
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 58, No. 3, 2010

DOI: 10.2478/v10175-010-0036-0

TuLiPA – Parsing extensions of TAG

with range concatenation grammars

L. KALLMEYER1∗, W. MAIER1, Y. PARMENTIER2 and J. DELLERT1

1 SFB 833, Universität Tübingen, Nauklerstr. 35, D-72 074 Tübingen, Germany
2 LIFO, Université d’Orléans, Bât. 3IA, Rue Léonard De Vinci – BP 6759 – F-45 067 Orléans Cedex 2, France

Abstract. In this paper we present a parsing framework for extensions of Tree Adjoining Grammar (TAG) called TuLiPA (Tübingen Linguistic

Parsing Architecture). In particular, besides TAG, the parser can process Tree-Tuple MCTAG with Shared Nodes (TT-MCTAG), a TAG-

extension which has been proposed to deal with scrambling in free word order languages such as German. The central strategy of the parser

is such that the incoming TT-MCTAG (or TAG) is transformed into an equivalent Range Concatenation Grammar (RCG) which, in turn,

is then used for parsing. The RCG parser is an incremental Earley-style chart parser. In addition to the syntactic anlysis, TuLiPA computes

also an underspecified semantic analysis for grammars that are equipped with semantic representations.

Key words: tree-adjoining grammar, parsing, range concatenation grammar.

1. Introduction

The starting point of the work presented here is the aim to

implement a parser for a German TAG-based grammar that

computes syntax and semantic representations. As a grammar

formalism for German we choose a multicomponent exten-

sion of TAG called Tree Tuple Multicomponent TAG with

Shared Nodes (TT-MCTAG) which has been first introduced

by Lichte [1], in order to model free-word order phenomena.

Instead of implementing a specific TT-MCTAG parser we fol-

low a more general approach by using Range Concatenation

Grammar (RCG) as a pivot formalism. More specifically, for

TAG and TT-MCTAG we use so-called simple RCG. The TT-

MCTAG (or TAG) is transformed into a strongly equivalent

RCG that is then used for parsing. The motivation for the pas-

sage via RCG is that the RCG directly represents the set of

derivation trees of the original grammar. Consequently, it ab-

stracts away from traversals of elementary trees combined via

substitutions or adjunctions and the output of the RCG pars-

er can be directly interpreted as the TT-MCTAG (or TAG)

derivation forest.

We have implemented the conversion into RCG, the RCG

parser and the retrieval of the corresponding TT-MCTAG

analyses. The parsing architecture comes with graphical in-

put and output interfaces, and an XML export of the result of

parsing, for integration within an NLP application. TuLiPA is

freely available under the terms of the GNU General Public

License1.

In this paper, we present this parsing architecture focussing

on the following aspects: first, we introduce the TT-MCTAG

formalism (Sec. 2). Then, we present successively the RCG

formalism and the conversion of TT-MCTAG into simple

RCG (Sec. 3). Section 4 explains the parsing algorithm(s)

we use for the specific RCGs we obtain from TAG and TT-

MCTAG. In Sec. 5, we present the implementation of the

RCG-based parsing architecture. Finally, we conclude present-

ing perspectives for future work.

2. TT-MCTAG

2.1. Tree adjoining grammars. Tree Adjoining Gram-

mar [2] is a formalism based on tree rewriting. We briefly

summarize here the relevant definitions and refer the reader

to [2] for a more complete introduction.

Definition 1 (Tree Adjoining Grammar). A Tree Adjoining

Grammar (TAG) is a tuple G = (VN,VT ,S, I ,A) where

• VN and VT are disjoint alphabets of non-terminal and ter-

minal symbols, respectively,

• S∈VN is the start symbol,

• and I and A are finite sets of initial and auxiliary trees,

respectively.

Trees in I ∪A are called elementary trees. The internal

nodes in the elementary trees are labeled with non-terminal

symbols, the leaves with non-terminal or terminal symbols.

As a special property, each auxiliary tree β has exactly one

of its leaf nodes having the same label as the root. This leaf

node is called foot node and marked with a ∗. The foot node

is used in the tree rewriting operation called adjunction in-

troduced below. Leaves with non-terminal labels that are not

foot nodes are called substitution nodes.

On top of this tuple-based definition of TAG, one can

define the Obligatory-Adjunction function fOA as follows:

fOA : {n|n a node in some γ ∈ I ∪A}→ {0,1}

For a given node n, the function fOA specifies whether ad-

junction is obligatory (value 1) or not (value 0).

∗e-mail: lk@sfs.uni-tuebingen.de
1See http://sourcesup.cru.fr/tulipa/

377

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

In a TAG, larger trees can be derived from the elementary

trees by subsequent applications of the operations substitution

and adjunction. The substitution operation replaces a substi-

tution node η with an initial tree having a root node with the

same label as η. The adjunction operation replaces an internal

node η in a previously derived tree γ with an auxiliary tree

β having root and foot nodes with the same label as η. The

subtree of γ rooted at η is then placed below the foot node

of β. Only internal nodes can allow for adjunction, in other

words, adjunction at leaves is not possible. See Fig. 1 for an

example of a tree derivation.

Fig. 1. TAG derivation for John always laughs

TAG derivations are represented by derivation trees that

record the history of how the elementary trees are put to-

gether. A derivation tree is an unordered tree whose nodes

are labeled with elements in I ∪A and whose edges are la-

beled with Gorn addresses of elementary trees2. Each edge

in a derivation tree stands for an adjunction or a substitution.

E.g., the derivation tree in Fig. 1 indicates that the elemen-

tary tree for John is substituted for the node at address 1 and

always is adjoined at node address 2 (the fact that the former

is an adjunction, the latter a substitution can be inferred from

the fact that the node at address 1 is a substitution node while

the node at address 2 is an internal node).

In the following, we write a derivation tree D as a directed

graph 〈V,E, r〉 where V is the set of nodes, E ⊂V×V the set

of arcs and r ∈V the root3. For every v∈V, Lab(v) gives the

node label and for every 〈v1,v2〉 ∈ E, Lab(〈v1,v2〉) gives the

edge label.

A derived tree is the result of carrying out the substitutions

and the adjunctions in a derivation tree, i.e., the derivation tree

describes uniquely the derived tree; see again Fig. 1.

The tree language of a TAG G, written T(G), is the set of

all trees γ such that γ is derived from an initial tree in G and

there is no node v in γ with fOA(v) = 1. The string language

of G is the set of yields of trees in LT(G).

2.2. Multicomponent TAG with tree tuples. For a range

of linguistic phenomena, multicomponent TAG [4] have been

proposed, also called MCTAG for short. The underlying moti-

vation is the desire to split the contribution of a single lexical

item (e.g., a verb and its arguments) into several elementary

trees. An MCTAG consists of (multi-)sets of elementary trees,

called tree sets. If an elementary tree from some set is used in

a derivation, then all of the remaining trees in the set must be

used as well. Several variants of MCTAGs can be found the

literature, differing on the specific definition of the derivation

process.

The particular MCTAG variant we are concerned with

is Tree-Tuple MCTAG with Shared Nodes, TT-MCTAG [1].

TT-MCTAG were introduced to deal with free word order

phenomena in languages such as German. An example is (1)

where the argument es of reparieren precedes the argument

der Mann of verspricht and is not adjacent to the predicate it

depends on.

(1) ... dass es der Mechaniker zu reparieren verspricht

... that it the mechanic to repair promises

‘... that the mechanic promises to repair it’

A TT-MCTAG is slightly different from standard MC-

TAGs since each elementary tree set contains one specially

marked lexicalized tree called the head, and all of the re-

maining trees in the set function as arguments of the head.

Furthermore, in a TT-MCTAG derivation the argument trees

must either adjoin directly to their head tree, or they must be

linked in the derivation tree to an elementary tree that attach-

es to the head tree, by means of a chain of adjunctions at root

nodes. In other words, in the corresponding TAG derivation

tree, the head tree must dominate the argument trees in such

a way that all positions on the path between them, except

the first one, must be labeled ε. This captures the notion of

adjunction under node sharing from [5]4.

Figure 2 shows a TT-MCTAG derivation for (1). Here, the

NPnom auxiliary tree adjoins directly to verspricht (its head)

while the NPacc tree adjoins to the root of a tree that adjoins

to the root of a tree that adjoins to reparieren.

Definition 2 (TT-MCTAG). A TT-MCTAG is a tuple G =
(VN, VT , S, I ,A,T) where GT = (VN,VT ,S, I ,A) is an under-

lying TAG and T is a finite set of tree tuples of the form

Γ = 〈γ,{β1, . . . ,βr}〉 where γ ∈ (I ∪A) has at least one node

with a terminal label, and β1, . . . ,βn ∈ A.

For each Γ = 〈γ,{β1, . . . ,βr}〉 ∈ T , we call γ the head tree

and the β j ’s the argument trees. We informally say that γ and

the β j ’s belong to Γ, and write |Γ| = r + 1.

As a remark, an elementary tree γ from the underlying

TAG GT can be found in different tree tuples in G, or there

could even be multiple instances of such a tree within the same

tree tuple Γ. In these cases, we just treat these tree instances

2In this convention, the root address is ε (the empty string) and the jth child of a node with address p has address p· j .
3Note that the root node of the derived tree can be deduced from the set of arcs.
4The intuition is that, if a tree γ′ adjoins to some γ, its root in the resulting derived tree somehow belongs both to γ and γ ′ or, in other words, is shared

by them. A further tree β adjoining to this node can then be considered as adjoining to γ, not only to γ ′ as in standard TAG. Note that we assume that foot

nodes do not allow adjunctions, otherwise node sharing would also apply to them.

378 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

as distinct trees that are isomorphic and have identical labels.

For a given argument tree β in Γ, h(β) denotes the head of β
in Γ. For a given γ ∈ I ∪A, a(γ) denotes the set of argument

trees of γ, if there are any, or the empty set otherwise. Fur-

thermore, for a given TT-MCTAG G, H(G) is the set of head

trees and A(G) is the set of argument trees. Finally, a node v
in a derivation tree for G with Lab(v) = γ is called a γ-node.

Fig. 2. TT-MCTAG analysis of (1)

Definition 3 (TT-MCTAG derivation).

Let G= (VN,VT ,S, I ,A,T) be some TT-MCTAG. A derivation

tree D = 〈V,E, r〉 in the underlying TAG GT is licensed in G
if and only if the following conditions (MC) and (SN-TTL)

are both satisfied.

• (MC): For all Γ from G and for all γ1,γ2 in Γ, we have

|{v|v∈V, Lab(v) = γ1}| = |{v|v∈V, Lab(v) = γ2}|.
• (SN-TTL): For all β ∈ A(G) and n≥ 1, let v1, . . . ,vn ∈ V

be pairwise different h(β)-nodes, 1 ≤ i ≤ n. Then there

are pairwise different β-nodes u1, . . . ,un ∈ V, 1 ≤ i ≤ n.

Furthermore, for 1 ≤ i ≤ n, either 〈vi ,ui〉 ∈ E, or else

there are ui,1, . . . ,ui,k, k ≥ 2, with auxiliary tree labels,

such that ui = ui,k, 〈vi ,ui,1〉 ∈ E and, for 1 ≤ j ≤ k− 1,

〈ui, j ,ui, j+1〉 ∈ E with Lab(〈ui, j ,ui, j+1〉) = ε.

The separation between (MC) and (SN-TTL) in defini-

tion 3 is motivated by the desire to separate the multicompo-

nent property that TT-MCTAG shares with a range of relat-

ed formalisms (e.g., tree-local and set-local MCTAG, Vector-

TAG, etc.) from the notion of tree-locality with shared nodes

that is peculiar to TT-MCTAG.

As already mentioned, TT-MCTAG has been proposed to

deal with free word order languages. An example from Ger-

man was given in Fig. 2. For a more extended account of

German word order using TT-MCTAG see [1] and [6].

TT-MCTAG can be further restricted, such that at each

point of the derivation the number of pending β-trees is at

most k. This subclass is called k-TT-MCTAG.

Definition 4 (k-TT-MCTAG). A TT-MCTAG G =
〈I ,A,N,T,A〉 is of rank k (or a k-TT-MCTAG for short)

iff for each derivation tree D licenced in G:

(TT-k) There are no nodes n, h0, . . . ,hk, a0, . . . ,ak in D
such that the label of ai is an argument tree of the label of hi

and 〈hi ,n〉,〈n,ai〉 ∈ P
+
D for 0 ≤ i ≤ k.

Both, TT-MCTAG and the restricted k-TT-MCTAG, gen-

erate only polynomial languages [7, 8].

3. Transforming TT-MCTAG into RCG

The central idea of our parsing strategy is to use RCG [9, 10]

as a pivot formalism, for it has several interesting properties:

first, RCGs are known to describe exactly the class PTIME

of languages parsable in polynomial time [11], secondly, their

generative capacity lies beyond Linear Context-Free Rewrit-

ing Systems (LCRFS, [4]). Therehere exists a restricted class

of RCGs called simple RCGs, which has been shown to be

equivalent to LCFRS [12]. Actually, simple RCG and LCFRS

are more or less syntactic variants of each other.

Informally speaking, RCGs are grammars that rewrite

predicates ranging over parts of the input string by other pred-

icates. E.g., a clause S(aXb)→S(X) signifies that S is true for

a part of the input if this part starts with an a, ends with a b,

and if, furthermore, S is also true for the part between a and b.

In the following, a formal definition of RCG is given,

and then the algorithm used to transform a TAG (respectively

a TT-MCTAG) into an equivalent RCG is presented.

3.1. Range Concatenation Grammar. In this paper, by

range concatenation grammar, we always mean Positive Range

Concatenation Grammar, since this is the variant common-

ly considered in the above mentioned applications. Nega-

tive RCG allows for negative predicate calls of the form

A(α1, . . . ,αn). Such a predicate is meant to recognize the

complement language of its positive counterpart. See [10] for

details.

Definition 5 (Range Concatenation Grammar). A range

concatenation grammar (RCG) is a 5-tuple G = 〈N,T,V,P,S〉
where

• N is a finite set of predicate names with an arity function

dim: N → N\ {0},

• T and V are finite sets of terminals and variables.

• P is a finite set of clauses of the form
ψ0 → ψ1 . . .ψm

where m≥ 0 (if m = 0, then the right-hand-side of the

clause is empty) and each of the ψi ,0 ≤ i ≤ m, is a pred-

icate of the form Ai(α1, . . . ,αdim(Ai)) with Ai ∈ N and

α j ∈ (T ∪V)∗ for 1 ≤ j ≤ dim(Ai).
As a shorthand notation for Ai(α1, . . . ,αdim(Ai)), we use the

vector-based notation Ai(~α).
• S∈ N is the start predicate name with dim(S) = 1.

We assume our RCGs to be ε-free, i.e., not to contain

lefthand side arguments ε. This can be done without loss of

generality [12].

To illustrate this definition, see the example RCG given in

Fig. 3.

G = 〈{S,eq},{a},{X,Y},P,S〉 with P =

{ S(XY) → S(X) eq(X,Y),

S(a) → ε,
eq(aX,aY) → eq(X,Y),

eq(a,a) → ε }

Fig. 3. Example of an RCG

Central to RCGs is the notion of ranges on strings.

Bull. Pol. Ac.: Tech. 58(3) 2010 379

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

Definition 6 (Ranges). For every w∈T∗, where w= w1 . . .wn

with wi ∈ T for 1 ≤ i ≤ n, we define:

• Pos(w) := {0, . . . ,n}.

• A pair 〈l , r〉 ∈ Pos(w)×Pos(w) with l ≤ r is a range in w.

Its yield 〈l , r〉(w) is the substring wl+1 . . .wr .

• For two ranges ρ1 = 〈l1, r1〉,ρ2 = 〈l2, r2〉: if r1 = l2, then

ρ1 ·ρ2 = 〈l1, r2〉; otherwise ρ1 ·ρ2 is undefined.

Definition 7 (Range vectors). For a given w∈ T∗, we call a

vector φ = (〈x1,y1〉, . . . ,〈xk,yk〉) a range vector of dimension

k in w if 〈xi ,yi〉 is a range in w for 1 ≤ i ≤ k. φ(i).l (resp.

φ(i).r) denotes then the first (resp. second) component of the

ith element of φ, that is xi (resp. yi).

In order to instantiate a clause of the grammar, we need

to find ranges for all variables in the clause and for all occur-

rences of terminals. For convenience, we assume the variables

in a clause, the occurrences of terminals and the occurrences

of empty arguments ε to be equipped with distinct subscript

indices, starting with 1 and ordered from left to right (where

for variables, only the first occurrence is relevant for this or-

der). We then introduce a function ϒ : P→ N that gives the

maximal index in a clause. Furthermore, we define ϒ(c,x)
for a given clause c and x a variable or an occurrence of

a terminal or an empty argument ε as the index of x in c.

Definition 8 (Clause instantiation). An instantiation of some

clause c∈ P with ϒ(c) = j wrt. to some string w is given by

a range vector φ with dim(φ) = j . Applying φ to a predicate

A(~α) in c maps all occurrences of x ∈ (T ∪V ∪ {ε}) with

ϒ(c,x) = i in ~α to φ(i). If the result is defined (i.e., the im-

ages of adjacent variables can be concatenated), it is called

an instantiated predicate and the result of applying φ to all

predicates in c, if defined, is called an instantiated clause.

An RCG derivation consists of rewriting instantiated pred-

icates applying instantiated clauses:

Definition 9 (Derivation). Given an RCG G and an in-

put string w, we define a relation ⇒G,w called derive on

strings of instantiated predicates the following way. Let

Γ1,Γ2 be strings of instantiated predicates. If A0(~α0) →
A1(~α1) . . .Am(~αm) is the instantiation of some clause c∈ PG,

then Γ1A0(~α0)Γ2 ⇒G,w Γ1A1(~α1) . . .Am(~αm)Γ2.

Intuitively, if the left-hand-side (LHS) of an instantiated

clause occurs in some string of instantiated predicates, it may

be replaced by its righthand side.

Definition 10 (Language). The language of an RCG G is

the set of strings that can be reduced to the empty word:

L(G) = {w | S(〈0, |w|〉)
+
⇒G,w ε}.

The expressive power of RCG lies beyond mild context-

sensitivity. Let us consider the RCG G defined in Fig. 3. It

is easy to see that L(G) = {a2n
| n≥ 0}. This language is ob-

viously not mildly context-sensitive as it does not have the

constant growth property.

As an example of RCG derivation, let us consider the RCG

G′ defined as follows. G′ = 〈{S,A,B},{a,b},{X,Y,Z},S,P〉

where P = {S(X Y Z) → A(X,Z)B(Y), A(aX,aY) →
A(X,Y), B(bX) → B(X), A(ε,ε) → ε, B(ε) → ε}.

The string language generated by G′ is L(G′) =
{anbkan |k,n∈ IN}.

Consider the input string w = aabaa. To parse this string,

first, the clause whose LHS predicate is S is instantiated as

follows. S(〈0,5〉) ⇒ A(〈0,2〉,〈3,5〉)B(〈2,3〉).

Secondly, we replace the succesfully instantiated LHS

with its RHS, this gives us the following instantiations:

A(〈0,2〉,〈3,5〉) ⇒ A(〈1,2〉,〈4,5〉) ⇒ A(〈2,2〉,〈5,5〉) ⇒ ε.

We still have to instantiate the second predicate of the

starting clause: B(〈2,3〉) ⇒ B(〈3,3〉) ⇒ ε.

Since ε can be derived, w∈ L(G′).

Definition 11 (Simple RCG). An RCG is called simple RCG

if it is non-combinatorial, linear and non-erasing.

• An RCG is said to be non-combinatorial when all argu-

ments of its RHS predicate are made of single variables

(i.e., concatenations of variables are not allowed within an

argument of a RHS predicate),

• An RCG is said to be linear when no variable appears more

than once within either the LHS or the RHS of a clause,

• An RCG is said to be non-erasing when all variables ap-

pearing in a RHS of a clause also appear in its LHS and

vice versa.

To sum up, a simple RCG is a set of clauses where all

arguments of the RHS predicate are made of single variables

only and where every variable occurs exactly once both in

the LHS and in the RHS. Note that the RCG G generating

{anbkan |k,n∈ IN} introduced above is, for example, a simple

RCG.

To encode TAGs and TT-MCTAGs, as we shall see in the

next sections, only simple RCGs are needed.

380 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

3.2. Converting a TAG into an equivalent RCG. The idea

of the TAG-to-RCG transformation has been proposed by

Boullier [9, 13] and is the following: the RCG contains claus-

es with LHS predicates of the form 〈α〉(X) and 〈β〉(L,R) for

initial and auxiliary trees respectively.

More precisely, an RCG clause is created for every single

elementary tree of the TAG. If the tree is an initial tree α, the

LHS predicate of the clause is named 〈α〉, and has a single

argument X referring to the substring of the input string cov-

ered by α (including all trees that may have been combined

with α via tree rewriting). If the tree is an auxiliary tree β, the

LHS predicate of the clause named 〈β〉, has two arguments

L and R covering those parts of the input string represented

by the yields of β (including all trees added to β) that are

respectively to the left and the right of the foot node of β.

Fig. 4. A TAG and an equivalent RCG

The clauses in the RCG reduce the argument(s) of these

predicates by identifying those parts that come from the ele-

mentary tree α/β itself and those parts that come from one

of the elementary trees added by substitution or adjunction.

In other words, the RHS predicates of the above clauses are

branching predicates relating arguments of the LSH predicate

(i.e., parts of the input string) with trees they are included

in the yield of. As an example, consider Fig. 45. The clause

〈α1〉(aX) → subF(X) encodes the fact that the yield of the

tree α1 contains the terminal symbol a followed by symbols

included in the yield of a tree that has been substituted at

node F in α1. Then, subF(X) → 〈α2〉(X) states that the tree

α2 can substitute at a node labelled F .

3.3. Converting a TT-MCTAG into an equivalent RCG.

For the transformation from TT-MCTAG into RCG, we use

the same idea as for TAG. There are predicates 〈γ...〉 for the

elementary trees (not the tuples) that characterize the contri-

bution of γ. We enrich these predicates in a way that allows to

keep track of the “still to adjoin” argument trees and constrain

thereby further the RCG clauses. The pending arguments are

encoded in an unordered list (called List of Pending Argu-

ments – LPA) that is part of the predicate name. The yield of

a predicate corresponding to a tree γ contains not only γ and

its arguments but also arguments of predicates that are higher

in the derivation tree and that are adjoined below γ via node

sharing. In addition, we use branching predicates adj and sub
that allow computation of the possible adjunctions or substi-

tutions at a given node in a separate clause, thus reducing the

number of clauses.

To sum up, we handle three types of clauses, depending

on the form of their left-hand side predicate:

1. 〈γ,LPA〉 where γ is a tree (not a tuple) from the TT-

MCTAG, and LPA is the list of argument trees waiting

for adjunction (used to constraint the derivation, i.e., the

form of the RHS predicates, as will be shown below),

2. 〈adj,γ,dot,LPA〉 where dot is the node of the tree γ which

may hosts an adjunction. The LPA contains the argument

trees of γ (plus the argument trees currently waiting for ad-

junction, if dot is the root node), provided these trees have

the necessary node labels to adjoin in dot,

3. 〈sub,γ,dot〉 where dot is a substitution node of γ.

In order to give the transformation algorithm, we need to

define the decoration string of a tree τ:

Definition 12 (Decoration string). Given a tree τ having

n adjunction nodes ani,n ≥ i ≥ 0, and m substitution nodes

snj ,m≥ j ≥ 0, we associate each node ani with a pair of

variables Lani ,Rani , and each node snj with a variable Xsnj .

Lani (resp. Rani) represents the range of the input string cor-

responding to the left (resp. right) yield of the tree adjoined

in ani (if any). By left (resp. right) yield, we mean the yield

that is situated on the left (resp. right) of the foot node of the

adjoined tree.

Xsnj refers to the range of the input string corresponding

to the yield of the tree substituted in snj .

Figure 5 shows an example of the decoration string of an

elementary tree6.

5In this figure, the node label SNA corresponds to an extension of the label Swith the additional Null-Adjunction constraint. In other words, a node labelled

SNA is a node with label S, and which cannot host any adjunction.
6The indices associated with the nodes are their Gorn addresses.

Bull. Pol. Ac.: Tech. 58(3) 2010 381

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

Fig. 5. A TAG tree and its decoration string

The conversion algorithm. From the above informations, we

can now detail the TT-MCTAG-to-RCG conversion algorithm.

Note that this algorithm is based on an agenda, which creates

new clauses from existing ones, until a given point has been

reached. Usually, this limit is defined in terms of length of

the list of pending arguments. Therefore, strictly speaking,

this algorithm converts k-TT-MCTAG (introduced in Sec. 2)

into equivalent RCG.

1. We build clauses whose LHS are the start predicate (of

arity 1), and whose RHS are made of single predicates of

the form 〈α, /0〉, where α is a head tree of a tuple of the

input TT-MCTAG, such that the root of α is labelled with

the axiom of the TT-MCTAG.

2. For each tree γ (initial or auxiliary tree) in the in-

put TT-MCTAG, let us call σγ its decoration string,

and Lp,Rp the variables associated with the node at

position p, if it is an adjunction node, or Xp if it

is a substitution node. Let p1, ..., pk (resp. pk+1, ..., pn)

be the adjunction nodes (resp. substitution nodes) of

γ. We then build the following clauses: 〈γ,LPA〉(σγ) →
〈adj,γ, p1,LPAp1〉(Lp1 ,Rp1) . . . 〈adj,γ, pk,LPApk〉
(Lpk,Rpk)〈sub,γ, pk+1〉(Xpk+1) . . . 〈sub,γ, pl 〉(Xpl)
such that

• If LPA 6= /0, then ε ∈ {p1, . . . , pk} (i.e., one of the ad-

junction nodes is the root) and LPA⊆ LPAε, and

•
Sk

i=0 LPApi = LPA∪Γ(γ) where Γ(γ) is either the set

of arguments of γ (if γ is a head tree) or (if γ is an

argument itself), the empty set.

3. For all predicates 〈adj,γ,dot,LPA〉 computed at step 2.,

the RCG contains all clauses 〈adj,γ,dot,LPA〉(L,R) →
〈γ′,LPA′〉(L,R) such that γ′ can be adjoined at position

dot in γ and

• either γ′ ∈ LPA and LPA′ = LPA\ {γ′},

• or γ′ /∈ LPA, γ′ is a head tree, and LPA′ = LPA.

4. For all predicates 〈adj,γ,dot, /0〉 where dot in γ is not a

node of type mandatory adjunction, the RCG contains a

clause 〈adj,γ,dot, /0〉(ε,ε) → ε.

5. For all predicates 〈sub,γ,dot〉 and all γ′ that can be sub-

stituted into position dot in γ the RCG contains a clause

〈sub,γ,dot〉(X) → 〈γ′, /0〉(X).

Fig. 6. Toy TT-MCTAG

As a first illustration of this algorithm, let us take the

TT-MCTAG displayed in Fig. 6. From this TT-MCTAG, the

following RCG clauses are built (amongst others):

〈αv, /0〉(L v0 R) → 〈adj,αv,ε, /0〉(L,R)
(a single adjunction at the root node ε)

〈adj,αv,ε, /0〉(L,R) → 〈βv1 , /0〉(L,R)
〈adj,αv,ε, /0〉(L,R) → 〈βv2 , /0〉(L,R)
(βv1 or βv2 can adjoin at ε in αv, LPA (here empty) is

passed to the RHS)

〈βv1 , /0〉(L v1,R) → 〈adj,βv1 ,ε,{βn1}〉(L,R)
(in βv1 , there is a unique adjunction node whose address is

ε; the argument tree is fed to the new LPA)

〈adj,βv1 ,ε,{βn1}〉(L,R) → 〈βn1 , /0〉(L,R)
〈adj,βv1 ,ε,{βn1}〉(L,R) → 〈βv1 ,{βn1}〉(L,R)
〈adj,βv1 ,ε,{βn1}〉(L,R) → 〈βv2 ,{βn1}〉(L,R)
(either βn1 is adjoined and removed from the LPA, or an-

other tree (βv1 or βv2) is adjoined)

〈βv1 ,{βn1}〉(L v1,R) → 〈adj,βv1 ,ε,{βn1 ,βn1}〉(L,R)
(here again, there is a unique adjunction node in βv1 ; the

argument tree βn1 is added to the LPA)

〈βn1 , /0〉(L X,R) → 〈adj,βn1 ,ε, /0〉(L,R) 〈sub,βn1 ,1,〉(X)
(root adjunction and substitution at node 1 in βn1)

〈adj,βn1 ,ε, /0〉(ε,ε) → ε
(the root adjunction in βn1 is not mandatory provided the

LPA is empty)

〈sub,βn1 ,1,〉(X) → 〈αn1 , /0〉(X)
(substitution inserting αn1 at node of address 1 in βn1)

〈αn1 , /0〉(n1) → ε
(no adjunction or substitution in αn1)

As a second example, see Fig. 7, which gives some of the

clauses built via our algorithm from the TT-MCTAG in Fig. 2.

The first clause here states that the yield of the initial tree αrep

consists of the left and right parts of the root-adjoining tree

wrapped around zu reparieren. The adj predicate takes care

of the adjunction at the root of αrep (node whose Gorn ad-

dress is ε). This adj predicate also encodes the fact that the

list of pending arguments contains βacc, the argument tree

of αrep. According to the second and third clauses, we can

adjoin either βacc (while removing it from the list of pend-

ing arguments) or some new auxiliary tree βv. Then, we have

382 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

a clause defining how βacc itself can be used in a derivation,

i.e. which part of its yield comes from some adjunction and

which from some substitution. We thus compute new claus-

es, taking into account the evolution of the list of pending

arguments. This computation is known to stop as we consider

consider k-TT-MCTAG, for which we can restrict the length

of the list of pending arguments, and thus stop the production

of new clauses.

Fig. 7. Some clauses of the RCG correponding to the TT-MCTAG

in Fig. 2

Note that, from this transformation algorithm, we obtain

the following result: for each k-TT-MCTAG G, there exists an

equivalent simple RCG G′ such that L(G) = L(G′), thus k-TT-

MCTAG is mildly context-sensitive (recall that simple RCG

are equivalent to LCFRS, which are mildly context-sensitive).

The conversion can be optimized in order to decrease the

number of RCG predicates by using branching predicates of

the form 〈adj,cat,LPA〉 and 〈sub,cat〉 that describe possible

adjunctions/substitutions at nodes with category cat.

4. RCG parsing

The input sentence is parsed using the RCG computed from

the input TT-MCTAG via the conversion algorithm introduced

in the previous section. Note that the TT-MCTAG to RCG

transformation is applied to a subgrammar selected from the

input sentence since the cost of the conversion depends heav-

ily on the size of the grammar (all licensed adjunctions have

to be computed while taking into account the state of the list

of pending arguments)7.

The RCGs one obtains from transforming a k-TT-MCTAG

are always ordered simple RCGs. A simple RCG is ordered if

the order of variables is the same in the lhs and rhs predicates

of a clause. In particular, this means that for every clause in-

stantiation, the order of arguments of a predicate is the same

as the order of the correponding ranges in the input string.

In the spirit of delivering a multi-formalism archtitecture,

our system contains implementations of different algorithms,

namely of the Earley-style parsing algorithm for simple RCG,

presented in [14], and of two algorithms for the full class of

RCG [10, 15].

4.1. Preliminaries. In order to formulate our parsing algo-

rithms, besides range vectors, we also introduce range con-

straint vectors. These are vectors of pairs of range boundary

variables together with a set of constraints on these variables.

Definition 13 (Range constraint vectors). Let Vr =
{r1, r2, . . .} be a set of range boundary variables.

A range constraint vector of dimension k is a pair 〈~ρ,C〉
where

• ρ ∈ (V2
r)k; we define Vr(ρ) as the set of range boundary

variables occurring in ~ρ.

• C is a set of constraints cr that have one of the following

forms:

r1 = r2, k = r1, r1 + k = r2, k ≤ r1, r1 ≤ k,

r1 ≤ r2 or r1 + k ≤ r2 for r1, r2 ∈Vr(ρ) and k∈ N.

We say that a range vector φ satisfies a range constraint

vector 〈ρ,C〉 iff φ and ρ are of the same dimension k and

there is a function f : Vr → N that maps ρ(i).l to φ(i).l and

ρ(i).r to φ(i).r for all 1 ≤ i ≤ k such that all constraints in

C are satisfied. Furthermore, we say that a range constraint

vector 〈ρ,C〉 is satisfiable iff there exists a range vector φ that

satisfies it.

Definition 14 (Range constraint vector of a clause). For

every clause c, we define its range constraint vector 〈ρ,C〉
wrt. to a w with |w| = n as follows:

• ρ has dimension ϒ(c) and all range boundary variables in

ρ are pairwise different.

• For all 〈r1, r2〉 ∈ ρ :

0 ≤ r1, r1 ≤ r2, r2 ≤ n∈C.

For all occurrences x of terminals in c with i = ϒ(c,x) :

ρ(i).l + 1 = ρ(i).r ∈C.

For all x,y that are variables or occurrences of terminals in

c such that xy is a substring of one of the arguments in c:

ρ(ϒ(c,x)).r = ρ(ϒ(c,y)).l ∈C.

These are all constraints in C.

Intuitively, a range constraint vector of some clause cap-

tures all information about boundaries forming a range, ranges

containing only a single terminal, and about adjacent vari-

ables/terminal occurrences in the clause.

4.2. Parsing simple RCG. The general idea is that we

process the arguments of the lefthand sides of clauses in-

crementally, starting from an S-clause. Whenever we reach

a variable, we move into the clause of the corresponding rhs

predicate (predict or resume). Whenever we reach the end

of an argument, we suspend this clause and move into the

parent clause that has called the current one.

Our items have the form

[A(~φ) → A1(~φ1) . . .Am(~φm), pos,〈i, j〉,~ρ],

where

• A(~φ) → A1(~φ1) . . .Am(~φm) is a clause;

• pos∈ {0, . . . ,n} is the position up to which we have

processed theinput;

• 〈i, j〉 ∈ IN2 marks the position of our dot in the arguments

of the predicate A: 〈i, j〉 indicates that we have processed

the arguments up to the jth element of the ith argument;

7We do not have a proof of complexity of the conversion algorithm yet, but we conject that it is exponential in the size of the grammar since the adjunctions

to be predicted depend on the adjunctions predicted so far and on the auxiliary trees adjoinable at a given node.

Bull. Pol. Ac.: Tech. 58(3) 2010 383

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

• ~ρ is an range vector containing the bindings of the vari-

ables occurring in the clause. ~ρ(i) is the range the i-th
variable in the lefthand side is bound to.) When first pre-

dicting a clause, ~ρ is initialized with a vector containing

only symbols “?” for “unknown”. We call such a vector (of

appropriate arity)~ρinit . We write~ρ(X) for the range bound

to the variable X in ~ρ.

Applying a range vector~ρ containing variable bindings to

a α ∈ (T ∪V)∗ means mapping every variable X to ~ρ(X) and

concatenating adjacent ranges.

We say that two α1,α2 ∈ (T ∪R)∗ where R is the set of

ranges over w are compatible iff we can find instantiations

f1, f2 : (T ∪R) → R such that

• fi(r) = r for every r ∈ R and for 1 ≤ i ≤ 2,

• fi(t) = r with r(w) = t for 1 ≤ i ≤ 2,

• fi(xy) = fi(x) fi(y) for all x,y∈ T ∪R for 1 ≤ i ≤ 2 and

• f1(α1) = f2(α2).

Note that in all the compatibility checks needed below,

one of the α1,α2 is a range, i.e., does not contain terminals.

We start by predicting the S-predicate:

[S(~φ) → ~Φ,0,〈1,0〉,~ρinit]
S(~φ) → ~Φ a clause.

Scan: Whenever the next symbol after the dot is the next

terminal in the input, we can scan it:

[A(~φ) → ~Φ, pos,〈i, j〉,~ρ]

[A(~φ) → ~Φ, pos+ 1,〈i, j + 1〉,~ρ]
~φ(i, j + 1) = wpos+1.

Scan-ε: Empty arguments have to be treated in the fol-

lowing way.

[A(~φ) → ~Φ, pos,〈i, j〉,~ρ]

[A(~φ) → ~Φ, pos,〈i, j + 1〉,~ρ]
~φ(i, j) = ε.

Predict: Whenever our dot is left of a variable that is the

first argument of some righthand side predicate B, we predict

new B-clauses:

[A(~φ) → . . .B(X, . . .) . . . , pos,〈i, j〉,~ρA]

[B(~ψ) → ~Ψ, pos,〈1,0〉,~ρinit]
,

where ~φ(i, j + 1) = X and B(~ψ) → ~Ψ is a clause.

Suspend: Whenever we arrive at the end of an argument,

we suspend the processing of this clause and we go back to

the item that was used to predict it.

[B(~ψ) → ~Ψ, pos′,〈i, j〉,~ρB],

[A(~φ) → . . .B(~ξ) . . . , pos,〈k, l〉,~ρA]

[A(~φ) → . . .B(~ξ) . . . , pos′,〈k, l + 1〉,~ρ]
,

where

• |~ψ(i)| = j (the ith argument has length j and has therefore

been completely processed),

• ~ρB(~ψ(i)) (contains ranges and terminals) compatible with

the range 〈pos, pos′〉,
• and for all 1 ≤ h< i:~ρB(~ψ(h)) (contains ranges and termi-

nals) compatible with ~ρA(~ξ(h)) (a range).

~ρ is ~ρA updated with ~ρA(~ξ(i)) = 〈pos, pos′〉.
Resume: Whenever we are left of a variable that is not

the first argument of one of the righthand side predicates, we

resume the clause of the righthand side predicate.

[A(~φ) → . . .B(~ξ) . . . , pos,〈i, j〉,~ρA],

[B(~ψ) → ~Ψ, pos′,〈k−1, l〉,~ρB]

[B(~ψ) → ~Ψ, pos,〈k,0〉,~ρB]
,

where

• ~φ(i)(j +1) =~ξ(k),k > 1 (the next element is a variable that

is the kth element in ~ξ, i.e., the kth argument of B),

• |~ψ(k−1)|= l , and

• ~ρA(~ξ(h)) (a range) and~ρB(~ψ)(h) (a sequence of ranges and

terminals) are compatible for all 1 ≤ h≤ k−1.

Fig. 8. Source TAG, converted simple RCG, and a sample parsing trace

384 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

The goal items have the form [S(~φ) → ~Φ,n,〈1, j〉,ψ] with

|~φ(1)| = j (i.e., the dot is at the end of the lefthand side ar-

guments).

With a dynamic programming interpretation, i.e., imple-

mented as a chart parser, this algorithm can run in polynomial

time [16].

Figure 8 shows a sample TAG, the corresponding RCG

and a sample parse trace.

4.3. Parsing RCG. As mentioned before, our parsing archi-

tecture includes implementations of two parsing algorithms

for the full class of RCG, namely of Boullier’s algorithm [10]

and the constraint-based parsing algorithm introduced in [15].

Both of them will be presented in the following in an incre-

mental fashion, i.e., as extensions of simpler algorithms, in

order to highlight the properties of each one.

For simplicity, we assume in the following without loss

of generality that empty arguments (ε) occur only in clauses

whose righthand-sides are empty8.

The idea of top-down parsing is to instantiate the start

predicate with the entire string and to recursively check if

there is a way to reduce all righthand side predicates to ε.

Top-down parsing. The idea of top-down parsing is to instan-

tiate the start predicate with the entire string and to recursively

check if there is a way to reduce all righthand side predicates

to ε.

Non-directional top-down parsing. The items have the form

[A,φ,flag], where A is a predicate, φ is a range vector of di-

mension dim(A) (containing the ranges that the arguments of

A are instantiated with) and flag ∈ {c, p} indicates if the item

has been completed or predicted.

As an axiom, we predict S ranging over the entire input.

Therefore, the initialize rule is as follows:

[S,(〈0,n〉), p]
.

The predict operation predicts new items for previously

predicted items.

[A0,φ, p]

[A1,φ1, p] . . . [Ak,φk, p]
.

Thereby, the following must hold:

There is a clause c = A0(~x0) → A1(~x1) . . .Ak(~xk) with an in-

stantiation ψ such that ψ(c) = A(φ) → A1(φ1) . . .Ak(φk).
Since, unlike in standard top-down parsing for context-

free grammar, we already start off with the entire string at

initialization time, we need a way to propagate information

about successful predicates. This is achieved by the p/c-flag,

which is set by the scan and the complete operations.

The scan operation switches the flag on a item describing

a predicted predicate to completed.

[A,φ, p]

[A,φ,c]

under the condition that there is a clause c = A(~x) → ε with

an instantiation ψ such that ψ(A(~x)) = A(φ).
The complete rule sets the flag on a completed lefthand

side predicate to completed.

[A0,φ, p], [A1,φ1,c] . . . [Ak,φk,c]
[A0,φ,c]

.

Thereby, the side conditions on the items in the antecendent

of the rule are identical with the side conditions on all items

of the predict rule.

Recognition is successful if there is a way to declare

the start predicate completed. Consequently, the goal item

is [S,(〈0,n〉),c].

Directional top-down parsing. The above algorithm can be

improved by evaluating righthand side predicates from left to

right and stopping further evaluation once a predicate fails.

This variant corresponds to the algorithm presented in [10].

For the directional top-down parsing algorithm, we need

to distinguish between passive items and active items. Passive

items have the same form and meaning as the items of the

non-directional top-down parsing algorithm. Active items al-

low us to move a dot through the righthand side of a clause:

[A(~x) → Φ •Ψ,φ] where A(~x) → ΦΨ is a clause and φ is a

range vector of dimension j = ϒ(A(~x) → ΦΨ) that gives an

instantiation of the clause.

The axiom is the prediction of the start predicate ranging

over the entire input. The initialize rule is the same as in the

non-directional top-down case.

We have two predict operations. The first one, predict-

rule, predicts active items with the dot on the left of the

righthand side, for a given predicted passive item.

[A,ψ, p]

[A(~x) → •Ψ,φ]
φ(A(~x)) = A(ψ).

Predict-pred predicts a passive item for the predicate fol-

lowing the dot in an active item:

[A(~x) → Φ•B(~y)Ψ,φ]

[B,ψ, p]
φ(B(~y)) = B(ψ).

The scan operation is the same as in the non-directional

case.

Complete moves the dot over a predicate in the righthand

side of an active item if the corresponding passive item has

been completed.

[B,φB,c], [A(~x) → Φ•B(~y)Ψ,φ]

[A(~x) → ΦB(~y)•Ψ,φ]
,

where φ(B(~y)) = B(φB).
Once the dot has reached the right end of a clause, we

can convert the active item into a completed passive item:

[A(~x) → Φ•,φ]

[A,ψ,c]
φ(A(~x)) = A(ψ).

8Any RCG can be easily transformed into an RCG satisfying this condition: Introduce a new unary predicate E ps with a clause E ps(ε) → ε. Then, for

every clause c with righthand-side not ε, replace every argument ε that occurs in c with a new variable Xε and add the predicate E ps(Xε) to the righthand-side

of c.

Bull. Pol. Ac.: Tech. 58(3) 2010 385

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

The goal item is again [S,(〈0,n〉),c].
An obvious problem of this algorithm is that predict-rule

has to compute all possible instantiations of A-clauses, giv-

en an instantiated A-predicate. Take for example the RCG for

{a2n
|n≥ 0}. If w= aaaa, starting from [S,(〈0,4〉), p] predict-

rule would predict (among others) all active items [S(X1Y2)→
•S(X1)eq(X1,Y2),(〈0, r〉,〈r,4〉)] with r ∈ {0,1,2,3,4}.

The computation of all these possible instantiations is very

costly and will be avoided in the Earley algorithm that we

present later on. In fact, the latter will use range constraint

vector (instead of range vectors) and predict only one active

item [S(X1Y2) →•S(X1)eq(X1,Y2),〈〈(r1, r2),(r3, r4)〉,{0 = r1,

r1 ≤ r2, r2 = r3, r3 ≤ r4, 4 = r4}〉].

Bottom-up chart parsing. A CYK (Cocke, Younger, Kasa-

mi) style parser (non-directional bottom-up parsing) is the

preliminary step to our Earley-style algorithm.

CYK parsing. The items have the form [A,φ] where A is a

predicate and φ a range vector of dimension dim(A).

Scan :
[A,φ]

.

Thereby, the following must hold:

There is a clause c = A(~x) → ε with an instantiation ψ such

that ψ(A(~x)) = A(φ).

Complete :
[A1,φ1] . . . [Ak,φk]

[A,φ]
,

where A(φ) → A1(φ1) . . .Ak(φk) is an instantiated clause.

The goal item is [S,(〈0,n〉)].

Directional bottom-up parsing. An obvious disadvantage of

the basic CYK algorithm is that, in order to perform a com-

plete step, all A1, . . . ,Ak in the righthand side must be checked

for appropriate items. This leads to a lot of indices that need

to be checked at the same time.

To avoid this, we can again move a dot through the right-

hand side of a clause. As in the case of the directional top-

down algorithm, in addition to the items used above which

we call the passive items now, we also need active items. In

the active items, while traversing the righthand side of the

clause, we keep a record of the positions already found for

the left and right boundaries of variables and terminal occur-

rences. This is achieved by subsequently enriching the range

constraint vector of the clause.

Active items have the form [A(~x) → Φ •Ψ,〈ρ,C〉] with

A(~x)→ ΦΨ a clause, ΦΨ 6= ε, ϒ(A(~x→ ΦΨ)) = j and 〈ρ,C〉
a range constraint vector of dimension j . We require that

〈ρ,C〉 be satisfiable.

Items that are distinguished from each other only by a bi-

jection of the range variables are considered equivalent. I.e.,

if the application of a rule yields a new item such that an

equivalent one has already been generated, this new one is

not added to the set of partial results.

The scan rule is the same as in the basic algorithm. In

addition, we have an initialize rule that introduces clauses

with the dot on the left of the righthand side:

[A(~x) →•Φ,〈ρ,C〉]

A(~x) → Φ being a clause with range constraint vector

〈ρ,C〉,Φ 6= ε.

The complete rule moves the dot over a predicate in the

righthand side of an active item provided the corresponding

passive item has been completed:

,

[A(~x) → Φ•B(x1...y1, ...,xk...yk)Ψ,〈ρ,C〉]
[A(~x) → ΦB(x1...y1, ...,xk...yk)•Ψ,〈ρ,C′〉]

where
C′ = C∪{φB(j).l = ρ(ϒ(x j)).l ,

φB(j).r = ρ(ϒ(y j)).r|1 ≤ j ≤ k}.

Fig. 9. Trace of a sample CYK parse

386 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

Fig. 10. Trace of a sample Earley parse

Note that the conditions on the items require the new con-

straint set for ρ to be satisfiable.

Convert turns an active item with the dot at the end of

the righthand-side into a completed passive item:

[A(~x) → Ψ•,〈ρ,C〉]
[A,φ]

,

where there is an instantiation ψ of A(~x) → Ψ that satisfies

〈ρ,C〉 such that ψ(A(~x)) = A(φ).
The goal item is [S,(〈0,n〉)].
A sample parse trace is shown in Fig. 9. For the sake of

readability, instead of the range boundary variables, we use

X.l and X.r respectively for the left and right range boundary

of the range associated with X.

The Earley algorithm.

Deduction rules. We now add a prediction operation to the

CYK algorithm with active items which leads to an Earley-

style algorithm. As we have seen before, the passive items

are enriched with an additional flag that can have values p
or c depending on whether the item is only predicted or al-

ready completed. Furthermore, they contain range constraint

vectors since when predicting a category, the left and right

boundaries of its arguments might not be known.

Passive items either have the form [A,〈ρ,C〉, p] for a pre-

dicted item, where 〈ρ,C〉 is a range constraint vector of dimen-

sion dim(A), or the form [A,φ,c] for completed items where

φ is a range vector of dimension dim(A). The active items are

the same as in the CYK case.

The axiom is the prediction of an Sranging over the entire

input, i.e., the initialize rule is as follows:

[S,〈(〈r1, r2〉),{0 = r1,n = r2}〉, p]
.

We have two predict operations. The first one, predict-

rule, predicts active items with the dot on the left of the

righthand side, for a given predicted passive item:

[A,〈ρ,C〉, p]

[A(x1 . . .y1, . . . ,xk . . .yk) →•Ψ,〈ρ′,C′〉]
,

where 〈ρ′,C′〉 is obtained from the range constraint vector

of the clause A(x1 . . .y1, . . . ,xk . . .yk) → Ψ by taking all con-

straints from C, mapping all ρ(i).l to ρ′(ϒ(xi)).l and all ρ(i).r
to ρ′(ϒ(yi)).r , and then adding the resulting constraints to the

range constraint vector of the clause.

The second predict operation, predict-pred, predicts

a passive item for the predicate following the dot in an active

item:

[A(...) → Φ•B(x1...y1, ...,xk...yk)Ψ,〈ρ,C〉]
[B,〈ρ′,C′〉, p]

,

where ρ′(i).l = ρ(ϒ(xi)).l , ρ′(i).r = ρ(ϒ(yi)).r for all 1≤ i ≤ k
and C′ = {c|c∈C,c contains only range variables from ρ′}.

The scan rule can be applied if a predicted predicate can

be derived by an ε-clause:

[A,〈ρ,C〉, p]

[A,φ,c]
,

where there is a clause A(~x) → ε with a possible instantiation

ψ that satisfies 〈ρ,C〉 such that ψ(A(~x)) = A(φ).
Finally, deduction rules for complete and convert are the

ones from the CYK algorithm with active items except that

we add flags c to the passive items occurring in these rules.

Again, the goal item is [S,(〈0,n〉),c].
To understand how this algorithm works, consider the ex-

ample in Fig. 10, with the RCG and the input word from

Fig. 9.

Note that the algorithm shows a great similarity to the

directional top-down algorithm. The crucial difference is that

while in the top-down algorithm, we are using range vectors

to record the variable bindings, in the Earley-style algorithm,

we use range constraint vectors. Due to the fact that range

constraint vectors allow us to leave range boundaries unspeci-

fied, we can compute the value of range boundaries in a more

incremental fashion since we do not have to guess all values of

all boundary variables of a clause at once as in the top-down

algorithm. This becomes particularly clear when comparing

the complete rules of the non-directional top-down algorithm

and the Earley-style algorithm. In the former, we check the

Bull. Pol. Ac.: Tech. 58(3) 2010 387

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

compatibility of the range vector of the completed item with

the range vector of the item which is to be completed as a

side condition. In the latter however, we add the informa-

tion contributed by the range vector of the completed item

dynamically to the range constraint vector of the item to be

completed.

The directional bottom-up parser from the section titled

“Bottom-up chart parsing”, in contrast to the Earley algo-

rithm, lacks the top-down predictions. However, it uses the

same technique of dynamic updating of a set of constraints

on range boundaries, therefore the active items are the same

for the two algorithms.

Soundness and completness. It is easy to see that the Earley-

style algorithm is both sound and complete. More precisely, if

a completed item is generated, then the corresponding predi-

cate can be derived: [A,ψ,c]⇒ A(ψ). Furthermore, if we can

derive a constituent A(ψ), we also generate the corresponding

item. Let Γ be a string of instantiated predicates. Then

S(〈0,n〉)
∗
⇒l A(ψ)Γ ∗

⇒l Γ iff [A,ψ,c],

where
∗
⇒l signifies “leftmost derivation”.

In particular, [S,(〈0,n〉),c] iff S(〈0,n〉)
∗
⇒ ε.

Obtaining a parse forest. So far, we have described recog-

nizers, not parsers. The way to obtain a parse forest from

the item set resulting from the Earley recognizer with range

boundary constraints is rather obvious. Whenever a convert is

done, a fully instantiated clause has been found. By collecting

these clauses, we obtain a compact representation of our parse

forest9. Starting from an S predicate ranging over the entire

input and following the clauses for the instantiated predicates

in the righthand sides, we can read off the single parse trees

from this forest.

4.4. Computing semantics. The parsing architecture intro-

duced here has been extended to support the syntax/semantics

interface of Gardent and Kallmeyer [17]. The underlying idea

of this interface is to associate each tree with flat seman-

tic formulas. The arguments of these formulas are unification

variables co-indexed with features labelling the nodes of the

syntactic tree. During derivation, trees are combined via ad-

junction and/or substitution, each triggering the unifications

of the feature structures labelling specific nodes. As a result

of these unifications, the arguments of the semantic formu-

las associated with the trees involved in the derivation get

unified.

5. Implementing TAG parsing using RCG:

TuLiPA

The transformation algorithm introduced in Sec. 3, along with

the RCG parsing algorithms presented in Sec. 4 have been im-

plemented within the TuLiPA system. Let us give some more

details about its architecture and features.

TuLiPA is a modular parsing architecture, which takes as

an input a grammar (associated with lexical and syntactic re-

sources)10 in an XML format. The formalisms currently sup-

ported are TAG, TT-MCTAG, RCG, and, as a special case of

the preceding formalisms, Context-Free Grammar. The DTD

specifications of the XML format expected by TuLiPA are

given in the TuLiPA website11. Since TuLiPA expects no spe-

cific format, only XML-based grammars, it does not imply

any constraint about how the grammar has been obtained. It

could have been hand-crafted, or compiled from an abstract

representation, using for instance the eXtensible MetaGram-

mar language [18]12.

5.1. Preprocessings. First, the parser loads the grammar and

its associated lexica into memory. These data remain in mem-

ory as long as the parser is not closed, allowing to parse

several sentences without any reloading (nonetheless, if the

resources have been modified, reloading can be enforced).

Secondly, it processes the input sentence in a classical way:

tokenization, and part-of-speech labelling. TuLiPA includes

a basic tokenizer and part-of-speech tagger, or it can use an

external POS-tagger (currently only the TreeTagger13 devel-

oped at Universität Stuttgart is supported).

Then TuLiPA retrieves the subgrammar selected by the

labelled input sentence, and, at the same time, performs tree

anchoring. The grammar that is fed to the parsing architecture

is supposed to be made of tree templates, which are basically

trees with a distinguished leaf node (sometimes labelled with

a diamond in the TAG litterature). This node is where the

lexical item is to be anchored (if the tree is lexicalized). The

anchoring relies on both the concept of tree family (tree are

gathered according to the subcategorization frame they en-

code), and the unification of syntactic features labelling both

the entries of the lexicon, and the tree templates (the features

labelling the templates are sometimes called hypertags [20]).

Prior to RCG-convertion, the size of the subgrammar is re-

duced by applying lexical disambiguation [21]. Basically, we

use automata-based techniques to precompute sets of compati-

ble grammatical structures (i.e., compatible anchored trees for

TAG, compatible anchored tree tuples for TT-MCTAG). For

instance, consider the sentence John eats a cake. If the verb

to eat is associated to both the tree families transitive and in-

transitive in the lexicon, the trees of the two families will be

9Note that, strictly speaking, this structure is not the parse forest as it contains some clause instantiations that are not part of the actual parse forest. This

is not a problem for these useless instantiations are ignored when reading the parses starting from the instantiated S predicates.
10Following the XTAG parsing architecture [19], the linguistic resources are splitted in 3 lexica: the tree templates, the lemmas and the morphological

items.
11See http://sourcesup.cru.fr/tulipa
12Note that the TT-MCTAG for German developped within the Emmy Noether Project at Universität Tübingen (see http://www.sfs.uni-

tuebingen.de/emmy/res-en.html) has been developped using eXtensible MetaGrammar (http://sourcesup.cru.fr/xmg).
13See http://http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

388 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

loaded by the parser. From the presence of two noun phrases

in the sentence, the parser should be able to consider only the

transitive family.

To perform this disambiguation, we build an automaton

listing the potential families to be selected for each token of

the input string. These families are transitions of the automa-

ton. Its states are disambiguation features. In the TAG case,

we automatically label trees with disambiguation features in-

dicating whether a tree needs some syntactic material (i.e., it

has substitution nodes with given labels), or it brings some

material of a specific type (via the label of its root node).

We then add an initial state to this automaton with an emp-

ty set of features. From this state, there are transitions for all

potential tree family for the first token. These transitions lead

to states whose sets of disambiguation features is computed

using the features labelling the tree of the considered family

(needs are negative features, resources are positive features,

if the number of positive and negative features for a given

feature f are the same, f is removed from the set of disam-

biguation features). We go on by adding transitions for the

families of the second token, which lead to new states, and so

on14. In the end (all potential families of all tokens have been

processed), the automaton is traversed. All paths leading to

the final state, whose sets of features only consits of +S (if we

are parsing a sentence), are kept. The families in these paths

are the subgrammar fed to the RCG-transformation module.

As an illustration, see Fig. 11.

Fig. 11. Lexical disambiguation

Once the subgrammar has been selected from the input

string, it is fed to the RCG-converter, which implements the

algorithm of Sec. 3.

5.2. Core of the parser. From the RCG computed for the

input string, we can choose between the implementations of

several RCG parsing algorithms, all of which have been pre-

sented in the previous section. Note that all algorithms can be

called directly, i.e., apart from TAG parsing and TT-MCTAG

parsing, direct parsing of RCG, simple RCG (resp. LCFRS),

and CFG is also supported.

The result of parsing is an RCG derivation forest, encap-

sulating all RCG derivations. This forest corresponds to an

AND-OR graph, which states which grammatical rules (i.e.,

RCG clauses) have been used during a parse, and how (in

which context). Note that OR nodes appear when there is

grammatical ambiguity.

5.3. Postprocessings.

From RCG-derivation forest to TAG-derivation forest.

Once the RCG-derivation forest has been computed, we still

need to process it to extract the underlying TAG parse forest.

This extraction is done in a single traversal of the forest by

interpreting the LHS predicate names of the clauses associat-

ed with the nodes of the parse forest. As an example, consider

the fragment of a parse forest presented in Fig. 12. This fig-

ure shows 3 clauses encoding a root adjunction of the tree βv

(argument tree of the tuple anchored by versprechen) to the

tree αrep (head tree of the tuple anchored by zu reparieren).

Fig. 12. Retrieving TT-MCTAG derivations from a parse forest for

the RCG in Fig. 7

Unpacking the TAG derivation forest and computing se-

mantic representations. The TAG derivation forest is then

unpacked in order to retrieve every single valid TAG parse.

At the same time, we perform the unifications related to the

underlying TAG adjunctions and substitutions. In other terms,

during parsing, we did not take into account the feature struc-

ture labelling the TAG trees (we only used them for anchor-

ing). It seems reasonable to perform these TAG-based unifica-

tions only as a postprocessing, for it increases the complexity

of both RCG-transformation (control of the adjunctions) and

RCG parsing (RCG clauses have to be enriched with features

structures), while RCG forest usually do not contain much

spurious parse ambiguities.

Furthermore, while we compute these unifications, we get

semantic representations for free, provided the TAG trees have

been extended with a syntax/semantic interface à la Gardent

and Kallmeyer [17]. Basically, each TAG tree is extended

with an underspecified semantic formula that is inspired by

an extension of First-Order Logic called Predicate Logic Un-

plugged [22]. The arguments of the predicates of these se-

mantic formulas are shared with specific features labelling

the nodes of the syntactic TAG tree. During TAG derivation,

the unifications of these feature structures lead to an update

14Note that during the construction of the automaton, we reduces it by merging states having similar sets of disambiguation features.

Bull. Pol. Ac.: Tech. 58(3) 2010 389

L. Kallmeyer, W. Maier, Y. Parmentier and J. Dellert

of the arguments of the semantic formulas. As an illustration,

consider Fig. 13, which shows how to extends the trees as-

sociated with John, loves and Mary, in order to compute the

semantic representation of John loves Mary15.

Fig. 13. Semantic calculus in Feature-Based TAG

5.4. TuLiPA’s ouput. As an output, TuLiPA either dumps an

XML file containing the parse trees, or displays the derivation

trees in a graphical user interface (see Fig. 14).

Fig. 14. TuLiPA’s GUI

Besides derivation trees (and the corresponding derived

trees), TuLiPA also returns semantic representations (under-

specified or fully specified ones, the latter being computed

by the Utool16 system integrated in TuLiPA) or dependen-

cy views of the derivation trees (using the Dtool software)17.

Furthermore, TuLiPA includes a robust mode computing par-

tial parses, and displaying feature mismatches in the graphical

user interface.

6. Conclusions and future work

In this paper, we introduced a parsing environment using RCG

as a pivot formalism to parse extensions of TAG, such as TT-

MCTAG. The motivation to this lies in RCG’s formal (e.g. ex-

pressivity) and computational (e.g. polynomial parsing time)

properties. In particular, it is possible to encode TAG and ex-

tensions of TAG into equivalent RCG, for which there exists

efficient parsing algorithms. The ideas introduced in this paper

have led to the implementation of TuLiPA, a parsing environ-

ment relying on a modular architecture performing several

tasks: TAG to RCG convertion, RCG parsing, and interpreta-

tion of the RCG derivation.

Future work will include experiments with off-line conver-

sion of TT-MCTAG and generalization of branching clauses

to reduce the size of the RCG and thus to improve (RCG)

parsing time.

REFERENCES

[1] T. Lichte, “An MCTAG with tuples for coherent constructions

in German”, Proc. 12th Conf. on Formal Grammar 2007 1,

1–12 (2007).

[2] A.K. Joshi and Y. Schabes, “Tree-adjoning grammars”, Hand-

book of Formal Languages 1, 69–123 (1997).

[3] S. Gorn, “Explicit definitions and linguistic dominoes”, Proc.

Conf. held at University of Western Ontario and Systems and

Computer Science 1, 77–115 (1967).

[4] D. Weir, “Characterizing midly-context sensitive grammar for-

malisms”, PhD Thesis, University of Pennsylvania, Pennsylva-

nia, 1988.

[5] L. Kallmeyer, “Tree-local multicomponent tree adjoining

grammars with shared nodes”, Computational Linguistics 31

(2), 187–225 (2005).

[6] T. Lichte and L. Kallmeyer, “Factorizing complementation in

a TT-MCTAG for German”, Proc. The Ninth Int. Workshop on

Tree Adjoining Grammars and Related Formalisms (TAG+9)

1, 1–8 (2008).

[7] L. Kallmeyer and Y. Parmentier, “On the relation between mul-

ticomponent tree adjoining grammars with tree tuples (TT-

MCTAG) and range concatenation grammars (RCG)”, Proc.

2nd Int. Conf. on Language and Automata Theory and Appli-

cations 5196, 263–274 (2008).

[8] L. Kallmeyer and G. Satta, “A polynomial-time parsing al-

gorithm for TT-MCTAG”, Proc. 47th Conf. Association for

Computational Linguistics and the 4th Int. Joint Conf. on Nat-

ural Language Processing of the Asian Federation of NLP

1, 994–1002 (2009).

[9] P. Boullier, “On TAG parsing”, Proc. TALN 99, 6e Conf. An-

nuelle sur le Traitement Automatique des Langues Naturelles

1, 75–84 (1999).

[10] P. Boullier, “Range concatenation grammars”, Proc. Sixth Int.

Workshop on Parsing Technologies 1, 53–64 (2000).

[11] E. Bertsch and M.-J. Nederhof, “On the complexity of some

extensions of RCG parsing”, Proc. Seventh Int. Workshop on

Parsing Technologies 1, 66–77 (2001).

[12] P. Boullier, “Proposal for a natural language processing syntac-

tic backbone”, INRIA Research Report 3342, CD-ROM (1998).

[13] P. Boullier, “On TAG and multi-component TAG parsing”,

INRIA Research Report 3668,

ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-3668.pdf

(1999).

[14] L. Kallmeyer and W. Maier, “An incremental Earley parser for

simple range concatenation grammar”, Proc. 11th Int. Conf.

on Parsing Technologies 1, 61–64 (2009).

15More complex examples of this semantic calculus are given in [17].
16See http://www.coli.uni-saarland.de/projects/chorus/utool/, with courtesy of Alexander Koller.
17With courtesy of Marco Kuhlmann.

390 Bull. Pol. Ac.: Tech. 58(3) 2010

TuLiPA – Parsing extensions of TAG with range concatenation grammars

[15] L. Kallmeyer, W. Maier, and Y. Parmentier, “An Earley parsing

algorithm for range concatenation grammar”, Proc. Short Pa-

pers of the 47th Conf. Association for Computational Linguis-

tics and the 4th Int. Joint Conf. on Natural Language Process-

ing of the Asian Federation of Natural Language Processing 1,

9–12 (2009).

[16] É. Villemonte de La Clergerie, “Parsing mildly context-

sensitive languages with thread automata”, Proc. 19th Int.

Conf. on Computational Linguistics 1, 1–7 (2002).

[17] C. Gardent and L. Kallmeyer, “Semantic construction in

FTAG”, Proc. 10th Int. Conf. European Chapter of the As-

sociation for Computational Linguistics 1, 123–130 (2003).

[18] D. Duchier, J. Le Roux, and Y. Parmentier, “An NLP applica-

tion with a multi-paradigm architecture”, Proc. 2nd Mozart-Oz

Conference 1, 175–187 (2004).

[19] The XTAG research group, “A lexicalized tree adjoining gram-

mar for English”, Institute for Research in Cognitive Science,

Research Report, University of Pennsylvania, Pennsylvania,

2001.

[20] A. Kinyon, “Hypertags”, Proc. 18th Int. Conf. on Computa-

tional Linguistics 1, 446–452 (2000).

[21] G. Bonfante, B. Guillaume, and G. Perrier, “Polarization and

abstraction of grammatical formalisms as methods for lexical

disambiguation”, Proc. 20th Int. Conf. on Computational Lin-

guistics 1, 303–309 (2004).

[22] J. Bos, “Predicate logic unplugged”, Proc. Tenth Amsterdam

Colloqium 1, 133–143 (1995).

Bull. Pol. Ac.: Tech. 58(3) 2010 391

