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Abstract. Low-Density Parity-Check (LDPC) codes are one of the best known error correcting coding methods. This article concerns the

hardware iterative decoder for a subclass of LDPC codes that are implementation oriented, known also as Architecture Aware LDPC. The

decoder has been implemented in a form of synthesizable VHDL description. To achieve high clock frequency of the decoder hardware

implementation – and in consequence high data-throughput, a large number of pipeline registers has been used in the processing chain.

However, the registers increase the processing path delay, since the number of clock cycles required for data propagating is increased. Thus

in general the idle cycles must be introduced between decoding subiterations. In this paper we study the conditions for necessity of idle

cycles and provide a method for calculation the exact number of required idle cycles on the basis of parity check matrix of the code. Then we

propose a parity check matrix optimization method to minimize the total number of required idle cycles and hence, maximize the decoder

throughput. The proposed matrix optimization by sorting rows and columns does not change the code properties. Results, presented in the

paper, show that the decoder throughput can be significantly increased with the proposed optimization method.
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1. Introduction

Modern communication demands in transmission throughput

motivate continuous progress of error correcting coding sys-

tems. Low-Density Parity-Check (LDPC) codes are one of

the best known coding methods that allow achieving very low

bit error rates at code rates approaching Shannon’s channel

capacity limit. (The second known method is turbo coding).

Thus LDPC codes have recently attracted intense research

interest. Their main advantage over turbo-codes is highly par-

allel decoding scheme.

LDPC codes were first introduced by Gallager in 1962

[1], but soon forgotten. Their implementation complexity was

exceeding capabilities of the accessible technology, so they

were not considered for practical applications. The codes were

rediscovered in the late 90’s [2] and since then they have

been under interests of many researchers. Despite the con-

stant progress in electronics technology, the hardware design

for LDPC coding systems is still not straightforward. The main

challenges include: 1) to define low complexity, high through-

put decoder architectures, 2) to make the architecture versatile,

i.e. capable of decoding large family of codes.

The fully parallel LDPC iterative decoding architecture

can achieve high decoding throughput, but it suffers from

large hardware complexity caused by a large set of processing

units and complex interconnections. A practical solution for

area efficient decoders is to use the partially parallel archi-

tecture in which a processing step is performed in a several

time slots using some number of processing units working

in parallel. It has been recognized that the partially parallel

decoder architectures can be accomplished well for some sub-

class of codes, with structured parity check matrix, known as

Architecture-Aware LDPC (AA-LDPC, [3]), VLSI-Oriented

[4] or Structured LDPC [5].

A programmable partially parallel decoder has been im-

plemented in the form of synthesizable VHDL description.

The decoder is capable for decoding any code that has the

parity check matrix in the Architecture-Aware form. The tar-

get hardware platform for the implemented decoder is FPGA;

Xilinx VirtexII devices were used for decoder verification.

In this paper we briefly present the decoder structure. Then

we focus on pipeline processing optimization that has been

proposed to speed up the decoding process.

The pipeline registers has been used to achieve high clock

frequency of the decoder hardware implementation and in

consequence high data-throughput. However, the registers in-

crease the processing path delay as the number of clock cy-

cles required for propagating data is increased. Thus the main

problem connected with pipeline processing is that the new

step of data processing must not be started before the previ-

ous one is completed if the data updated in the previous step

is required for the new one. Hence in general the idle clock

cycles must be introduced. However we show in this article

that the number of required idle cycles is somehow dependent

on the parity check matrix structure. Moreover we present the

parity check matrix optimization algorithm that can minimize

the required idle cycles number. As a result of the idle time

reduction, the decoder throughput is significantly increased,

which is shown in the experimental results.

The paper is organized as follows. First, we present a ba-

sic concepts connected with LDPC codes and the Architecture

Aware subclass of codes. Particularly decoding algorithm will
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be described. Then the decoder structure will be presented

with emphasis on pipeline processing elements. In the fol-

lowing sections we study the conditions for necessity of idle

cycles and provide a method for calculation the exact num-

ber of required idle cycles on the basis of parity check matrix

structure. Then we propose a parity check matrix optimization

method to minimize the total number of idle cycles and finally

present results obtained with proposed optimization method

for several LDPC codes.

2. LDPC codes basics

LDPC codes are linear block codes [6] with sparse parity-

check matrix. The parity-check matrix HM×N of a code C
represents the relation between N bits of the codeword and

M parity-check equations. Vector x = {x1, x2, . . . , xN} is

a correct codeword (x ∈ C) iff the parity check condition

HxT = 0 is satisfied (in GF (2) field).

In the encoder an information vector u =
{u1, u2, . . . , uK} of length K = N −M is transformed into

a proper codeword by combining it with M parity bits. The

coderate R = K/N characterizes the amount of redundancy

in the codeword. In the decoder, where information about bit

values is distorted, the most probable codeword is determined

on the basis of received vector y = {y1, y2, . . . , yN}. The in-

puts to the decoder algorithm are in the form of received bits

in the case of hard-decision decoding or in the form of a priori

probabilities of bit values P (xn = 0|yn), P (xn = 1|yn) (or

some functions of probabilities) in the case of soft-decision

decoding. The latter case allows obtaining significant better

error correcting performance.

Based on the parity check matrix, a bipartite graph G (Tan-

ner graph) is defined with bit nodes corresponding to bits and

check nodes corresponding to parity-check equations (Fig. 1).

Formally: G = (Vc ∪ Vb, E), where Vc = {c1, c2, . . . , cM}
is the set of the check nodes, Vb = {b1, b2, . . . , bN} is the

set of bit nodes and E ⊆ Vb × Vc is the set of edges. An

edge ei = (bn, cm) belongs to E if and only if hmn 6= 0.

A Tanner graph is (dc, db)-regular if all its check nodes have

degree dc and all its bit nodes have degree db. Otherwise,

the graph is irregular and the corresponding code is called

irregular LDPC.

 

c1

b1

Bit nodes

Check nodes
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Fig. 1. Parity check matrix and Tanner graph

The Tanner graph visualizes iterative message passing al-

gorithms used for decoding. The algorithms are performed by

exchanging messages (beliefs) between bit nodes and check

nodes through the edges in both directions. Each node of the

graph represents computation of updated beliefs. In the case

of LLR-BP algorithm (Log-Likelihood Ratio Belief Propaga-

tion), messages are log-likelihood ratios of beliefs, hence op-

erations are sums (bit nodes) and sums of nonlinear functions

of messages (check nodes). LLR-BP and its modifications are

considered the most frequently [3, 7] for hardware imple-

mentations. Inputs to the decoding algorithm are bit values

altogether with measures of its reliability based on channel

observations (received channel soft values), which are in the

form of log-likelihood ratios; they are called intrinsic channel

reliability values and will be denoted as δn for nth bit:

δn = log

[

P (xn = 0|yn)

P (xn = 1|yn)

]

. (1)

The basic two-phase message-passing (TPMP) algorithm is

described in reach literature, e.g. [2, 6, 7].

2.1. TDMP decoding algorithm. Here we focus on Turbo-

Decoding Message-Passing (TDMP) algorithm [3, 8] that has

been used for the presented hardware decoder. It is based

on a modification in message passing scheme of the classic

TPMP algorithm, where C is considered as the concatenation

of some number of codes. It means that the set of rows of H

is virtually partitioned into a number of subsets. Each subset

constitutes a code, which will be called a subcode. A word is

a correct codeword if it belongs to all constituent subcodes.

Let Cd denote the dth subcode with parity check matrix

Hd, d = 1, . . . , D. The code is then C = C1∩ . . .∩CD and its

parity check matrix is HM×N =
[

H1;H2; . . . ;HD
]T

. Fur-

thermore, the check node set Vc of the Tanner graph of the

code is partitioned as Vc = V1
c ∪ . . .∪VD

c . It is assumed that

the rows in each submatrix Hd do not overlap (each bit node

is incident to at most 1 check node in the subset Vd
c ). Follow-

ing [2], we denote the set of indexes of check nodes adjacent

to bit node bn by M (n) and – similarly – the set of indexes of

bit nodes adjacent to check node cm by N (m). Furthermore,

N (m) \n represents the set N (m) excluding n.

The TDMP algorithm determines a codeword iteratively

in D subiterations, with one subiteration per constituent code

Cd. Following [9], we denote Λd
n the LLR reliability value for

bit nth assuming that the codeword belongs to subcode Cd and

λd
n the reliability values calculated in the previous iteration.

The sum of Λn-messages for all subcodes in addition to the

channel values δn is the posterior reliability value, denoted by

Γn and updated at each subiteration. Thus Γn represents „all

the information” about the value of the bit xn in the current

stage of decoding process. The Γn value calculated at previ-

ous subiteration is denoted by γn. The TDMP algorithm is

summarized as follows.

1) Initialization

Initialize posterior γ values to the intrinsic channel relia-

bility LLRs and the messages λ for all subcodes to zeros.

γn := δn = log

[

P (xn = 0|yn)

P (xn = 1|yn)

]

, (2)

λd
n := 0, n = 1, . . . , N d = 1, . . . , D (3)
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2) Iteration

Carry out D decoding subiterations corresponding to sub-

codes Cd, d = 1, . . . , D. For each subiteration compute

messages Λd
n as well as posterior reliability values Γn. At

subiteration d:

– For each m such that cm ∈ Vd
c , for each n ∈ N (m),

compute

Qd
n := γn − λd

n, (4)

Λd
n :=

(

∏

n′

sgn
(

Qd
n′

)

)

× ψ−1

(

∑

n′

ψ
(

|Qd
n′ |
)

)

, (5)

Γn := Qd
n + Λd

n = γn − λd
n + Λd

n, (6)

where n′ ∈ N (m) \n, where cm is the check node in the

subset Vd
c incident to bn (as we assumed, there is only one

such check node) and ψ(x) is a nonlinear function defined

as: ψ(x) = ψ−1(x) = − ln (tanh(x/2)) that can be calcu-

lated making use of some known approximations [7, 12].

– Store the Λ and Γ-values as λ and γ-values to be used

as inputs in the next subiteration:

γn := Γn, λd
n := Λd

n, n = 1, . . . , N (7)

3) Stop Criterion

After all subiterations make hard decisions x =
{x1, x2, . . . , xN} such that

xn :=

{

1, Γn ≤ 0

0, Γn > 0
(8)

If the parity check equation HxT = 0 is satisfied or a max-

imum number of iterations imax is reached, halt the algo-

rithm with x as output. Otherwise, go to step 2.

The decoder receives soft channel values δ and generates

reliability values of the decoded bits Γ. These values are up-

dated at each subiteration. Furthermore, for each constituent

subiteration, extrinsic reliability values Λ are computed as-

suming that the codeword belongs to the subcode, according

to (4)–(6). Intrinsic λ-messages pertaining to the code under

consideration are subtracted from γ (Eq. (4)) to eliminate

correlation between newly generated messages and the pre-

viously generated. Thus, the Qd
n represents LLR reliability

value for bit nth based on messages from all subcodes except

subcode under consideration. These Q values are used for

updating extrinsic messages Λ corresponding to the subcode

being decoded.

The main advantages of TDMP scheme over standard

TPMP are that it exhibits a faster convergence behavior (about

20–50% fewer decoding iterations) as well as it allows a mem-

ory savings due to eliminating multiple bit-to-check mes-

sages [3].

2.2. AA-LDPC codes. As is well known, efficient partially-

parallel decoder implementation is possible for parity-check

matrices with certain constraints on their form [3, 10, 11].

Firstly, as we assumed, the rows of H are partitioned such

that in each submatrix Hd all columns contain at most sin-

gle non-zero element. Secondly, in order to suitably organize

message (Γ) memory, the set of bit nodes of the graph is par-

titioned into L subsets Vb = V1
b ∪ . . . ∪ VL

b of P nodes, such

that considering subcode Cd, each bit node from any subset

Vj
b is adjacent to exactly one check node from subset Vd

c or

each bit node from this subset is not adjacent to any check

node from subset Vd
c . Then single memory word may consist

of P Γ-values (corresponding to bits from single subset Vj
b )

that are delivered to P computing modules in a single clock

period by configurable interleaver that shuffles the fragments

of the memory word according to the local graph structure of

the code.

With such code-graph organization, a parity check matrix

is similar to the one shown in Eq. (9):

H =













P1,1 P1,2 · · · P1,L

P2,1 P2,2 · · · P2,L

...
...

. . .
...

PD,1 PD,2 · · · PD,L













(9)

Matrix H is composed of D × L submatrices, where each

submatrix Pd,l of size P × P is either an all-zero matrix or

a permutation matrix obtained by permuting columns of an

identity matrix [5]. Placement of nonzero submatrices in H

is specified by so-called seed matrix W. It is a D×L matrix

with elements wd,l = 0 if Pd,l is the all-zero submatrix and

wd,l = 1 if Pd,l is the permutation submatrix. Codes with

parity check matrix arranged in this manner are known as

Architecture Aware subclass of LDPC codes (AA-LDPC).

3. Decoder architecture

A configurable decoder, based on TDMP scheme has been

implemented in the form of synthesizable VHDL model. This

model can be adjusted for decoding any regular or irregular

code that has the matrix H in the presented Architecture-

Aware form. The decoder structure has been described in de-

tail in other papers [5, 13]. Here we focus on pipeline process-

ing that has been used to speed up the decoding process.

Γ
 M

e
m

ory

Configurable
Interconnection

Network

PWδ

W

P

PW Configurable
Interconnection

Network

SISO
Unit 1

SISO
Unit 2

SISO
Unit P

W

W

Fig. 2. Structure of the decoder

The simplified block diagram of the decoder is present-

ed in Fig. 2. Reliability values of the decoded bits Γ are
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stored in Γ-memory, which is initialized with soft channel

values δ with wordlength W . Typical wordlength is in range

W = 5 . . . 8 and its selection defines the tradeoff between

the decoder performance and resources required for the im-

plementation. Computations corresponding to (4)–(6) are per-

formed in so-called Soft-Input-Soft-Output (SISO) modules.

Each of the modules is responsible for single check node

cm ∈ Vd
c messages calculation during subiteration d. Since

||Vd
c || = P , it is convenient to use P SISO modules operat-

ing in parallel. (Generally: not greater than P SISO modules;

we use P modules for the highest parallelism.) One full it-

eration consists of D subiterations (d = 1, . . . , D), thus it is

performed in D time slots.

In a single time slot, messages Γn, n ∈ N (m) are fed to

the SISO unit in a serial manner through Configurable Inter-

connection Network, updated in the SISO, and then serially

fed back to the Γ-memory. A memory word consists of P
Γ-values, hence wordlength for Γ-memory equals PW and

memory depth is L. Configurable Interconnection Network

ensures proper messages propagation, according to the struc-

ture of the permutation submatrices Pd,l of the constituent

subcode d (see Eq. (9)). The messages Λ are stored in Λ-

memory, which is partitioned and included in SISO units as

small memory buffers. When stop criterion is met, current

word decoding is halted and data is outputted in words of

length P (the MSBs of the P Γ-messages in a single memo-

ry word are equivalent to the decoded bits).

Time slot duration, i.e. the number of clock cycles for

executing single subiteration, depends on check-nodes degree

as well as the number of pipeline registers in the process-

ing chain. The pipeline registers – denoted as grey boxes in

the figures – are essential components to achieve high clock

frequency of the decoder hardware implementation and in

consequence high data-throughput. However, the registers in-

crease the processing path delay as the number of clock cy-

cles required for propagating data is increased. Here the main

problem connected with pipeline processing arises. The new

subiteration must not be started before the previous one is

completed if the data (Γ messages) updated in the previous

subiteration are required for the new one. Hence in general

the idle clock cycles must be introduced to await for the com-

pletion of the previous subiteration. The number of required

idle cycles depends on the processing chain delay, thus the

increase in clock frequency due to the pipelining is counter-

feited by the increase in number of idle clock cycles.

In the classic literature concerning TDMP decoding im-

plementation [3, 8, 9] the problem mentioned above is not

treated at all. In the next sections we first study the condi-

tions for necessity of idle cycles and provide a method for

calculation the exact number of required idle cycles on the

basis of parity check matrix structure. Then we propose the

formula for the calculation of the total number of idle cy-

cles per iteration and finally propose a parity check matrix

optimization method to minimize the total number of idle cy-

cles. In the end we present results obtained with proposed

optimization method for several cases.

4. Number of idle cycles calculation

The basic block diagram of the SISO module is presented

in Fig. 3. The main component of SISO is CNU (Check

Node Unit), which is responsible for Λ messages calcula-

tion as in (5). Since the CNU operates in a double recursion

scheme (see e.g. [12]), the output messages are in reversed

order. Blocks denoted as Subtr* and Add* are subtractor and

adder respectively with clipping elements that constrain the

results of addition (subtraction) to W bits.

λ Memory

CNU

LIFO 
Buffer

λ

Q Λ Γ
γ

Λ

Subtr*

+

–
Add*

+

+

W

W W

Fig. 3. SISO computing module

To achieve high clock frequency, five pipeline registers

(grey boxes in Fig. 3) has been used in the CNU as well as

two registers in blocks Add* and Subtr*. The placement of

the registers has been designed experimentally by observing

the synthesis results for VirtexII FPGA and trying to exploit

the maximum achievable clock speed.

Let TP be the total pipeline delay of the decoder defined

by the number of clock cycles from the last Γ-memory read

to the first Γ-memory write. The TP delay is equal to the sum

of delays due to interconnection network TNET and due to

SISO module TSISO:

TP := 2TNET + TSISO (10)

In the case of the implemented decoder we have: TNET = 1
(Fig. 2), TSISO = 9 (Fig. 3), thus TP = 11.

Let T d
idle be the number of idle cycles required before

subiteration d is started (i.e. the first message is fetched). Ob-

viously T d
idle depends on TP , but also – as will be shown

– it is dependent on the existence of nonzero elements in the

same columns of dth, d− 1, d− 2 and d− 3 rows of the seed

matrix. It is illustrated by a following example.

Figure 4 presents a part of some parity check matrix,

where the numerated boxes represent permutation submatri-

ces and grey boxes – all-zero submatrices. At the bottom of

the figure we present a sequence of data transmitted from /

to the Γ-memory, where the numbers indicate memory cells

that are read / written, which are consistent with the location

of the nonzero submatrices in the parity check matrix.

Before the 2nd subiteration can be started (blue marks in

Fig. 4), the decoder has to await a proper time for memory

cell 9 update from the 1st subiteration (black marks). Precise-

ly: the pause T 2
idle has to ensure that memory cell 9 read (2nd

subiteration) is at least one cycle after memory cell 9 write

(1st subiteration). (It is assumed that “write first” configura-

tion of two-port memory is used for implementation.) Thus

the idle cycles are needed in the case of one (or more) com-

mon messages are processed in the consecutive subiterations,
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which is a result of “overlapping” ones in consecutive rows

of seed matrix (here: ones in column 9th, “black” and “blue”

rows). In the example presented in Fig. 4, T 2
idle = TP − 2.

1 3 4 7 9

9 7 4 3 1

2 5 8 9 11

TP

T idle
2In (γ)

Out (Γ)

1

2

3 4

5

7

8

9

9 11

1 4 6 7 12

1 4 6 7 12

Tidle
3

Fig. 4. Data sequence on the Γ-memory ports

Furthermore, the need for idle cycles is still possible even

if two consecutive rows of seed matrix do not contain ones

in a common column. Such a case is presented in Fig. 4 for

the 3rd subiteration (red marks). The pause T 3
idle has to en-

sure memory cell 1 read (3rd iteration) is at least one cycle

after this memory cell update (1st subiteration). The common

memory cell 1 usage is a result of “overlapping” ones in every

second rows of seed matrix (here: “black” and “red” rows).

Here we propose a formula for exact calculation of re-

quired idle cycles T d
idle, on the basis of seed matrix structure.

Let X(d2,d1) be an auxiliary variable defined as:

• if rows d2th and d1th of the seed matrix do not contain

ones in a common column, then X(d2,d1) = ∞
• if rows d2th and d1th of the seed matrix contain a one in

a common column l, then X(d2,d1) is a difference between

the number of ones in d2th row in columns with indexes

lower than l and the number of ones in d1th row in columns

with indexes greater than l, diminished by 1.

• if rows d2th and d1th of the seed matrix contain ones in

more than one column, then the rule stated above applies

for the column with the lowest index l.

Formally it can be stated as:

X(d2,d1) =































∞ ⇐⇒

∀l∈1...L wd2,l = 0 ∨ wd1,l = 0

l−1
∑

i=1

wd2,i −
L
∑

i=l+1

wd1,i − 1 ⇐⇒

∃l : wd2,l = 1 ∧wd1,l = 1

(11)

With reference to the above example, for the case presented

in Fig. 4, e.g. X(2,1) = 3 − 0 − 1 = 2 and X(3,2) = ∞.

We can observe that (in the case X(d2,d1) 6= ∞) the val-

ue of X(d2,d1) represents the difference between the pipeline

delay TP and the number of required idle cycles. Let T d
1 be

the number of idle cycles before subiteration d is started with

considering only awaiting for the completion of the previous

(d− 1) subiteration. It can easily be shown that:

T d
1 = max

[

0, (TP −X(d, d−1))
]

, 2 ≤ d ≤ D. (12)

For the above example, T 2
1 = TP − 2 because X(2,1) = 2

and T 3
1 = 0 because X(3,2) = ∞. So X(d,d−1) = ∞ simply

means that idle cycles are not required before subiteration d.

If awaiting for the completion of penultimate (d−2) subit-

eration is considered (“red” row in Fig. 4), the number of idle

cycles, denoted as T d
2 , equals:

T d
2 = max

[

0, (TP−X(d, d−2)− deg(cd−1)−T
d−1
idle )

]

,

3 ≤ d ≤ D,
(13)

where deg(cd−1) is degree of check node cd−1 in the seed

graph, which is equal to the number of write cycles to the

memory at subiteration d − 1. The T d
2 is (similarly to T d

1 )

a difference between TP and X(d, d−2), but diminished by the

number of cycles exploited for subiteration d − 1: the write

to the memory cycles deg(cd−1) and the idle cycles T d−1
idle .

Finally, sometimes the need for idle cycles is due to await-

ing for completion of d−3 subiteration. In this case the num-

ber of idle cycles equals:

T d
3 = max

[

0, (TP −X(d, d−3) − deg(cd−1)−

− T d−1
idle − deg(cd−2) − T d−2

idle )
]

,

4 ≤ d ≤ D.

(14)

To determine the desired value of T d
idle, the case among

the mentioned above that gives the highest number of idle

cycles has to be considered. Thus:

T 2
idle = T 2

1 ,

T 3
idle = max

[

T 3
1 , T

3
2

]

,

T d
idle = max

[

T d
1 , T

d
2 , T

d
3

]

, 4 ≤ d ≤ D.

(15)

Equation (15) along with (12)–(14) show how to calculate

the number of required idle cycles for the consecutive subit-

erations. For the particular decoder, calculations can be made

according to (12)–(15) with increasing d = 2, . . . , D starting

with d = 2.

5. Optimization of the parity check matrix

In order to minimize the total idle time of the decoder and

hence substantially increase the decoder throughput, a heuris-

tic optimization algorithm has been developed. The algorithm

takes advantage of the following linear code properties:

• shuffling the rows of the parity check matrix does not

change the code defined by the matrix at all,

• shuffling the columns of the parity check matrix does not

change error performance of the code – it results only in

adequate shuffling of the bit sequence in the codeword.

Thus the algorithm consist of sorting the seed matrix columns

and rows in a way to minimize the total number of idle cycles

in a full iteration, defined as:

Tidle =

D
∑

d=1

T d
idle. (16)

The proposed algorithm is presented below as algorithm 1.

In the first step, columns of W are sorted according to their

growing weights (number of ones). It is motivated by the

fact that more idle cycles are needed, when ones are located

in a common columns with lower indexes (Fig. 4). Shifting
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columns with large weight to the right side of seed matrix

decreases probability of this unfavorable situation.

Next, the algorithm searches for a matrix W′ consisting

of all rows of W arranged in a way that minimizes Tidle

determined according to the Eq. (16). The first row of W′

is selected randomly and every other (dth) is chosen among

rows that ensure obtaining the lowest possible number of idle

cycles T d
idle determined as in (12)–(15). A random choice is

made if more than one row satisfies this condition.

The described procedure is repeated a number of times

and among obtained seed matrices, the one with the lowest

Tidle is selected as a final result. As experiments have shown,

1000 repetitions is a sufficient number for obtaining satisfac-

tory results (for practical number of rows in the seed matrix –

up to a few hundreds). In most cases increasing this number

above 1000 does not improve results significantly.

A large number of experiments have been performed in

order to verify performance of the proposed optimization al-

gorithm. Results of optimization for several seed matrices are

shown in Tables 1 and 2. We present seed matrices with dif-

ferent sizes and coderates R, regular and irregular construc-

tions. All seed matrices were constructed with Progressive

Edge Growth algorithm [14]. The seed matrix W10×20 be-

fore and after optimization is shown in Fig. 5, where black

squares indicate placement of nonzero elements. In this case

all neighboring overlapping rows were eliminated by rows re-

ordering procedure, thus for every d, T d
1 = 0, but still there

exist a number of rows with nonzero T d
2 and T d

3 . Thus the

total Tidle is pretty large, which is the case for all matrices

with small sizes, due to their relatively dense placement of

nonzero elements.

Table 1

Results: decoder idle cycles before and after optimization

Tidle

Seed matrix
W

W′ W′ W′

km=100 km=1000 km=5000

W10×20 (R = 0.5), reg. 122 71 67 67

W55×110 (R = 0.5), reg. 217 0 0 0

W32×64 (R = 0.5), irreg. 311 10 2 2

W64×128 (R = 0.5), irreg. 813 0 0 0

W30×90 (R = 0.66), irreg. 318 17 16 16

W16×64 (R = 0.75), reg. 253 86 80 78

W25×100 (R = 0.75), irreg. 305 39 35 34

Table 2

Results: decoder throughput before and after optimization

Throughput
Seed matrix

W
W′

km=1000

W10×20 (R = 0.5), reg. P · 0.797 [Mb/s] P · 1.14 [Mb/s]

W55×110 (R = 0.5), reg. P · 1.46 [Mb/s] P · 2.41 [Mb/s]

W32×64 (R = 0.5), irreg. P · 0.888 [Mb/s] P · 2.18 [Mb/s]

W64×128 (R = 0.5), irreg. P · 0.727 [Mb/s] P · 1.99 [Mb/s]

W30×90 (R = 0.66), irreg. P · 1.42 [Mb/s] P · 2.79 [Mb/s]

W16×64 (R = 0.75), reg. P · 1.56 [Mb/s] P · 2.56 [Mb/s]

W25×100 (R = 0.75), irreg. P · 1.77 [Mb/s] P · 3.19 [Mb/s]

Fig. 5. Matrix W10×20 before and after optimization

Table 1 presents total idle times for original matrix W

as well as matrices obtained with the algorithm 1. We in-

cluded results for different number of repetitions (km =
100, 1000, 5000) of the main loop in the algorithm. As was

mentioned, more than 1000 repetitions didn’t improve the re-

sults in most cases and in the other few cases the improvement

was really insignificant.

It can be seen that the number of required idle cycles af-

ter seed matrix optimization is very low, compared to this

number before optimization. In many cases Tidle = 0 can

be obtained, especially for codes with lower rates (R = 0.5
or less). For codes with higher rates R, some greater than 0
idle time is usually necessary, because due to lower number

of rows in H and their higher weights, it is harder to select
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“non-overlapping” rows and thus to bring the constituent T d
idle

numbers to zero. Moreover we can observe that for matrices

with larger sizes, the results obtained are better (for exam-

ple: compare W16×64 and W25×100), which is related to the

greater sparsity.

As a result of the idle time reduction, the decoder through-

put is significantly increased, which is shown in Table 2.

The presented throughput values are dependent on the num-

ber of SISO units P used for implementation (P is usual-

ly equal to the permutation submatrix size). The through-

put has been determined making use of synthesis results

for Xilinx XC2V3000 FPGA device, where we achieved

fclk = 145 MHz for a normalized Min-Sum messages calcu-

lation algorithm [15] used in SISO implementation. Equation

(17) shows the relationship between actual throughput TH
(the number of information bits decoded per second) and the

parameters of the code and decoder. The sum
∑

d

∑

l

hd,l is

equal to the number of working clock cycles, so the denom-

inator in Eq. (17) is the total number of cycles for single

word decoding. For the results presented in Table 2 we as-

sumed the iteration number imax = 10, which is a common

assumption for throughput calculation [9]. The numerator in

Eq. (17) is the number of information bits in a single word

M = P (L−D).

TH = fclk
P · (L−D)

(

D
∑

d=1

L
∑

l=1

hd,l + Tidle

)

· imax

(17)

The typical number of SISO units is in range P =
10 . . .100. For example, a decoder with P = 32 SISO units,

wordlength W = 6, occupies about 1/3 of the available

resources of the mentioned XC2V3000 device. For a rate

R = 0.5 code the throughput is then more than 60 Mb/s

and it is about twice as much as for the decoder without pro-

posed parity check matrix optimization. Thus the presented

throughput increase is the main virtue of the work presented

in this paper.

6. Conclusions

In the first part of this article we briefly described LDPC

decoder architecture based on TDMP decoding scheme. The

main drawback of the straight pipelined implementation is the

necessity for idle cycles that reduce the throughput. Howev-

er, as was shown, by means of proper parity check matrix

columns and rows reordering, the number of required idle

cycles can be significantly reduced. The heuristic algorithm

for such optimization of the parity check matrix has been de-

veloped. The goal of the algorithm is minimization of the

total idle time of the decoder. We performed a large number

of experiments, for different seed matrices. The achieved re-

duction of the idle time is always significant, in many cases

even to zero. The resulting decoder throughput increase is al-

so meaningful. Hence the full advantage of the speedup due

to pipelined processing can then be taken.
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