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Abstract. Visual data analysis is an appealing and increasing field of application. We present two related visual analysis approaches that

allow for the visualization of graphical model parameters and time-dependent association rules. When the graphical model is defined over

purely nominal attributes, its local structure can be interpreted as an association rule. Such association rules comprise one of the most

prominent and wide-spread analysis techniques for pattern detection, however, there are only few visualization methods. We introduce an

alternative visual representation that also incorporates time since patterns are likely to change over time when the underlying data was

collected from real-world processes. We apply the technique to both an artificial and a complex real-life dataset and show that the combined

automatic and visual approach gives more and faster insight into the data than a fully-automatic approach only. Thus, our proposed method

is capable of reducing considerably the analysis time.
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1. Introduction

Data analysis is a vital component in strategic planning for

companies that are aware of global competition, ever-shorter

production cycles and increasing customer requirements. It

is of paramount importance to identify meaningful patterns

quickly within the collected data in order to respond to im-

pending supply shortages or evolving problems with delivered

products. However, patterns that correspond to such lingering

problems rarely occur out of a sudden. Therefore we have de-

veloped a temporal view on the data as well as the resulting

patterns. Further, we intend to enable users that not necessar-

ily have a statistical background to assess and understand the

identified patterns. This has been accomplished by devising

appropriate visualization methods for patterns as well as their

temporal change. The setting within which our research, de-

velopment and application took place is the automobile man-

ufacturing industry. Especially under the more stringent con-

straints imposed by the worldwide financial crisis, it is of

paramount importance to respond to any potential problem

related to vehicle safety or quality before a widespread recall

is inevitable that will come at an enormous expense and loss

of customer confidence.

The modeling technique used for solving the outlined is-

sues shall accommodate two main aspects: firstly, it must al-

low for a global view on the domain that is under analysis,

i.e. the overall interconnections and interrelations between the

attributes that describe a vehicle. As these are normally high-

dimensional, a compact but still usable knowledge represen-

tation has to be found. Secondly, the user must be enabled to

inspect any local dependency in greater details if he wishes to.

To illustrate these two claims in the realm of a vehi-

cle manufacturer, assume that every vehicle configuration is

stored in a database. Such a configuration often contains sev-

eral tens to sometimes hundreds of attributes and hence di-

mensions. The stochastic dependencies – and more important:

independencies – will be represented by a (directed) graph in

which a node models an attribute amongst which the depen-

dencies are reflected by edges. In our application this graph

will be created from the database with optional preceding or

subsequent expert-specified alterations. This will allow the

user (e.g. an engineer or marketing analyst) to infer coarse-

grained conclusions based on the potential effects between

connected attributes. When it comes to a question that is nar-

rowed down to a specific configuration fragment, the parame-

ters attached to every node in the graph can reveal answers

to quantitative questions such as “Whenever a repair report

referenced transmission type X, there is a 40% chance of al-

so having the engine type Y built into the car, which rises

the failure rate by 30%”. In this case dependencies are con-

tained in the vehicle database and are not known beforehand

but are extracted to reveal possible hidden design flaws. This

example calls for treatment methods that exploit the depen-

dence structures embedded inside the application domains.

We chose graphical models, more specific: Bayesian networks,

to address these issues. The two abovementioned criteria map

well onto the global and local components a graphical model

consists of.

Until now, we neglected the discussion of one important

dimension: time. For obvious reasons, a vehicle manufactur-

er wants to counteract problems before they seriously affect

huge number of cars. That is, if a problem with a rust-prone

part in the suspension is discovered, then an early finding of

this can lead to the advice to exchange this part during the

next regular checkup. If done early enough it will avoid the

need of a possible recall when the majority of cars will be

eventually affected having exceeded a certain mileage thresh-

old.
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Roughly speaking, patterns normally do not arise all of

a sudden but evolve over time. Thus, the number of failed cars

(and thus possibly interesting failure patterns) grows larger

slowly. In contrast to this, some countermeasures undertaken

will take some time to have an apparent effect, thus rendering

the decrease of the failure pattern slowly as well.

We augmented the outlined analysis tool with a means of

filtering temporal patterns. As will be shown later, any para-

meter attached to a node in a graphical model can be seen

as an association rule [1]. This has proven to be very fortu-

nate since this type of model is widely understood and thus

accepted amongst users. In addition to that, any rule mining

technique can be used to postprocess the identified rules, if

wanted.

Our postprocessing step for rules will rely on linguistic

expressions in terms of a fuzzy description which constrains

the temporal behavior or evolution of a rule. By evolution in

time we refer to the change of certain rule evaluation measures

that we will discuss later on.

The next section will briefly introduce the needed back-

ground on graphical models and association rules. Section 3

presents the application of visualizing parameters of graph-

ical models after which Sec. 4 discusses how to extend the

approach to accommodate for temporal change in the pat-

terns. Both sections, of course, include examples. Section 5

concludes the article.

2. Background

We will now briefly discuss the notational underpinning that

is needed to present the ideas and results from the industrial

applications.

2.1. Graphical models. As we have pointed out in the intro-

duction, there are dependencies and independencies that have

to be taken into account when reasoning in complex domains

shall be successful. Graphical models are appealing since they

provide a framework of modeling independencies between at-

tributes and influence variables. The term “graphical model”

is derived from an analogy between stochastic independence

and node separation in graphs. Let V = {A1, . . . , An} be a

set of random variables. If the underlying probability distrib-

ution P (V ) satisfies some criteria (see e.g. [2, 3]), then it is

possible to capture some of the independence relations bet-

ween the variables in V using a graph G = (V, E), where E

denotes the set of edges. The underlying idea is to decompose

the joint distribution P (V ) into lower-dimensional marginal

or conditional distributions from which the original distrib-

ution can be reconstructed with no or at least as few errors

as possible [4, 5]. The named independence relations allow

for a simplification of these factor distributions. We claim,

that every independence that can be read from a graph al-

so holds in the corresponding joint distribution. The graph is

then called an independence map.

If we are dealing with an acyclic and directed graph struc-

ture G, the network is referred to as a Bayesian network. The

decomposition described by the graph consists of a set of

conditional distributions assigned to each node given its di-

rect predecessors (parents). For each value of the attribute

domains (dom), the original distribution can be reconstructed

as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ai∈V

P
(

Ai = ai |
∧

(Aj ,Ai)∈E

Aj = aj

)

2.2. Association rules. The introduction of frequent item set

mining and subsequently association rule induction [1, 6] has

created a prospering field of data mining. It is the simplicity

of the underlying concept that allowed for a broad acceptance

among all kinds of users no matter whether they possess a

data analysis background or not. An association rule is basi-

cally an if-then rule. The if -part is called antecedent while

the then-part is named the consequent. Both may consist of

conjunctions of attribute-value pairs, however, the consequent

often consists of only one pair. An example of an association

rule could be

If a person is male and a smoker, his probability of

having lung cancer is 10%.

This corresponds to the imagination that we pick a person

at random from an underlying population (the database) and

observe its properties, that is its attribute values. The above

rule can then be represented in a more formal fashion as

Gender = male ∧ Smoker = yes → Cancer = yes. (1)

We refer to a database case as being covered by a rule if

the antecedent and consequent attributes values match. For

instance, a smoking man having lung cancer would be cov-

ered by the above rule. The general form of a rule has the

following form:

A1 =a1 ∧ · · · ∧ An =an −→ C =c
abbr
= ~a → c

We will only discuss rules with one consequent attribute

which will be a class variable. We thus use the notions class

and consequent interchangeably.

Since not every database entry matching the antecedent

also matches the consequent it is necessary to record this

information. The probability that a database case matching

the antecedent also matches the consequent, that is P (c | ~a),
is called the confidence of the rule. The above rule 1 has

a confidence of 0.1. There is a multitude of other measures

that quantify certain aspects of a rule (see, e.g. [7]). We will

briefly discuss those that are used in this paper.

The number of cases covered by the rule is referred to

as the (absolute) support of the rule. The relative support

equals P (~a, c); it is the absolute support divided by the data-

base size. The recall quantifies the fraction (or probability if

you keep the above scenario of picking at random) of database

cases matching the antecedent, given the consequent. In oth-

er words: What is the probability of a person being male and

a smoker if this person has cancer? As a last measure (the on-

ly unbounded one) we introduce the lift. It represents the ratio
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between the confidence P (c | ~a) and the marginal consequent

probability P (c): Let the marginal cancer rate be 0.01. Then,

rule 1 has a lift of 10 since the confidence is ten times larger

than the marginal cancer rate. We summarize the measures

below:

– relative support: rel-supp(~a → c) = P (~a, c)

– confidence: conf(~a → c) = P (c | ~a)

– recall: recall(~a → c) = P (~a | c)

– lift: lift(~a → c) =
P (c | ~a)

P (c)

3. Fault analysis with graphical models

For every car that is sold, a variety of data is collected

and stored in corporate-wide databases. After every repair

or check-up the respective records are updated to reflect the

technical treatment. The analysis scenario discussed here is

the interest of the automobile manufacturer to investigate car

failures by identifying common properties that are exposed by

specific subsets of cars that have a higher failure rate.

3.1. Data description and model induction. As stated

above, the source of information consists of a database that

contains for every car a set of several tens or hundreds of

attributes that describe the configuration of every car that has

been sold.

The decision was made to use Bayesian networks to model

the dependence structure between these attributes to be able to

reveal possible interactions of vehicle components that cause

higher failure rates. The induction of a Bayesian network con-

sists of identifying a good candidate graph that encodes the

independencies in the database. The goodness of fit is es-

timated by an evaluation measure. Therefore, usual learning

algorithms consist of two parts: a search method and the men-

tioned evaluation measure which may guide the search. Ex-

amples for both parts are studied in [8–10].

Given a network structure, an expert user will gain first

insights into the corresponding application domain. In Fig. 1

one could identify the mileage to have a major (stochastic)

impact on the failure rate and type. Of course, arriving at

such a model is not always a straightforward task since the

available database may lack some entries requiring the treat-

ment of missing values. In this case possibilistic networks [11]

may be used. However, with full information it might still be

problematic to extract significant statistics since there may be

value combinations that occur too scarcely. Figure 2 shows

a real-world network structure that was induced from a giv-

en database. An expert can already benefit from the encoded

stochastic direct and indirect dependencies in order to come

up with hypotheses what attributes might be most predictive

w.r.t. the failure attribute. However, the bare network structure

does not reveal information about which which mileages have

what kind of impact on which type of failure. Fortunately,

this information can be retrieved easily in form of conditional

probabilities from the underlying dataset, given the network

structure. This becomes clear, if the sentence above is re-

stated: Given a specific mileage, what is the failure probability

of a randomly picked vehicle?

Fig. 1. The qualitative component of an exemplary Bayesian network

Fig. 2. The qualitative component of a real-world Bayesian network

3.2. Model visualization. Every attribute together with its

direct parent attributes encodes a set of conditional prob-

ability distributions. For example, given a database D, the

sub-network consisting of Failure, Suspension and Mileage

in Fig. 1 defines the following set of distributions:

PD(Failure | Suspension,Mileage)

For every distinct combination of values of the attributes

Suspension and Mileage, the conditional probability of the at-

tribute Failure is estimated (counted) from the database D. As

every such distribution is one-dimensional in the argument

(only one attribute, namely Failure in contrast to possibly

multiple attributes in the condition), we can depict the failure

node’s distributions with small number of parent attributes as

shown in the two examples of Fig. 3: Every distribution of

Failure (which here has two values: yes or no), given a distinct

combination of values of Suspension and Mileage is repre-

sented as a stacked bar chart. The dark region corresponds

to the case Failure=yes. The width of the stacks encode the

probability of the condition, i.e. a measure for the number of
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Fig. 3. Left: Conditional distributions of the failure node when only one dependent attribute is present. Right: Conditional distributions with

two attributes selected as condition. The peak marked with the arrow reveals a much higher failure rate for this condition than for the others.

Figure fig.kg-eg shows an alternative representation of the same distributions

cars that actually belong to that condition configuration. The

left of Fig. 3 shows only one conditional attribute which has

apparently 7 values resulting in 7 conditional distributions of

the failure attribute. There is a conditional dependence be-

tween the condition attribute and the failure attribute as the

distributions clearly differ. A true interesting aspect will not

be visible until a second attribute is selected into the condi-

tion leading to the left chart. The peak failure rate (marked

with the arrow) for one specific subset of cars is now visible

and can be elected subject to further investigation.

Given an attribute of interest (in most cases the class vari-

able like Failure in the example setting) and its conditioning

parents, every probability statement like

P (Failure = Bearings broken | Suspension = Type X,

Mileage = over 100K mi) = p∗

can be considered an association rule:

If Suspension = Type X ∧ Mileage = over 100K mi,
then there will be a bearings failure in 100 · p∗% of all

cases.

The value p∗ is then the confidence of the corresponding

association rule (c.f. Sec. 2). Of course, all known evaluation

measures can be applied to assess the rules. With the help of

such measures one can create an intuitive visual representa-

tion according to the following steps:

• For every probabilistic entry (i.e., for every rule) of the

considered conditional distribution P (C | A1, . . . , Am) a

circle is generated to be placed inside a two-dimensional

chart.

• The gray level (or color in the real application) of the circle

corresponds to the value of attribute C.

• The circle’s area corresponds to the value of some rule

evaluation measure selected before displaying. For the re-

mainder of this chapter, we choose this measure to be the

support, i.e., the relative number of vehicles (or whatever

instances) specified by the values of C and A1, . . . , Am.

Therefore, the area of the circle corresponds to the number

of vehicles.

• In the last step these circles are positioned. Again, the value

of the x- and y-coordinate are determined by two evaluation

measures selected in advance. We suggest these measures

to be confidence and lift. Circles above the darker horizon-

tal line in every chart mark subsets with a lift greater than 1
and thus indicate that the failure probability is larger given

the instantiation of A1, . . . , An in contrast to the marginal

failure probability P (C = c).

With these prerequisites we can issue the user the follow-

ing heuristic in order to identify suspicious subsets:

Sets of instances in the upper right hand side of the chart

may be good candidates for a closer inspection.

The greater the y-coordinate (i.e. the lift value) of a rule,

the stronger is the impact of the conditioning attributes’ val-

ues on the class variable. Larger x-coordinates correspond to

higher confidence values.

3.3. Application. This section illustrates the proposed visu-

alization method by means of three real-world datasets that

were analyzed during a cooperate research project with a au-

tomobile manufacturer. We used the K2 algorithm [8] to in-

duce the network structure and visualized the class variable

according to the given procedure.

1) Example 1. Figure 4 shows the analysis result of

approximately 60000 vehicles. Attributes Precipitation and

Transmission had most (stochastic) impact on the Failure vari-

able. The subset marked by the arrow was re-identified by

experts as a problem already known.

2) Example 2. The second dataset consisted of approxi-

mately 200000 cars that exposed a many-valued class vari-

able, hence the different gray levels of the circles in Fig. 5.

Although there was no explanation for the subset 3, the oth-

er two could be tracked back to known dependencies of the

respective values of the conditioning attributes.

3) User acceptance. The proposed visualization technique

has proven to be a valuable tool that facilitates the identifi-

cation of subsets of cars that may expose a critical depen-

dence between configuration and failure type. Generally, it

represents an intuitive way of displaying high-dimensional,

nominal data. A pure association rule analysis needs heavy

postprocessing of the rules since due to the commonly small
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failure rate a lot of rules are generated. The presented ap-

proach can be considered a visual exploration aid for associa-

tion rules. However, one has to admit, that the rules represent-

ed by the circles share the same attributes in the antecedence,

hence the sets of cars covered by these rules are mutual dis-

joint, which is a considerable difference to general rule sets.

Fig. 4. The subset marked by the arrow corresponds to 825 vehicles whose attributes values of Precipitation and Transmission yielded a

causal relationship with the class variable

Fig. 5. The three numbered subsets represent 607, 1231, and 1759 cars each. Subset 1 and 2 belong to the same class and differ only in the

condition. It now depends on the intention of the expert analyzing such charts which subsets to address more attention: if he is interested

in the relative confidence increase only, he would go for subset 1 since the lift has a value of 14. That is, given the condition the failure

probability is raised to 4.2% which is 14 times the apriori failure rate of 0.4%. If the user is interested in maximum rule validity instead,

he would investigate rule 2 since it has a higher confidence of 9.2%

Bull. Pol. Ac.: Tech. 58(3) 2010 397
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Fig. 6. A rule at three different times. Initially, the rule did not cover

any database case, that is its initial icon is just a point at the origin.

As time passes, the support increased (growing size of the circle),

the recall and lift did alike (circle is moving to the upper right-hand

corner). The user would be presented an animation with a smooth

transition between the three states

4. Temporal change in graphical models.

As motivated in the introduction, we now develop the analy-

sis of patterns encoded in a graphical model further and also

address the temporal aspect which will turn out to be a post-

processing step to a set of rules [12–15]. The temporal evo-

lution of such patterns carries valuable – if not vital – infor-

mation about the urgency of the underlying problem (or the

effectiveness of the treatment). Again, we intend to involve

the human user into the analysis process as a fully automatic

approach has its limitations. In order to minimize response

times to problems, data analysis results must be interpretable

by technical staff that normally has no statistical background.

In addition, the analysis should be as transparent as possi-

ble to comprehend all inferences and conclusions that were

drawn.

We first enhance the rule visualizaton technique from Sub-

sec. 3.2 and then augment it to cater for the presentation of

temporal change of these rules (or more specific the change

of rule properties).

4.1. Temporal pattern visualization. In this section we first

introduce the visualization of rule sets without respect to time.

After having established the intuition for this method, we ap-

ply the visualization to rule sets from different time frames.

Examples are presented and discussed in Subsec. 4.6.

4.2. Extended rule visualization. In addition to the rule vi-

sualization of Subsec. 3.2 where a rule was depicted by a col-

ored circle, we now employ a more sophisticated icon. Such

an icon is depicted in Fig. 8: Still, every rule is represented as

a circle the size of which represents the support of the rule.

The interior is solidly filled with a color denoting the con-

sequent attribute value. The saturation of this color is used to

indicate the confidence of the rule: Full saturation represents

100% confidence (that is a deterministic rule) while white

would technically correspond to 0% validity. One may ar-

gue that rules with different consequent attribute values and

thus different interior colors might be hard to distinguish if

they both have a low confidence. This is correct, however,

rules with low confidence are not of interest and will not

be generated by a respective rule induction algorithm (since

a minimum confidence acts as a threshold). In addition to

that, in practical cases, we often observed the user to be only

interested in one designated class value, neglecting all others.

In such a case, there will be only one color tone (for example

red) with different saturations.

The antecedent of the rule is shown in the border of the

circle. For every possible attribute (i.e. for every attribute ex-

cept the class attribute) a unique fragment is reserved. The

fragments are equally sized and are ordered clockwise, start-

ing at the right. We did not use the additional degree of free-

dom given by the potential different sizes of the fragments for

further quantitative encodings since the icon already contains

a multitude of information. Comparing the sizes of respective

fragments of two rules would be hard because it scales with

the rule support. A third counter-argument is that since all

fragments form a circle a change of the size of one fragment

would change all others, too.

Fig. 7. The 25 rules evaluated w.r.t.the artificial car manufacturer dataset discussed in Sec. 4.5. The antecedence of every rule represents a

unique combination of air conditioning type and country. Only rules with consequent failure=yes are shown. The charts show the rule set

at the three times Jan, Feb and Mar. Clearly, two rules exhibit a faster movement that indicates an increasing lift. For better assessment, the

trajectories of these two rules have been repeated in Fig. 11
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Fig. 8. The visualization of a single association rule as it is used

in this paper. The outer ring encodes the values of the antecendet

attributes whereas the interior represents the class value and the con-

fidence of the rule

The order of the fragments, that is the order of the repre-

sented attributes is free of choice as long as it is the same for

all rules. We ordered the attributes alphabetically thus making

the order independent from the data.

Every fragment is filled according the following policy:

If the respective attribute is referenced in the antecedent, the

corresponding fragment is filled with a color that uniquely

represents the value of the attribute’s domain. This way of

representation, of course, is only feasible if the number of at-

tributes and the size of their domains is small. Otherwise, we

simply omit the other antecedent ring. However, in the real-

world data used to evaluate the method to be proposed in this

section, the underlying domain allowed for a representation

as described above.

The arrangement in the chart follows the same rules as in

Subsec. 3.2 with only one difference: We assign as coordi-

nates the value of association rule evaluation measures. The

lift value of a rule is used as its y-coordinate, however, we

now use the recall as its x-coordinate. The confidence as a

third interesting measure is represented by the (de-)saturated

inner color and the support is represented by the circle area.

Doing so, we are able to encode four numeric dimensions into

a two-dimensional image without redundancy.

4.3. Overlapping rules. Up to now, we assumed the rules

to cover mutual disjoint sets of database objects, i.e., every

entry of the database was described by exactly one rule an-

tecedent. This can be easily achieved by requesting a fixed set

of attributes for every rule. If the user, however, is interested

in general rules where database entries may be covered by

multiple rules (e.g. because one rule is a specialization of an-

other), we have to cater for this fact by depicting the mutual

overlap.

Consider a population for which we assess the probability

of having lung cancer. Let the cancer probability for a male

person be 15%, i.e., the rule

Gender = male → Cancer = yes

has a confidence of 0.15. Let this confidence increase to 30%

when the additional information that the person is a smoker

is known. The respective rule is

Gender = male ∧ Smoker = yes → Cancer = yes.

Clearly, all persons covered by the antecedent of the second

rule are also covered by the antecedent of the first rule, hence

they cover non-disjoint sets of cases. To depict this, we con-

nect rule visualization by a line in a chart whenever they share

a set of common objects covered by both antecedents. Further,

we compare the cardinality of this intersection to the support

of both rules. The two ratios between intersection cardinali-

ty and the two rule supports are indicated as a bar chart on

that connecting line. The 100%-mark is located in the middle,

whereas the 0%-mark is on the rules’ outer border. Figure 9

depicts the example situation of lung cancer above. The used

numbers of cases are given in Table 1 for the sake of com-

pleteness.

Fig. 9. Visualizing the overlap of two rules. Since “male∧smoker →

cancer” is a specialization of “male → cancer”, the set of database

cases covered by the first rule are fully contained in the set of covered

cases by the second rule, hence the 100%-indication to the right. The

common set of database cases comprises 40% of the cases covered

by the more general rule, hence the smaller indicator to the left.

Table 1

Example database from which two rules (“male → cancer” and

“male ∧ smoker → cancer”) were assessed and depicted in Fig. 9.

male female

smoker no smoker smoker no smoker

cancer 60 15 75 10

no cancer 140 285 225 190

4.4. Temporal change. To present the temporal evolution of

a rule set (w.r.t. the evaluation of selected measures), an ani-

mation is generated that displays the current state of the rule

set at any given time (frame). Figure 6 depicts this idea with

the same rule at three different times. If the consequent of the

depicted rule is a failure class, this rule would be a candidate

for a pattern that needs further investigation: the number of af-

fected database cases (support) increased over time. The same

can be stated for the lift and confidence. The latter means that

the problem became more ane more severe since its probabil-

ity increased.

However, the more data there is under analysis, the more

patterns and thus, rules, can be found. It is not unusual to

have several hundreds induced from a database. Clearly, this

would clutter the visualization beyond recognition. We there-

fore proposed a method of thinning out the number of rules

to be actually displayed [16]. This is done by allowing the

user to linguistically specify what kind of temporal behavior

he is interested in. For example, the user might be interested

in rules showing a strong increase in support and moderate

increase in confidence. Although the full description of this

method is beyond the scope of this paper, the main idea is
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as follows: for every rule and every rule evaluation measure

a time series is created. A trend analysis quantifies properties

like increase, decrease or stability of these series (in terms

of the slope of a regression line or other appropriate means).

Fuzzifying the domains of these change rates and allowing the

user to specify linguistic variables on these fuzzy partitions

allow to calculate for every rule the degree of membership

to the respective linguistic concept. A rule is then only de-

picted if its degree of membership exceeds a user-specified

threshold.

4.5. Example scenario. Before we are going to apply the

concepts introduced above on a real-world dataset, let us turn

to an artificial example. We consider an automobile manu-

facturer that keeps record of the configuration of every car

that leaves the production plant. Whenever a failure occurs,

the database is updated. We assume for simplicity that the

database contains only five attributes: air conditioning type

(type 1 to 5), engine type (type 1 to 3), country (where the

car was delivered to and where it was operating: Germany,

Oman, Egypt, Norway, Iceland), time (of failure, discretized

to 3 time frames named Jan, Feb and Mar), and failure (yes

or no).

The intended pattern that shall be incorporated into this

fictitious dataset is that in two countries (Oman and Egypt)

one air conditioning type (type 1) is going to fail more and

more often. The engine shall not have an influence on the fail-

ure rate. The general failure rate of all non-suspicious database

entries was set to 15% with some random noise added, that

is the failure rates lie between 83% and 87%.

The failure rates of the two cases (A/C 1, Oman) and

(A/C 1, Egypt) grow from 17% via 30% to 40% and from

14% via 25% to 35%, respectively.

We visualize all possible rules with consequent failure=yes

and antecedent referring to attributes air conditioning type and

country. Since both antecedent attributes have 5 values each,

we are going to visualize 25 rules.

Figure 7 depicts the rule set at all three times. The two

outlier rules have been marked with a bold circle. Figure 11

shows the trajectory of both rules to give a better imagination

of the motion. One can clearly observe the increase in the

lift since the rule antecedent became more and more decisive

for failure. There is, of course, motion among the remaining

rules, however, the largest dislocation is obtained by the two

outlier rules.

4.6. Application. We are now going to provide empirical

evidence that the proposed visualization technique can sup-

port and simplify the data analysis process. As motivated

in Subsec. 4.5, we now visualize data from a real-world car

manufacturer. The dataset under analysis contains approxi-

mately 300 000 cases that exhibit 180 attributes. Since this

data set was issued by a industrial partner, we are not allowed

to provide confidential information such as the meaning of

the attribute values. All we can tell is, that every tuple in the

dataset represents a unique car that left the production plant

of the manufacturer. Since for every car the time of a failure

Fig. 10. Real-world application of a set of vehicles with a binary

class variable: failure and no failure. Only rules indicating a failure

are depicted. Two attributes were used to form the rules (hence two

filled regions in the outer ring of every rule), therefore no overlap-

ping of covered database cases could occur. The three charts shows

the rules at the beginning, the middle and the end of the production

period. To assess the motion of the rules, we superposed the final

locations of the rules with the first image and indicated the corre-

sponding rule with an arrow. Bold arrows indicate the four rules that

were found interesting by experts.

was logged as well, we were able to partition the full set of

cars into data sets of (in this case) equal length. We used a pre-

processing technique [16] based on Bayesian networks [5] to

induce a set of attributes that should serve as antecedent at-

400 Bull. Pol. Ac.: Tech. 58(3) 2010



Visual data analysis with computational intelligence methods

tributes of the rules to be visualized. It was possible to iden-

tify a small set of meaningful attributes (out of the 180) that

were used to generate rules whose temporal trajectories were

visualized. Figure 10 shows a set of 760 rules at three dif-

ferent times. There are numerous rules that were interesting

to experts. We selected four rules, two showing an evolv-

ing problem and two representing a vanishing group of failed

cars. To simplify the assessment, we superposed the rule loca-

tions of the second and third chart with the first and indicated

the motion with arrows. Four rules that showed an interest-

ing behavior and could be assigned a meaning by experts are

numbered in the figure: rule 1 and 2 represent shrinking sets

of cars whose confidence is also dropping. More interesting,

however, is the rapidly lessening lift which gave rise to the

conjecture that the cause for the failure had been successfully

addressed. Contrary, rules 3 and 4 represent sets of cars with

increasing failure rate (confidence is increasing indicated by

the darkening of the interior of the icons).

Fig. 11. Trajectory of the to outlier rules discussed in Subsec. 4.5.

The individual rule sets at each time (Jan, Feb and Mar) can be seen

in Fig. 7.

5. Conclusions

Visual data analysis tools provide a valuable tool to man-

age and process the overwhelmingly large information flow

that a data mining task may return. In this article we gave

an overview on two such approaches that visualized the lo-

cal structure of graphical models and that postprocessed a set

of association rules with the help of one or more linguis-

tic concepts. Both approaches have been successfully applied

to real-world problems in the automotive industry. The latter

technique was designed to be independent of the origin of

the rules that are to be analyzed. Hence, it is compatible with

any rule-inducing algorithm and consequently reduces the ef-

fort when it is to be incorporated into an existing production

system. A typical association rule induction algorithm finds

so-called frequent item sets and uses these in a subsequent

step to induce rules. Often, the frequent item sets are suffi-

cient to users (e.g. if there is no dedicated class or failure

variable). For such cases, the presented methods do not work

directly. It is a current state of work to come up with modi-

fications of the visualization methods that are applicable for

general item sets.
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