb,,  ee,,  hh,,  kk), 24 days (ii,,  ll), 28 days (cc,,  ff).
Hair-like structures (aa,,cc,,kk, stars), bicolor callus (bb,,  cc,,  ee,,  hh,,  ii,,  ll). Bar = 1 mm.



In cdkg;2, none of the 86 shoots from hypocotyl-
derived callus and none of the 66 shoots from
cotyledon-derived callus formed roots on rooting
media. Acclimatized Col-0 plantlets developed flow-
ers and produced seeds after self-fertilization (Fig.
6a-d). The rootless cdkg;2 regenerants were
dwarfed and their inflorescences had small budlike
flowers with a reduced corolla and generative organs
unable to yield seeds (Fig. 6e–h). 

DISCUSSION

Cyclin-dependent kinases are known to be involved
in the regulation of various developmental process-
es in plants. In this study we selected, for the first
time, an Arabidopsis insertional mutant line with an
inactivated CDKG;2 gene encoding a putative cyclin-
dependent protein kinase containing a conservative
PLTLSRE motif. Mature plants of the homozygous
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FFiigg..  33.. Arabidopsis thaliana Col-0 (aa––dd) and cdkg;2 mutant (ee––hh). Callus derived from hypocotyls (aa,,  bb,,  ee,,  ff) and cotyle-
dons (cc,,  dd,,  gg,,  hh) on MS + 0.5 mg l-1 TDZ after 14 days of culture (ee,,  gg), 17 days (aa,,  cc), 31 days (bb,,  dd,,  ff,,  hh). Shoots are
starred (aa,,  hh). Bar = 1 mm.
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TABLE 2. Effect of TDZ (0.5 mg l-1) on organogenesis in hypocotyl- and cotyledon-derived callus of Arabidopsis thaliana
Col-0 and cdkg;2 mutant. Values [%] are averaged from five replicates, except for one experiment which extended to 42 days 

FFiigg..  44.. Arabidopsis thaliana Col-0 (aa––cc) and cdkg;2 mutant (dd,,  ee). Transverse sections of hypocotyls after 28 days of
culture (aa––cc) and 31 days (dd,,  ee) on MS + 0.5 mg l-1 TDZ. (aa) Meristematic region (arrow), (bb) Embryo-like structures
(stars) and meristematic region (arrow), (cc) Transverse sections of regenerating organs (arrows), (dd) Callus with
parenchymatous cells and xylem elements (arrow), (ee) Callus with groups of small meristematic cells scattered within
tissue and large vacuolized cells at periphery of callus (stars). Bar = 100 μm.

*The number of explants declined on successive days due to explant necrosis and sampling for histological analysis. 



cdkg;2 line showed no apparent phenotypical differ-
ences in morphology from their genetic background
(Col-0), and completed the life cycle during growth
in soil culture. This result suggests that the CDKG;2
function might be limited to specific tissues and/or
processes in Arabidopsis development. Also,
CDKG;2 may express functional overlapping with
other CDK family members. Such overlapping
between CDKA and CDKB kinases (Dissmeier et al.,
2007) and between CDKF and CDKB (Takatsuka et
al., 2009) has been demonstrated. 

In Arabidopsis thaliana ecotype Columbia, the
result of in vitro culture depends on the explant and
medium type. Somatic embryogenesis was success-
fully induced from immature zygotic embryos cul-
tured on Gamborg (B5) medium supplemented with
2,4-D (Gaj, 2001a,b; Kurczyńska et al., 2007; Fraś
et al., 2008). Immature zygotic embryos are the ones
mostly used as explants for direct and indirect for-
mation of somatic embryos in various plant species,
including Trifolium nigrescens (Konieczny et al.,
2010), Helianthus annuus (Jach and Przywara,
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FFiigg..  55.. Arabidopsis thaliana Col-0 (aa,,  bb) and cdkg;2 mutant (cc,,  dd) callus induced on MS + 2 mg l-1 2,4-D after 28 days
of culture on MS + 0.5 mg l-1 TDZ. Membranous structure covering hypocotyl-derived (aa,,  cc) and cotyledon-derived
(bb,,  dd) callus. Note the fibrillar structure of ECM densely (bb) and partially (dd) covering callus tissue. Bar = 30 μm (a),
6 μm (b), 8 μm (c), 60 μm (d).



2000), Sorbus pohuashanensis (Yang et al., 2012)
and Zea mays (González et al., 2012). In our work,
using hypocotyls and cotyledons isolated from 3-
day-old seedlings of Col-0 and a selected cdkg;2
mutant line cultured on MS medium with 2,4-D,
only callus induction and proliferation was
achieved. Neither somatic embryos nor shoots/roots
were formed on medium supplemented with the
auxin only. This result stands in contrast to obser-
vations from other species cultured under the same
experimental conditions. For example, in culture of
Brassica napus cv. Kana cotyledons and hypocotyls
on MS supplemented with 2,4-D, callus induction
was accompanied by either caulogenesis or rhizoge-
nesis, depending on the explant type (Ślesak et al.,
2005).

There was no substantial difference in callus
proliferation on MS medium with 2,4-D between

Col-0 and cdkg;2 explants. Callus proliferated on
both Col-0 and cdkg;2 explants, with higher intensi-
ty in cdkg;2, indicating that inactivation of that
CDKG;2 gene did not affect the cells' ability to divide.

Between Col-0 and the cdkg;2 line there were sig-
nificant differences in the course of organogenesis and
plant regeneration from callus. Shoots started to
develop on Col-0 hypocotyl-derived callus 7 days after
it was transferred to medium with the cytokinin
(TDZ), but not on cotyledons. In contrast, shoots were
regenerated from cdkg;2 callus after 31 days of cul-
ture in the same experimental conditions. In
Arabidopsis, previously the CDKG;2 product was
found to accumulate predominantly in emerging
seedlings and in suspension/callus cells (Menges et al.,
2005). The delayed organogenesis of cdkg;2 callus
suggests that CDKG;2 kinase is involved in regulation
of processes crucial for differentiation of plant cells.
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FFiigg..  66.. Arabidopsis thaliana Col-0 (aa––dd) and cdkg;2 mutant plants regenerated in vitro (ee––hh). (aa) Rooting, (bb)
Acclimatization, (cc) Flower, (dd) Fruit with seeds, (ee,,  ff) Rootless regenerated plantlets, (gg) Inflorescence, (hh) Abnormal
flower. Bar = 1 mm (c,d,g,h); 1 cm (f).



The shoot regeneration frequency of hypocotyl-
derived explants was lower in cdkg;2 than in Col-0
after one month of culture. The regeneration rates of
apical shoots from explants in vitro are highly vari-
able and sensitive to both biotic and abiotic factors.
In Arabidopsis, variability of long-term shoot regen-
eration was demonstrated to arise within the first
hours post-excision from inadvertent, variable expo-
sure of explants to light, modulated by hormones
(Nameth et al., 2013). Shoot regeneration frequency
has been shown to correlate positively with local
cytokinin/auxin ratios in tissue cultures (Krikorian,
1995). Auxins play a key regulatory role in cotyledon
development as a signalling determinant, so auxin
synthesis and its concentration is critical to cotyle-
don organogenesis (Chandler, 2008). The absence of
shoot regeneration on cotyledon explants (Col-0) or
the reduction of its frequency (mutant) in this work
could be an effect of a high concentration of endoge-
nous auxin in cotyledon-derived callus. When cotyle-
don-derived callus already having a high level of
endogenous auxin, cultured in callus-inducing medi-
um with exogenous auxin (2,4-D), was then trans-
ferred to medium supplemented with a cytokinin
(TDZ), it may have disturbed the auxin:cytokinin
ratio required for shoot development. On the other
hand, gradients of endogenous auxin concentrations
formed along hypocotyls (Firml, 2003) could pro-
mote shoot regeneration from hypocotyl-derived cal-
lus via modification of the total auxin:cytokinin ratio
in explants. The observed delay in adventitious
shoot formation (after 31 days of culture) in the
cdkg;2 mutant when cotyledon-derived callus was
transferred to the medium with cytokinin could be
an effect of unknown developmental mechanisms
regulated by CDKG;2 or could be the result of the
cumulative effect of cytokinins from prolonged treat-
ment on this medium. 

The membranous structure covering Col-0 and
mutant hypocotyl- and cotyledon-derived callus was
similar to ECM reported in plant tissue culture of
different species (Popielarska-Konieczna et al.,
2010; Lai et al., 2011). A surface network of extra-
cellular matrix is considered an early marker of
morphogenetic processes, especially somatic
embryogenesis induced in culture (Šamaj et al.,
2006). In our experimental conditions, both Col-0
and cdkg;2 callus cells were covered with ECM, irre-
spective of their morphogenetic ability.

In the cdkg;2 mutant line, adventitious root for-
mation on regenerated shoots was not observed on
medium supplemented with an auxin (IBA), nor on
MS without plant growth regulators. The normal
development of cdkg;2 seedlings after seed germina-
tion on different media (agar, MS, soil) clearly indi-
cates that primary root development and lateral root
formation is not affected by inactivation of the
CDKG;2 gene (Kuta et al., 2008). As auxins influence

root morphology, increasing lateral root production,
inhibiting root elongation and inducing adventitious
roots (Woodward and Bartel, 2005), inactivation of
CDKG;2 seems not to disturb endogenous auxin
production and transport. In plant tissue culture,
auxins added to the media promote rhizogenesis in
undifferentiated callus (Skoog and Miller, 1957). In
our work, adventitious roots were not formed on MS
supplemented with 2,4-D in callus derived from
explants of cdkg;2 seedlings, nor in plants regener-
ated from proliferating cdkg;2 callus. This suggests
that CDKG;2 activity is required for differentiation
of root apical meristems in tissue culture. 

The organogenesis we observed in the cdkg;2 line
in tissue culture resembles that process in explants of
some embryo-lethal mutants. In particular, callus
derived from arrested embryos of the lethal mutant
112A-2A failed to form roots on root-inducing media,
and the embryos of this mutant developed into
abnormal rootless plants when cultured in vitro. This
phenotype has been associated with impaired devel-
opment of the root apical meristem during organo-
genesis in vitro (Baus et al., 1986). Thus, the abnor-
malities observed during cdkg;2 organogenesis sug-
gest a role of CDKG;2 as a regulator of adventitious
root meristem differentiation. 

Here we showed that knocking out the gene
encoding CDKG;2 kinase significantly affects mor-
phogenic responses in culture. Organogenesis of the
cdkg;2 mutant on TDZ-supplemented media was
delayed as compared to shoot formation in the
Columbia ecotype. Roots did not form on rooting
media. The development of regenerated shoots was
disturbed, probably due to the absence of root dif-
ferentiation. The rootless plantlets produced inflo-
rescences but did not set seeds because the genera-
tive organs were not properly developed. Our
results indicate that the function of CDKG;2 is not
limited to cell cycle control but plays multiple roles
both in early plant development (presumably in for-
mation of the root meristem) and in triggering
organ formation.
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