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NH4
+ is an important N-source which regulates plant growth and development. However, the underlying mecha-

nism of NH4
+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic

studies using the  titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS
analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse
aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after
NH4

+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium sig-
naling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using
IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4

+ supply reduces IDD10 phos-
phorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4

+ treatment.
Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also
established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementa-
tion assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain
revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma mem-
brane localization was not  changed. Our analyses show that many proteins were phosphorylated or dephos-
phorylated by NH4

+ that may provide important evidence for studying ammonium uptake and its mediated sig-
naling by which rice growth and development are regulated. 
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INTRODUCTION

In higher plants, ammonium and nitrate are major
sources of nitrogen for roots. NH4

+ ions accumulate
in the cells either by direct uptake from the rhizos-
phere via ammonium transporters (AMTs) or by
reduction of NO3

-. NH4
+ is an energetic N-source

because the reduction of nitrate to ammonium con-
sumes 12–26% of photosynthesis products, but
many plants exhibit a toxic symptom when its con-
centration is high (Bloom, 1997; Britto and
Kronzucker, 2002; Noctor and Foyer, 1998). Paddy
soil grown rice plants utilize NH4

+ as major N-source
due to poor aeration (Sasakawa and Yamamoto,
1978). NH4

+ is taken up directly from the rhizos-
phere via plasma membrane located ammonium
transporters (AMTs), which are later assimilated
into the amino acid glutamate via the glutamine syn-

thetase/glutamate synthase (GS/GOGAT) cycle. 
N-assimilation is also linked to carbon and respira-
tory metabolism by the demands of the GS/GOGAT
cycle for reductants and 2-oxoglutarate (2-OG) as a
carbon skeleton (Galvez et al., 1999).

Transcriptomics aimed at the collection and
quantification of pools of differentially expressed
transcripts, has been widely used in biological
study. In Arabidopsis, a series of transcriptome
analyses have demonstrated that N nutrient regulat-
ed expressions of global genes involved in diverse
aspects including metabolic and developmental
processes (Gutierrez et al., 2008; Patterson et al.,
2010; Scheible et al., 2004; Wang et al., 2000).  In
rice, AMT1;1 and AMT1;2 are up-regulated in
response to NH4

+, whereas AMT1;3 is up-regulated
by nitrogen deprivation (Kumar et al., 2003; Sonoda
et al., 2003). Further, NH4

+ mediated induction of
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GS1;2 and NADH-GOGAT1 in rice roots was identi-
fied (Tabuchi et al., 2007). Recently, the role of a key
transcription factor IDD10 (Indeterminate domain
10) encoding a zinc finger protein in global regula-
tion of ammonium-mediated gene expressions in
rice roots was characterized (Xuan et al., 2013).
Protein phosphorylation is one of the most impor-
tant reversible modifications involved in many cellu-
lar processes such as metabolism, homeostasis,
transcriptional and translational regulation, degra-
dation of proteins, cellular signaling and communi-
cation, proliferation, differentiation and cell survival
(Graves and Krebs, 1999).  Previous studies have
analyzed stimulus-induced protein phosphorylation
patterns by sucrose, elicitor treatment, phytohor-
mone and light (Benschop et al., 2007; Chen et al.,
2010; Niittyla et al., 2007; Reiland et al., 2009; Tang
et al., 2008). Global dynamic phosphorylation pat-
terns regulated by re-supply of nitrate and ammoni-
um to N starved Arabidopsis were identified and
compared (Engelsberger and Schulze, 2012).
Arabidopsis AMT1;1 phosphorylation at T460 is
triggered by ammonium in a time- and concentra-
tion-dependent manner, and which in turn inhibits
AMT1;1 activity (Lanquar et al., 2009). 

Previous studies  analyzed stimulus inducing
enrichment ability of titanium dioxide (TiO2) against
phorphopeptides in different organisms including
plants (Chen et al., 2010; Larsen et al., 2005;
Thingholm et al., 2006). This method skips 2D gel
and follows  staining steps making easy collection of
phosphopeptide from extracts. In this study, we
used TiO2 to collect phosphopeptide whose levels
are modulated by ammonium in rice roots. 23 and
43 peptides were identified with their phosphoryla-
tion levels decreased or increased upon ammonium
treatment, respectively. Interestingly, reduced
IDD10 phosphorylation and increased AMT1;1
phosphorylation were identified. In addition, phos-
phorylation of T446 near T452 which is conserved
with T460 of AtAMT1;1  was identified in
OsAMT1;1. Immunoprecipitation and yeast comple-
mentation assays revealed that IDD10 and AMT1;1
phosphorylation may play important roles in alter-
ation of protein activity. This work analyzes ammo-
nium-mediated phosphoproteome, and provides
information for further understanding of ammoni-
um signaling pathway in rice.  

MATERIALS AND METHODS

PLANT GROWTH

Oryza sativa Japonica rice cv Dongjin was used for
the experiments. The following growth conditions
were used to examine the effects of ammonium on
gene expression and protein phosphorylation: ger-

minated seeds were grown in tap water in a
glasshouse for 14 days; the seedlings were grown for
another 3 days in the N-free nutrient solution (Abiko
et al., 2005); the seedlings were then transferred to
a nutrient solution containing 0.5 mM (NH4)2SO4 at
pH 5.5; whole roots were harvested at 0, 1, 3 and 
6 h following the provision of (NH4)2SO4 (Xuan et al.,
2013). 

PHOSPHOPEPTIDE ENRICHMENT WITH TiO2

Total protein was extracted from the plant roots.
For this, 500 μg of total protein measured by a bicin-
choninic acid assay, was solubilized in 7 M urea, 
2 M thiourea, 2% CHAPS, 40 mM Trizma base, 50 mM
DTT and 1% cocktail and 1% phosphatase inhibitor.
Then the proteins were digested overnight by trypsin
(1:50 wt/wt) at 37°C. Peptides were extracted and
incubated for 15 min in 25 mM ammonium bicar-
bonate and 15 min in 5% formic acid. Samples were
desalted on a C18 column according to the manu-
facturer's instructions and dried using a SpeedVac.
The used phosphopeptide enrichment procedures
were described (Larsen et al., 2005). TiO2 beads
were equilibrated prior to binding of phosphopep-
tide by aspirating/expelling 200 μl of 30 mg/ml 
2,5-dihydroxybenzoic acid (DHB) in 80% acetonitrile
and 0.1% TFA. Before binding, the trypsin-digested
peptide lysate was adjusted to pH ≤ 1.9 by adding 
1% TFA. Each peptide mixture was then added to a
2 ml reaction tube containing 10 mg of the TiO2
beads and incubated batch-wise with end-over-end
rotation for 30 min. After incubation, the beads were
spun down at 500 g and briefly washed once with
80% acetonitrile, 0.1% TFA and once with 10% ace-
tonitrile, 0.1% TFA. Finally, the bound peptides
were eluted from the beads using 200 μl NH4OH in
30% acetonitrile (pH > 10). The eluates were imme-
diately neutralized in 5% TFA solvent and dried.

LC-MS/MS AND DATA PROCESSING

TiO2 enriched phosphopeptides (4 μl) were submit-
ted to on-line nanoflow liquid chromatography using
the easy-nano LC system (Proxeon Biosystems,
Odense, Denmark, now part of Thermo Fisher
Scientific) with 10 cm capillary columns of an inter-
nal diameter of 75 μm filled with 3 μm Reprosil-Pur
C18-A2 resin (Dr. Maisch GmbH, Ammerbuch-
Entringen, Germany). The gradient consisted of 
10–30% (v/v) CAN in 0.1% (v/v) formic acid at a flow
rate of 200 nl/min for 45 min, 30–100% (v/v) CAN in
0.1% (v/v) formic acid at a flow rate of 200 nl/min for
1 min and 100% CAN in 0.1% formic acid at a flow
rate of 200 nl/min for 10 min. The elution was elec-
trosprayed through a Proxeon nanoelectrospray ion
source by (electrospray ionization) ESI-MS/MS
analysis on a Thermo Fisher LTQ Velos Pro
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(Thermo Fisher Scientific, Bremen, Germany) using
full ion scan mode over the m/z range 200–1800.
Collision-induced dissociation (CID) was performed
in the linear ion trap using a 4.0-Th isolation width
and 35% normalized collision energy with helium as
the collision gas. Five dependent MS/MS scans were
performed on each ion using dynamic exclusion.
Also, the precursor ion that had been selected for
CID was dynamically excluded from further MS/MS
analysis for 30s. The MS/MS spectra were processed
using Proteome Discoverer (Version 1.3, Thermo
Fisher Scientific, USA) and the database search was
performed using Mascot search engine (Matrix
Science Mascot 2.3) against a concatenated target-
decoy approach. 

The Swiss-Prot protein sequence database
(release 54.5) was searched, with corresponding tax-
onomy selection for different samples. The search
parameters were following: mass error tolerance for
the precursor ions, 1 Da; mass error tolerance for
the fragment ions, 0.8 Da; fixed modifications, car-
bamidomethylation (C); variable modifications, oxi-
dation (M), phosphorylation (S, T, Y); number of
missed cleavages, 1; significance threshold, P < 0.05;
type of instrument, ESI-TRAP. Protein identifica-
tions were validated only if they satisfied  the follow-
ing 3 requirements: (a) their score was significant 
(P < 0.05) with cut-off criteria; (b) they were identi-
fied with one peptide with a score >15; (c) they were
identified in at least two out of the three runs.
Proteins identified by a set or subset of peptides
used for identification of another protein were not
taken into account.

RNA EXTRACTION AND QRT-PCR

Total cellular RNA was isolated from 20 of 17-day-
old plant roots  (Xuan et al., 2013) with TRIzol
(Takara, Dalian, Liaoning, China) and subsequently
2 μg of total RNA was treated with RQ-RNase free
DNase (Promega, Madison, WI, USA) to eliminate
genomic DNA contamination. For cDNA synthesis, a
GoScript Reverse Transcription kit was used follow-
ing the manufacturer's instructions (Promega,
Madison, WI, USA). qRT-PCR was performed in trip-
licate use of a SYBR green mix (Bio-rad). The reac-
tions consisted of  initial denaturation at 95°C for 
3 min, followed by 40 cycles of denaturation for 15s,
annealing for 20s at 60°C, and extension at 72°C for
20 s, followed by a final extension at 72°C for 
10 min. The PCR products were quantified using an
Illumina Research Quantity software Illumina Eco
3.0, (Illumina, San Diego, California, USA), and val-
ues were normalized against Ubiquitin levels from
the same samples to analyze the ratio for each gene.
Changes in gene expression were calculated via the
ΔΔCt method (Han et al., 2006). The primers used
for qRT-PCR are shown in Table S1.

PROTEIN EXTRACTION 
AND IMMUNOPRECIPITATION ASSAY

For total protein extraction, whole plant roots from
30 of 17-day-old seedlings (Xuan et al., 2013) were
briefly ground into fine power in liquid nitrogen with
moral and pestle, and then transferred to a 15 ml
falcon tube. Further, a lysis buffer (100 ml of 5 mM
Tris-HCl (pH 9.5), 5 mM EDTA, 4 M urea, 
0.01% NaN3) was added to a final tissue concentra-
tion of 1 mg/mL. The tissues were homogenized
manually until no more bulks were visible. The
homogenized samples were centrifuged at 15,000 g
for 30 min at 4°C. The supernatant was collected
and protein concentration was measured by
Bradfold (Bio-Rad, Hercules, CA, USA) following the
manufacturer's instruction. The supernatant was
used for phosphoproteomic study.

Root tissues of the 20 plants overexpressing
IDD10:GFP were harvested before and after ammo-
nium treatment for 1 hour. The harvested tissues
were ground in liquid nitrogen, homogenized in 2 ml
of immunoprecipitation buffer (50 mM Tris-Cl at pH
7.5, 1 mM EDTA, 75 mM NaCl, 0.1% Triton X-100,
5% glycerol, 1mM phenylmethylsulphonyl fluoride,
1% protease inhibitor) and sonicated four times to
break the nuclei. Centrifugation (15,000 g, 15 min at
4°C) was performed to collect the protein-containing
supernatant, which was subsequently incubated
with 1 μg of anti-GFP antibody (Abcam, USA)
overnight at 4°C. Immune complexes were collected
by incubating with Protein G Plus-Agarose (GE
Healthcare) for 2 h at 4°C and washed three times
with 1 ml of immunoprecipitation buffer. The
immunoprecipitated proteins were eluted in the 2x
loading buffer (Oh et al., 2012). 

The eluted samples were then subjected to elec-
trophoresis on 10% SDS-PAGE gel at 120 V. After
the electrophoresis of the gel, the proteins were
transferred to polyvinylidene fluoride membrane.
Membranes were blocked with 5% bovine serum
albumin in Tris-buffered saline containing 0.1%
Tween 20 and incubated with the anti-GFP or anti-
phospho (detect phosphorylation at T, S and Y
residues) antibodies (Abcam, USA) for 2 hrs at 4°C.
The proteins of interest were detected after incuba-
tion with horseradish peroxidase-conjugated sec-
ondary antibodies (Dako Cytomation, Glostrup,
Denmark) and visualized with enhanced chemolu-
miniscence reagent ECL (GE Healthcare,
Buckinghamshire, UK). 

AMMONIUM UPTAKE DEFECTIVE STRAIN 
COMPLEMENTATION ASSAY

Ammonium uptake deficiency yeast strain 31019b
(Δmep1, Δmep2, Δmep3, ura3) (Marini et al., 1997)
was obtained from the Frommer lab (Carnegie insti-
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tution for science). pDRf1-GFP GW vector harboring
wild-type and mutant AMT1;1 (T446/D and T452/D)
was transformed into yeast cells.  Each transfor-
mant was plated in yeast nitrogen base (YNB) media
containing 0.2 mM NH4Cl or 1 mM arginine and
yeast growth was monitored. The primers used for
cloning the wild-type and mutant AMT1;1 were list-
ed in Table S1. 

LOCALIZATION OF AMT1;1 IN YEAST

Wild-type and mutant AMT1;1 ORFs were cloned
into the pDRf1-GFP GW vector (L. Q. Chen et al.,
2010). The 31019b (Δmep1, Δmep2, Δmep3, ura3)
yeast strain was transformed, and three independ-
ent colonies from each transformant were cultured
in yeast nitrogen base (YNB) media containing 
1 mM arginine. GFP fluorescence was detected
under a confocal microscope (OLYMPUS). 

RESULTS

IDENTIFICATION OF THE PHOSPHOPROTEINS
RESPONDING TO NH4

+

To determine phosphorylation changes upon NH4
+

treatment, wild-type rice roots with or without NH4
+

treatment for 1 hour were analyzed for three biolog-
ical replicates. After trypsin digestion and TiO2
enrichment, the phosphopeptides were identified by
using the easy-nano LC system (Cong et al., 2014).
The phosphopeptides that disappeared after ammo-
nium treatment compared to the satate before the
treatment were classified into a phosphorylation
decreased group. In contrast, the phosphopeptides
that were identified only after ammonium applica-
tion were classified into a phosphorylation
increased group. In total, we observed 23 peptides
whose phosphorylations were decreased after
ammonium treatment. Those proteins were diverse
including auxin transporter, ethylene signaling tran-
scription factor (AP2/ERF), protein phosphatase 2C
(PP2C), potassium channel, trehalose-phosphate
phosphatase and a key ammonium signaling tran-
scription factor IDD10 (ZOS4-11 – C2H2 zinc finger
protein) (Table 1). In contrast, there were 43 pep-
tides whose phosphorylation levels were increased
after ammonium supply. Those proteins include
mitogen-activated protein kinase 4 (MAPK4), 14-3-3-
like protein, auxin response factors, cytokinin dehy-
drogenase 8, ferredoxin-dependent glutamate syn-
thase, pyruvate phosphate dikinase 2, AMT1;1 and
potassium transporters (Table 2). These data indi-
cate that ammonium triggers modulation of protein
phosphorylation status involved in diverse aspects
of phytohormone, metabolism, small molecule
transport and cytoskeleton regulation.

IDD10 PHOSPHORYLATION LEVEL WAS SIGNIFICANT-
LY DECREASED AFTER NH4

+ TREATMENT

To confirm the data observed  during the phospho-
proteomic study, further immunoprecipitation assay
was performed. Previously, we identified the role of
a key transcription factor IDD10 in ammonium-
mediated gene expressions in rice roots (Xuan et al.,
2013). IDD10 transcript was repressed, while
AMT1;2 was highly induced by NH4

+ (Fig. 1a) (Xuan
et al., 2013). Seventeen-day-old IDD10-GFP trans-
genic plants were transferred to 0.5 mM (NH4)2SO4,
and whole roots were sampled after 0 and 1 hour.
Total soluble protein from IDD10-GFP plant roots
was immunoprecipitated with GFP antibody, and
the precipitants were immunoblotted with GFP and
phospho antibodies, respectively. The results show

FFiigg..  11. NH4
+-dependent transcriptional and post-transla-

tional changes of IDD10. Seventeen-day-old seedlings were
transferred to nutrient solution containing 0.5 mM
(NH4)2SO4. Whole roots were sampled at 0, 1, 3 and 6 h
after the addition of ammonium. (aa) qRT-PCR was per-
formed to determine the expression levels of AMT1;2 and
IDD10. (bb) Seventeen-day-old IDD10-GFP transgenic
plants were transferred to nutrient solution containing 
0.5 mM (NH4)2SO4. whole roots were sampled at 0 and 
1 h after NH4

+ supply. GFP antibody was used for
immuno-precipitation, and the levels of total IDD10 and
phosphorylated IDD10 from the immune-precipitants were
detected by GFP- and phospho- antibodies, respectively. 
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that phosphorylation of IDD10 was significantly
decreased after ammonium supply compared with
the similar IDD10 protein levels, suggesting that

ammonium treatment specifically affects phospho-
rylation of IDD protein rather than the total protein
expression (Fig. 1b).

TABLE 1. Phosphorylation levels decreased upon NH4
+ treatment.
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TABLE 2. Phosphorylation levels increased by NH4
+ supply.
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AMT1;1 PHOSPHORYLATION AT T446 AND T452
RESIDUES AFFECTS ITS AMMONIUM 

TRANSPORT ACTIVITY

Environmental NH4
+ ions are taken up into the cells

via ammonium transporters (AMTS). AMT1;1 phos-
phorylation at two threonine residues were identi-
fied in our analyses (Table 2). In Arabidopsis,
AMT1;1 is  rapidly phosphorylated at T460 which in
turn abolishes AMT1;1 function (Lanquar et al.,
2009). To analyze the position of rice AMT1;1 phos-
phorylated residues, AtAMT1;1 and OsAMT1;1
sequences were aligned (Fig. 2). The results show
that T452 of OsAMT1;1 is conserved with T460 of

AtAMT1;1, while T452 is specific to OsAMT1;1 com-
pared to AtAMT1;1 (Fig. 2). To test phosphorylation
effects on AMT1;1 ammonium transport activity,
wild-type and phosphomimic forms of AMT1;1
(T446/D and T452/D) were transformed into yeast
strain 31019b (Δmep1, Δmep2, Δmep3, ura3)
which is defective in ammonium uptake (Marini et
al., 1997). For construction, ORFs of wild-type and
mutant AMT1;1 were C-terminally fused to GFP cod-
ing region via gateway cloning system into pDRf1
GW vector. Yeast cell growth was monitored in the
media containing 0.2 mM NH4Cl and 1 mM arginine.
The data shown in Figure 3 suggest that wild-type
AMT1;1 can transport ammonium while two phos-

TABLE 2. Cont.
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phomimic forms of AMT1;1 (T446/D and T452/D)
fail to transport ammonium into yeast cells.
Further, AMT1;1 sub-cellular localization was exam-
ined in yeast cells. Yeast cells expressing wild-type

and mutant forms of AMT1;1 were cultured in the
medium containing 1 mM arginine and their local-
ization was observed via a confocal microscopy.
Wild-type and mutant forms of AMT1;1 are all locat-
ed at the plasma membrane in yeast cells (Fig. 4). To
sum up, these data indicated that phosphorylation
at T446 and T452 at AMT1;1 did not change their
sub-cellular targeting but abolished AMT1;1 ammo-
nium transport activity. 

DISCUSSION

NH4
+ has long been thought to be the source of

amino acid metabolism, and it was not considered
as a signal molecule. However, researchers recently
found that NH4

+ itself regulates gene expressions
without assimilation by supply of MSX, a glutamine
synthetase inhibitor (Patterson et al., 2010). In
Arabidopsis, ammonium triggers lateral root
branching in an AMT1;3-dependent manner (Lima
et al., 2010). Those findings implied that ammoni-
um may act as a signal molecule and play an impor-
tant role in plant growth and development. In rice,
ammonium-mediated transcriptome and IDD10 reg-
ulation in ammonium-mediated gene expressions
and primary root growth were analyzed (Xuan et al.,
2013). Furthermore, AtAMT1;1 phosphorylation at
its cytosolic tail T460 revealed an ammonium-
dependent inhibitory mechanism of ammonium
transporter (Lanquar et al., 2009). 

FFiigg..  22. Sequence alignment of AtATM1;1 and OsAMT1;1.
Identical and similar amino acids are shown in black and
gray boxes, respectively. Asterisks under the residues
indicate the position of phosphorylated threonine.

FFiigg..  33. Functional analysis of phosphomimic ATM1;1 proteins by complementation of an NH4 uptake defective yeast
strain 31019b (Δmep1, Δmep2, Δmep3, ura3). Yeast cells were transformed with wild-type and two mutant AMT1;1 or
empty vector pDRf1-GFP and tested for growth complementation on YNB plates supplemented with 0.2 mM NH4Cl or
1 mM arginine (Arg). Empty (pDRf1-GFP) vector and AMT1;1-GFP were used as the negative and positive controls,
respectively. Yeast cells were grown at 30°C for 3 days.
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Our phosphoproteomic study in rice plant roots
against NH4

+ response identified many phosphory-
lated proteins involved in diverse aspects of signal-

ing pathway. Modifications of auxin transporter,
indole-3-acetic acid-amido synthetase GH3.5, auxin
response factor 21 and 24 were identified. Effects of

FFiigg..  44. Localization of wild-type and mutant AMT1;1 proteins in yeast. WT and mutant AMT1;1-GFP fusion proteins were
expressed in the 31019b yeast strain. After growth on minimal medium with ammonium as the sole nitrogen source,
cells were analyzed by confocal microscopy. (Left) GFP fluorescence and (Right) bright field images of AMT1;1-GFP,
T446/D and T452/D. Scale bar =10 μm.
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ammonium on auxin-mediated lateral root emer-
gence has been reported in Arabidopsis (Li et al.,
2011). Cytokinin dehydrogenase 8 and zeaxanthin
epoxidase are involved in cytokinin catabolism and
biosynthesis, respectively, their phosphorylation
was triggered by ammonium (Table 2). Ammonium-
dependent transcriptome study also showed that
cytokinin dehydrogenase gene expression was
induced by ammonium (Xuan et al., 2013). Besides
phytohormone signaling pathway, N- (ferredoxin-
dependent glutamate synthase) and C- (trehalose-
phosphate phosphatase and pyruvate phosphate
dikinase 2) metabolism related protein phosphory-
lation was identified, indicating diverse regulation of
ammonium in C- and N- metabolic proteins.
Moreover, phosphorylation of the transporters
including ammonium, potassium, phosphate and
magnesium as wells as cytoskeleton related pro-
teins, formin-like protein and tubulin was altered
(Table 1 and 2). More interestingly, phosphorylation
level of IDD10, an ammonium signaling key tran-
scription factor, was reduced by ammonium (Fig. 1b).
IDD10 was reported to directly bind to the specific
cis-elements and activate transcription of genes har-
boring the IDD10-binding motif in their promoter
and introns in an ammonium-dependent manner
(Xuan et al., 2013). Expression of AMT1;2, a key
ammonium transporter, was directly regulated by
IDD10, but surprisingly IDD10 transcript was
slightly repressed by ammonium (Fig. 1a). Here, we
observed that S313 located at the activation domain
of IDD10 was phosphorylated. It was also confirmed
that using IDD10-GFP transgenic plants and
immunoprecipitation assay, reduced phosphoryla-
tion of IDD10 after ammonium-stimuli (Fig. 1b).
These data imply that ammonium signaling may
trigger repression of IDD10 phosphorylation to
increase its transcriptional activity. Further mutage-
nesis and transcriptional assays are required to ver-
ify the role of phosphorylation at IDD10 S313.
Ammonium transporter regulation by phosphoryla-
tion was reported in Arabidopsis. In our analyses,
T452 at OsAMT1;1 which is conserved with T460 of
AtAMT1;1 was also identified, indicating that simi-
lar regulatory mechanism occurred in Arabidopsis
and rice. In addition, T446 which is located near
T452 was also modulated by its ammonium-
dependent phosphorylation. Complementation
assay with rescue ammonium uptake defective
strain 31019b indicated that phosphorylation of
both T446 and T452 abolish AMT1;1 activity 
(Fig. 4). Further studies will focus on understanding
of the molecular mechanisms of phosphorylation
events in AMT1;1, which is important to explore the
ammonium signaling perception and transduction
pathways, especially involved in how ammonium
transporters are regulated and how they transduce
signaling in plants.

CONCLUSIONS

We analyzed ammonium dependent protein phos-
phorylation in rice which provided some informa-
tion about ammonium-mediated proteome regula-
tions, and identified some evidence important for
understanding of regulatory mechanism of IDD10
and AMT1;1, two important proteins in ammonium
signaling pathway. 

AUTHOR'S CONTRIBUTION

XFZ, WHC and YHX designed the research; XFZ,
WHC and JHJ performed the research; XFZ,WHC,
JHJ and YHX analyzed the data; XFZ, WHC and
YHX wrote the paper. All the authors read and
approved the final manuscript, and declare that
there are no conflicts of interest.

ACKNOWLEDGEMENTS

This work was supported by the startup funding
from SAU to XFZ and YHX.

REFERENCES

ABIKO T, OBARA M, USHIODA A, HAYAKAWA T, HODGES M, and
YAMAYA T. 2005. Localization of NAD-isocitrate dehy-
drogenase and glutamate dehydrogenase in rice roots:
candidates for providing carbon skeletons to NADH-glu-
tamate synthase. Plant Cell Physiology 46: 1724–1734. 

BENSCHOP JJ, MOHAMMED S, O'FLAHERTY M, HECK AJ, SLIJPER M,
and MENKE FL. 2007. Quantitative phosphoproteomics of
early elicitor signaling in Arabidopsis. Molecular Cell
Proteomics 6: 1198–1214. 

BLOOM AJ. 1997. Nitrogen as a limiting factor: crop acquisi-
tion of ammonium and nitrate. In: Ecology in
Agriculture (ed. L.E. Jackson). Academic Press, San
Diego, CA, USA. pp. 145–172. 

BRITTO DT, and KRONZUCKER HJ. 2002. NH4
+ toxicity in higher

plants: a critical review. Journal of Plant Physiology
159: 567–584. 

CHEN LQ, HOU BH, LALONDE S, TAKANAGA H, HATTUNG ML, QU

XQ, GUO WJ, KIM JG, UNDERWOOD W, CHAUDHURI B, CHER-

MAK D, ANTONY G, WHITE FF, SOMERVILLE SC, MUDGETT

MB, and FROMMER WB. 2010. Sugar transporters for
intercellular exchange and nutrition of pathogens.
Nature 468: 527–532. 

CHEN Y, HOEHENWARTER W, and WECKWERTH W. 2010.
Comparative analysis of phytohormone-responsive phos-
phoproteins in Arabidopsis thaliana using TiO2-phos-
phopeptide enrichment and mass accuracy precursor
alignment. Plant Journal 63: 1–17. 

CONG W, SHEN J, XUAN Y, ZHU X, NI M, ZHU Z, HONG G, LU X,
and JIN L. 2014. A simple, rapid and low-cost staining
method for gel-electrophoresis separated phosphopro-
teins via the fluorescent purpurin dye. Analyst 139:
6104–6108. 



Zhu et al.48

ENGELSBERGER WR, and SCHULZE WX. 2012. Nitrate and
ammonium lead to distinct global dynamic phosphoryla-
tion patterns when resupplied to nitrogen-starved
Arabidopsis seedlings. Plant Journal 69: 978–995. 

GALVEZ S, LANCIEN M, and HODGES M. 1999. Are isocitrate
dehydrogenases and 2-oxoglutarate involved in the regu-
lation of glutamate synthesis? Trends in Plant Science 4:
484–490. 

GRAVES JD, and KREBS EG. 1999. Protein phosphorylation
and signal transduction. Pharmacology and
Therapeutics 82: 111–121. 

GUTIERREZ RA, STOKES TL, THUM K, XU X, OBERTELLO M, KATARI

MS, TANURDZIC M, DEAN A, NERO DC, MCCLUNG CR, and
CORUZZI GM. 2008. Systems approach identifies an
organic nitrogen-responsive gene network that is regulat-
ed by the master clock control gene CCA1. Proceeding
National Academy of Science U.S.A. 105: 4939–4944.

HAN MJ, JUNG KH, YI G, LEE DY, and AN G. 2006. Rice
Immature Pollen 1 (RIP1) is a regulator of late pollen
development. Plant Cell Physiology 47: 1457–1472.

KUMAR A, SILIM SN, OKAMOTO M, SIDDIQI MY, and GLASS AD.
2003. Differential expression of three members of the
AMT1 gene family encoding putative high-affinity NH4

+

transporters in roots of Oryza sativa subspecies indica.
Plant Cell Environment 26: 907–914. 

LANQUAR V, LOQUE D, HORMANN F, YUAN L, BOHNER A, ENGELS-

BERGER WR, LALONDE S, SCHULZE WX, VON WIREN N, and
FROMMER WB. 2009. Feedback inhibition of ammonium
uptake by a phospho-dependent allosteric mechanism in
Arabidopsis. Plant Cell 21: 3610–3622. 

LARSEN MR, THIGHOLM TE, JENSEN ON, ROEPSTORFF P, and JOR-

GENSEN TJ. 2005. Highly selective enrichment of phos-
phorylated peptides from peptide mixtures using titani-
um dioxide microcolumns. Molecular Cell Proteomics 4:
873–886. 

LI B, LI Q, SU Y, CHEN H, XIONG L, MI G, KRONZUCKER HJ, and
SHI W. 2011. Shoot-supplied ammonium targets the root
auxin influx carrier AUX1 and inhibits lateral root emer-
gence in Arabidopsis. Plant Cell Environment 34:
933–946. 

LIMA JE, KOJIMA S, TAKAHASHI H, and VON WIREN N. 2010.
Ammonium triggers lateral root branching in
Arabidopsis in an AMMONIUM TRANSPORTER1;3-
dependent manner. Plant Cell 22: 3621–3633. 

MARINI AM, SOUSSI-BOUDEKOU S, VISSERS S, and ANDRE B. 1997.
A family of ammonium transporters in Saccharomyces
cerevisiae. Moleclular Cell Biology 17(8): 4282–4293. 

NIITTYLA T, FUGLSANG AT, PALMGREN MG, FROMMER WB, and
SCHULZE WX. 2007. Temporal analysis of sucrose-
induced phosphorylation changes in plasma membrane
proteins of Arabidopsis. Molecular Cell Proteomics 6:
1711–1726.

NOCTOR G, and FOYER CH. 1998. A re-evaluation of the ATP :
NADPH budget during C3 photosynthesis: a contribution
from nitrate assimilation and its associated respiratory

activity? Journal of Experimental Botany 49:
1895–1908. 

OH E, ZHU JY, and WANG ZY. 2012. Interaction between BZR1
and PIF4 integrates brassinosteroid and environmental
responses. Nature Cell Biology 14: 802–809. 

PATTERSON K, CAKMAK T, COOPER A, LAGER I, RASMUSSON AG,
and ESCOBAR MA. 2010. Distinct signalling pathways and
transcriptome response signatures differentiate ammoni-
um- and nitrate-supplied plants. Plant Cell Environment
33: 1486–1501. 

REILAND S, MESSERLI G, BAERENFALLER K, GERRITS B, ENDLER A,
GROSSMANN J, GRUISSEM W, and BAGINSKY S. 2009. Large-
scale Arabidopsis phosphoproteome profiling reveals
novel chloroplast kinase substrates and phosphorylation
networks. Plant Physiology 150: 889–903.

SASAKAWA H, and YAMAMOTO Y. 1978. Comparison of the uptake
of nitrate and ammonium by rice seedlings: influences of
light, temperature, oxygen concentration, exogenous
sucrose, and metabolic inhibitors. Plant Physiology 62:
665–669. 

SCHEIBLE WR, MORCUENDE R, CZECHOWSKI T, FRITZ C, OSUNA D,
PALACIOUS-ROJAS N, SCHINDELASCH D, THIMM O, UDVARDI

MK, and STITT M. 2004. Genome-wide reprogramming of
primary and secondary metabolism, protein synthesis,
cellular growth processes, and the regulatory infrastruc-
ture of Arabidopsis in response to nitrogen. Plant
Physiology 136: 2483–2499. 

SONODA Y, IKEDA A, SAIKI S, VON WIREN N, YAMAYA T, and YAM-

AGUCHI J. 2003. Distinct expression and function of three
ammonium transporter genes (OsAMT1;1-1;3) in rice.
Plant Cell Physiology 44: 726–734. 

TABUCHI M, ABIKO T, and YAMAYA T. 2007. Assimilation of
ammonium ions and reutilization of nitrogen in rice
(Oryza sativa L.). Journal of Experimental Botany 58:
2319–2327. 

TANG W, DENG Z, OSES-PRIETO JA, SUZUKI N, ZHU S, ZHANG X,
BURLINGAME AL, and WANG ZY. 2008. Proteomics studies
of brassinosteroid signal transduction using prefraction-
ation and two-dimensional DIGE. Molecular Cell
Proteomics 7: 728–738. 

THINGHOLM TE, JORGENSEN TJ, JENSEN ON, and LARSEN MR.
2006. Highly selective enrichment of phosphorylated
peptides using titanium dioxide. Nature Protocol 1:
1929–1935. 

WANG R, GUEGLER K, LABRIE ST, and CRAWFORD NM. 2000.
Genomic analysis of a nutrient response in Arabidopsis
reveals diverse expression patterns and novel metabolic
and potential regulatory genes induced by nitrate. Plant
Cell 12: 1491–1509. 

XUAN YH, PRIATAMA RA, HUANG J, JE BI, LIU JM, PARK SJ, PIAO

HL, SON DY, LEE JJ, PARK SH, JUNG KH, KIM TH, and HAN

CD. 2013. Indeterminate domain 10 regulates ammoni-
um-mediated gene expression in rice roots. New
Phytologist 197: 791–804. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


