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Positivity and stability of fractional 2D Lyapunov systems described

by the Roesser model
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Abstract. A new class of fractional 2D Lyapunov systems described by the Roesser models is introduced. Necessary and sufficient conditions

for the positivity and asymptotic stability of the new class of systems are established. It is shown that the checking of the asymptotic stability

of positive 2D fractional Lyapunov systems can be reduced to testing the asymptotic stability of corresponding positive standard 1D discrete-

time systems. The considerations are illustrated by a numerical example.
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1. Introduction

The most popular models of two-dimensional (2D) linear sys-

tems are the models introduced in [1–3] and [4]. These models

have been extended for positive systems in [5–8]. An overview

of 2D linear systems theory is given in [9–12] and some recent

results in positive systems have been given in the monographs

[6, 13]. The asymptotic stability of positive 2D linear systems

has been investigated in [14–17]. The problem of positivity

and stabilization of 2D linear systems by state-feedbacks has

been considered in [18].

Mathematical fundamentals of fractional calculus are giv-

en in the monographs [19–23]. The notion of fractional 2D

linear systems has been introduced by Kaczorek in [24] and

has been extended in [25, 26]. The problem of positivity and

stabilization of 2D fractional systems by state-feedbacks has

been considered in [27, 28].

Controllability and observability of Lyapunov systems

have been investigated in [29]. Positive 1D Lyapunov systems

have been considered in [30–34] and positive 2D Lyapunov

systems have been analysed in [35].

In [36] a new fractional Lyapunov model has been intro-

duced and has been extended in [37]. The positivity, stability,

observability, reachability and controlability to zero problems

for this model have been formulated and solved.

In this paper a new class of 2D fractional Lyapunov sys-

tems will be introduced and necessary and sufficient condi-

tions for the positivity and asymptotic stability will be estab-

lished.

To the best knowledge of the author 2D fractional Ly-

punov systems, its positivity and stability has not been con-

sidered yet.

2. Preliminaries

Let R
n×m
+ be the set of n×m matrices with all nonnegative

elements and R
n
+ := R

n×1
+ . The set of nonnegative integers

will be denoted by Z+ and the n × n identity matrix will

be denoted by In. A matrix A = [aij ] ∈ R
n×m
+ will be

called strictly positive and denoted by A > 0 if aij > 0 for

i = 1, 2, . . . , n and j = 1, 2, . . . , m.

A square real matrix A =
[

aij

]

is called the Metzler ma-

trix if its off-diagonal entries are nonnegative, i.e. aij ≥ 0 for

i 6= j.

Definition 1. [38, p. 80] The Kronecker product A ⊗ B of

matrices A =
[

aij

]

∈ R
m×n and B ∈ R

p×q is the block

matrix

A ⊗ B =
[

aijB
]

i=1,...,m
j=1,...,n

∈ R
mp×nq. (1)

Lemma 1. [38, p. 82] The equation

AXB = C, (2)

where A ∈ R
m×n, B ∈ R

q×p, C ∈ R
m×p and X ∈ R

n×q is

equivalent to the following one
(

A ⊗ BT
)

x = c, (3)

where

x :=
[

x1 x2 · · · xn

]T

,

c :=
[

c1 c2 · · · cm

]T
(4)

and xi and ci are the i-th rows of the matrices X and C,

respectively.

Lemma 2. [38, p. 385] If λ1, λ2, . . . , λn are the eigenvalues of

the matrix A ∈ R
n×n and µ1, µ2, . . . , µn are the eigenvalues

of the matrix B ∈ R
n×n, then λi + µj for i, j = 1, 2, . . . , n

are the eigenvalues of the matrix

Ā = A ⊗ In + In ⊗ BT .

The following notions of fractional differences of 2D hor-

izontal and vertical matrix functions will be introduced.
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Definition 2. The α-order fractional difference of an 2D hor-

izontal matrix function Xh
ij ∈ R

n1×N , i, j ∈ Z+ is defined

by the formula

∆αXh
ij =

i
∑

k=0

cα(k)Xh
i−k,j , (4a)

where α ∈ R, n − 1 < α < n ∈ N =
{

1, 2, . . .
}

and

cα(k)=







1 for k = 0

(−1)k
(

α
k

)

= (−1)k α(α−1)···(α−k+1)
k! for k > 0

.

(4b)

Definition 3. The β-order fractional difference of an 2D ver-

tical matrix function Xij ∈ R
n2×N , i, j ∈ Z+ is defined by

the formula

∆βXv
ij =

j
∑

l=0

cβ(l)Xv
i,j−l, (5a)

where β ∈ R, n − 1 < β < n ∈ N and

cβ(l)=

{

1 for l = 0

(−1)l
(

β

l

)

= (−1)l β(β−1)···(β−l+1)
l! for l > 0

.

(5b)

Definitions 2 and 3 are a generalization of fractional par-

tial differences of 2D discrete functions given in [23] and [28].

Lemma 3. [28] If n − 1 < α < n ∈ N =
{

1, 2, . . .
}

(

n − 1 < β < n
)

then

∞
∑

k=0

cα(k) = 0

(

∞
∑

k=0

cβ(k) = 0

)

. (6)

3. Fractional 2D Lyapunov system

and its solution

Consider the fractional 2D linear Lyapunov system described

by the state equations

[

∆αXh
i+1,j

∆βXv
i,j+1

]

=

[

A0
11 A0

12

A0
21 A0

22

] [

Xh
ij

Xv
ij

]

+

+

[

Xh
ij

Xv
ij

][

A1
11 A1

12

A1
21 A1

22

]

+

[

B1

B2

]

Uij ,

(7a)

Yij =
[

C1 C2

]

[

Xh
ij

Xv
ij

]

+ DUij i, j ∈ Z+, (7b)

where Xh
ij ∈ R

n1×N , Xv
ij ∈ R

n2×N are horizontal and verti-

cal state matrix at the point (i, j) respectively, Uij ∈ R
m×N is

input matrix, Yij ∈ R
p×N is output matrix at the point (i, j)

and Ar
kl ∈ R

nk×nl for k, l = 1, 2 and r = 0, 1, B1 ∈ R
n1×m,

B2 ∈ R
n2×m, C1 ∈ R

p×n1 , C2 ∈ R
p×n2 , D ∈ R

p×m and

N = n1 + n2.

Using Definition 2 and Definition 3 we may write the

Eq. (7a) in the form

[

Xh
i+1,j

Xv
i,j+1

]

=

[

A
0

11 A0
12

A0
21 A

0

22

][

Xh
ij

Xv
ij

]

+

+

[

Xh
ij

Xv
ij

] [

A1
11 A1

12

A1
21 A1

22

]

−













i+1
∑

k=2

cα(k)Xh
i−k+1,j

j+1
∑

l=2

cβ(l)Xv
i,j−l+1













+

[

B1

B2

]

Uij

(8)

where A
0

11 = A0
11 + αIn1

, A
0

22 = A0
22 + βIn2

.

The boundary conditions for the Eqs. (7a) and (7b) are

given in the form

Xh
0j for j ∈ Z+, Xv

i0 for i ∈ Z+. (9)

Lemma 4. The 2D Lyapunov system (7) can be transformed to

the equivalent fractional 2D Nm-input and Np-output system

described by the Roesser model in the form [28]

[

xh
i+1,j

xv
i,j+1

]

=

[

A11 A12

A21 A22

] [

xh
ij

xv
ij

]

−

−













i+1
∑

k=2

cα(k)xh
i−k+1,j

j+1
∑

l=2

cβ(l)xv
i,j−l+1













+

[

B1

B2

]

uij ,

(10a)

yij =
[

C1 C2

]

[

xh
ij

xv
ij

]

+ Duij , i, j ∈ Z+, (10b)

where

xh
ij =

[

1X
h
ij 2X

h
ij . . . n1

Xh
ij

]T

∈ R
N ·n1 ,

xv
ij =

[

1X
v
ij 2X

v
ij . . . n2

Xv
ij

]T

∈ R
N ·n2 ,

uij =
[

1Uij 2U ij . . . mUij

]T

∈ R
N ·m,

yij =
[

1Yij 2Y ij . . . pYij

]T

∈ R
N ·p

(11)

and kXh
ij , kXv

ij , kUij , kYij denote the k–th rows of the

matrices Xh
ij , Xv

ij , Uij , Yij , respectively,
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A11 = A
0

11 ⊗ IN + In1
⊗

[

A1
11 A1

12

A1
21 A1

22

]T

∈

∈ R
(N ·n1)×(N ·n1),

A12 = A0
12 ⊗ IN ∈ R

(N ·n1)×(N ·n2),

A21 = A0
21 ⊗ IN ∈ R

(N ·n2)×(N ·n1),

A22 = A
0

22 ⊗ IN + In2
⊗

[

A1
11 A1

12

A1
21 A1

22

]T

∈

∈ R
(N ·n2)×(N ·n2),

B1 = B1 ⊗ IN ∈ R
(N ·n1)×(N ·m),

B2 = B2 ⊗ IN ∈ R
(N ·n2)×(N ·m),

C1 = C1 ⊗ IN ∈ R
(N ·p)×(N ·n1),

C2 = C2 ⊗ IN ∈ R
(N ·p)×(N ·n2),

D = D ⊗ IN ∈ R
(N ·p)×(N ·m).

(12)

Proof. Using Lemma 1 for the Eq. (8) we obtain immediately

(10).

The boundary conditions for the Eq. (10) are given in the

form

xh
0j =

[

1X
h
0j 2X

h
0j . . . n1

Xh
0j

]T

for j ∈ Z+,

xv
ij =

[

1X
v
i0 2X

v
i0 . . . n2

Xv
i0

]T

for i ∈ Z+.

(13)

Theorem 1. The solution of Eq. (10) with boundary condi-

tions (13) is given by
[

xh
ij

xv
ij

]

=
i
∑

p=0

T i−p,j

[

0

xv
p0

]

+

j
∑

q=0

T i,j−q

[

xh
0q

0

]

+

i
∑

p=0

j
∑

q=0

(

T i−p−1,j−qB
10

+ T i−p,j−q−1B
01
)

upq

(14a)

where

B
10

=

[

B1

0

]

, B
01

=

[

0

B2

]

(14b)

and the transition matrices T pq ∈ R
N2×N2

are defined by the

formula

T pq =











IN2 for p = 0, q = 0

Tpq for p + q > 0 (p, q ∈ Z+)

0 (zero matrix) for p < 0 and/or q < 0

(14c)

where

Tpq = T 10T p−1,q −

p
∑

k=2

[

cα(k)I(N ·n1) 0

0 0

]

T p−k,q+

+ T 01T p,q−1 −

q
∑

l=2

[

0 0

0 cβ(l)I(N ·n2)

]

T p,q−l

(14d)

and

T 10 =

[

A11 A12

0 0

]

, T 01 =

[

0 0

A21 A22

]

(14e)

Proof. The theorem results directly from the state-space equa-

tion solution of the fractional 2D linear system described by

the Roesser model (10), see [28].

4. Positivity of the fractional 2D Lyapunov

system

Definition 4. The system (7) is called the (internally) pos-

itive fractional 2D Lyapunov system if Xh
ij ∈ R

n1×N
+ ,

Xv
ij ∈ R

n2×N
+ and Yij ∈ R

p×N
+ , i, j ∈ Z+ for any non-

negative boundary conditions Xh
0j ∈ R

n1×N
+ , j ∈ Z+ and

Xv
i0 ∈ R

n2×N
+ , i ∈ Z+ and all input sequences Uij ∈ R

m×N
+ ,

i, j ∈ Z+.

Theorem 2. The fractional 2D Lyapunov system (8) for

α, β ∈ R, 0 < α ≤ 1, 0 < β ≤ 1 is positive if and on-

ly if

Al
kk =

[

ija
l
kk

]

i,j=1,...,nk

for k = 1, 2; l = 0, 1 (15a)

are Metzler matrices satisfying

iia
0
11 + α + jja

1
11 ≥ 0 for i, j = 1, . . . , n1

iia
0
11 + α + jja

1
22 ≥ 0 for i = 1, . . . , n1, j = 1, . . . , n2

iia
0
22 + β + jja

1
11 ≥ 0 for i = 1, . . . , n2, j = 1, . . . , n1

iia
0
22 + β + jja

1
22 ≥ 0 for i, j = 1, . . . , n2

(15b)

and

Ar
kl ∈ R

nk×nl

+ for k, l = 1, 2; k 6= l; r = 0, 1;

Bk ∈ R
nk×m
+ , Ck ∈ R

p×nk

+ for k = 1, 2;

D ∈ R
p×m
+ .

(15c)

Proof. The fractional 2D Lyapunov system (8) is positive if

and only if the equivalent fractional 2D system (10) is posi-

tive. By the theorem of the positivity of fractional 2D linear

system described by the Roesser model [28] we have
[

A11 A12

A21 A22

]

= R
N2×N2

+ ,

[

B1

B2

]

= R
N2×(N ·m)
+ ,

[

C1 C2

]

= R
(N ·p)×N2

+ , D = R
(N ·p)×(N ·m)
+ .

Using (12) we obtain (15).

5. Asymptotic stability of fractional

2D Lyapunov systems

Definition 5. The positive fractional Lyapunov system (7) is

called asymptotically stable if for any bounded boundary con-

ditions Xh
0j ∈ R

n1×N
+ for j ∈ Z+, Xv

i0 ∈ R
n2×N
+ for i ∈ Z+

and zero inputs Uij = 0 for i, j ∈ Z+ we have

lim
i,j→∞

[

Xh
ij

Xv
ij

]

= 0. (16)
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Theorem 3. The positive fractional 2D Lyapunov system (7)

is asymptotically stable if and only if one of the following

equivalent conditions is satisfied:

1. the positive 1D system

xi+1 =

[

Ã11 A12

A21 Ã22

]

xi (17)

where

Ãkk =
(

A0
kk + Ink

)

⊗IN + Ink
⊗

[

A1
11 A1

12

A1
21 A1

22

]T

,

for k = 1, 2

(18)

and A12, A21 are given by (12) is asymptotically stable,

2.
∣

∣λi + µj

∣

∣ < 1 for i, j = 1, 2 . . . , N (19)

where λ1, λ2, . . . , λN are the eigenvalues of the matrix
[

A0
11 + In1

A0
12

A0
21 A0

22 + In2

]

and µ1, µ2, . . . , µN are the eigenvalues of the matrix
[

A1
11 A1

12

A1
21 A1

22

]

3. there exists a strictly positive matrix Λ ∈ R
N×N
+ such that

[

A0
11 A0

12

A0
21 A0

22

]

Λ + Λ

[

A1
11 A1

12

A1
21 A1

22

]

< 0. (20)

Proof. By Lemma 4, the asymptotic stability of the fractional

2D Lyapunov system is equivalent to the asymptotic stabil-

ity of the system (10). Note, that this system is the system

with delays. The number of delays increases for i, j → ∞.

In [39, 40] it was shown that the asymptotic stability of the

positive discrete-time linear system with delays is independent

of the number and values of the delays and depends only on

the sum of the state matrices. Therefore, the asymptotic sta-

bility of the positive 2D fractional system (10) is equivalent

to the asymptotic stability of the positive 1D standard system

with the matrix












A11 −
∞
∑

k=2

cα(k)I(N ·n1) A12

A21 A22 −

∞
∑

l=2

cβ(l)I(N ·n2)













. (21)

Using Lemma 3 and from (4b), (5b) we obtain

∞
∑

k=2

cα(k) = α − 1 and

∞
∑

k=2

cβ(k) = β − 1. (22)

Substitution of (22) into (21) yields (17).

It is well-known that 1D discrete-time system (17) is as-

ymptotically stable if and only if all eigenvalues of the sys-

tem matrix have moduli less than one. Using Lemma 2 we

obtain (19).

In [41], it was shown that the positive 1D system (17)

is asymptotically stable if and only if there exists a strictly

positive vector λ ∈ R
N
+ such that

[

Ã11 − I(N ·n1) A12

A21 Ã22 − I(N ·n2)

]

λ < 0

Applying Lemma 1 and from (18) we obtain (20).

Let us denote
[

Ar
11 Ar

12

Ar
21 Ar

22

]

=
[

ar
kl

]

k,l=1,...,N
for r = 0, 1 (23)

and

Λ =
[

λkl

]

k,l=1,...,N
. (24)

Theorem 4. The positive fractional 2D Lyapunov system (7)

is asymptotically stable only if

a0
kk + a1

ll ∈
[

−α, 0
)

for k = 1, 2, . . . , n1; l = 1, 2, . . . , N ;

a0
kk + a1

ll ∈
[

−β, 0
)

for k = n1 + 1, n1 + 2, . . . , N ; l = 1, 2, . . . , N

(25)

Proof. The inequality (20) can be written in the form

N
∑

j=1

a0
kjλjl +

N
∑

j=1

λkja
1
jl =

N
∑

j=1

j 6=k

a0
kjλjl +

N
∑

j=1

j 6=l

λkja
1
jl+

+ (a0
kk + a1

ll)λkl < 0 for k, l = 0, 1, . . . , N.

(26)

By Theorem 2 we have that the inequality (26) can be satisfied

only if the conditions of Theorem 4 are hold.

Example 1. Consider the fractional 2D Lyapunov system (7)

for α = 0.8, β = 0.5 with matrices

[

A0
11 A0

12

A0
21 A0

22

]

=

[

−0.5 0

0.3 −0.2

]

,

[

A1
11 A1

12

A1
21 A1

22

]

=

[

−0.2 0.1

0 −0.1

]

, B1 = B2 = 0.

(27)

By Theorem 2 this system is positive since the matrices

Ar
11, A

r
22 for r = 0, 1 are Metzler matrices satisfying

11a
0
11 + α + 11a

1
11 = 0.1 > 0,

11a
0
11 + α + 11a

1
22 = 0.2 > 0,

11a
0
22 + β + 11a

1
11 = 0.1 > 0,

11a
0
22 + β + 11a

1
22 = 0.2 > 0

and the remaining matrices of the system have all nonnegative

entries.

Applying Theorem 3 we obtain the following results.
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1. The 1D system with the matrix

[

Ã11 A12

A21 Ã22

]

=











0.3 0 0 0

0.1 0.4 0 0

0.3 0 0.6 0

0 0.3 0.1 0.7











is asymptotically stable since this matrix has eigenvalues

with moduli |z1| = 0.7, |z2| = 0.4, |z3| = 0.6, |z4| = 0.3.

2. Taking into account that the matrix
[

A0
11 + In1

A0
12

A0
21 A0

22 + In2

]

=

[

0.5 0

0.3 0.8

]

has eigenvalues λ1 = 0.8, λ2 = 0.5 and the matrix
[

A1
11 A1

12

A1
21 A1

22

]

=

[

−0.2 0.1

0 −0.1

]

has eigenvalues µ1 = −0.2, µ2 = −0.1 we obtain

|λ1 + µ1| = 0.6 < 1, |λ1 + µ2| = 0.7 < 1,

|λ2 + µ1| = 0.3 < 1, |λ2 + µ2| = 0.4 < 1.

3. There exists strictly positive matrix

Λ =

[

1 1

1 2

]

such that the inequality
[

A0
11 A0

12

A0
21 A0

22

]

Λ + Λ

[

A1
11 A1

12

A1
21 A1

22

]

=

=

[

−0.7 −0.5

−0.1 −0.2

]

< 0

holds.

Therefore, by Theorem 3 the fractional 2D Lyapunov system

(7) with matrices (27) is asymptotically stable.

Note that the conditions of Theorem 4 are also met since

a0
11 + a1

11 = −0.7 ∈
[

−0.8, 0
)

,

a0
11 + a1

22 = −0.6 ∈
[

−0.8, 0
)

,

a0
22 + a1

11 = −0.4 ∈
[

−0.5, 0
)

,

a0
22 + a1

22 = −0.3 ∈
[

−0.5, 0
)

.

6. Concluding remarks

The notion of a positive 2D fractional Lyapunov system de-

scribed by the Roesser model has been introduced. For this

model necessary and sufficient conditions for positivity and

asymptotic stability have been established. It has been shown

that checking the asymptotic stability of positive fractional 2D

Lyapunov systems can be reduced to testing the stability of

corresponding positive standard 1D discrete-time linear sys-

tems. The considerations have been illustrated by numerical

example.

An open problem is extension of the considerations for

2D Lyapunov systems described by the models with structure

similar to the Kurek model [4].
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