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Numerical solutions of magnetohydrodynamic equations
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Abstract. In this paper we review several mathematical aspects in numerical methods for magnetohydrodynamic equations. The intrinsic

complexity and the requirements of the selenoidity condition make numerical solutions of these equations a formidable task. We present

results of advanced numerical simulations for a complex system, which reveal that the numerical methods cope very well with this task.
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1. Introduction

The magnetohydrodynamic (MHD) theory is the simplest self-

consistent model describing the macroscopic behavior of the

plasma. Despite of that the full nonlinear equations are so

complex that usually significant simplifications are necessary

to yield analytically tractable problems. As a result, the MHD

equations usually require numerical treatment. Finite-volume

methods [1] are one of several different techniques available

to solve the MHD equations. They are simple to implement,

easily adaptable to complex geometries, and well suited to

handle nonlinear terms. Like solutions of nonlinear equations,

perturbations described by the MHD equations may result in

large gradients which are difficult for numerical modeling. The

use of standard numerical schemes of second-order accuracy

or higher (e.g., the Lax-Wendroff method) generates spurious

oscillations which destroy monotonicity of the solution [2].

Lower-order schemes [3] are generally free of oscillations,

but they are too dissipative [1]. Therefore, a development of

more advanced schemes, which could adequately represent

the large gradient profiles, was required.

Due to the intrinsic complexity of the MHD equations,

the development of numerical techniques to solve these equa-

tions was slower than for hydrodynamics (HD). For a long

time most numerical schemes were based on methods depen-

dent on artificial viscosity to represent adequately shocks [4].

Although these schemes were successfully applied in the

past [5], recent experience with fully conservative, high-order

upwind hydrodynamic codes found latter to be superior in

many applications [6]. It is therefore natural to extend such

schemes to solve the MHD equations. However, converting

a HD code to a MHD code is a difficult task. The difficul-

ty results from the fact that the MHD equations possess new

families of waves such as switch-on fast shocks, switch-off fast

rarefactions, switch-off slow shocks, and switch-on slow rar-

efactions [7, 8]. It is also possible to obtain compound waves

of either fast or slow waves. This exerts a considerable im-

pact on a performance of the algorithms which are required to

provide accurate capture of the entire range of such structures

[9]. The other difficulty is that the MHD equations contain

the magnetic field which has to satisfy the divergence-free

constraint. A local nonzero divergence of magnetic field indi-

cates the existence of magnetic monopoles within the numeri-

cal cell, which leads to non-conservation of the magnetic flux

across its surface. Accumulation of the numerical errors asso-

ciated with evolving the magnetic field components can lead

to violation of this constraint, causing an artificial force paral-

lel to the magnetic field, and eventually can force termination

of the simulations.

Despite of the above reported problems many numeri-

cal schemes were developed for the MHD equations. These

schemes reveal either conservative or non-conservative prop-

erties of the equations. The aim of this paper is to review some

recently devised numerical methods for solving the MHD

equations, which are illustrated in Sec. 2. Some problems

present in numerical schemes for the MHD equations are dis-

cussed in Sec. 3. Results of numerical simulations of impul-

sively generated waves in a strongly stratified atmosphere are

presented in Sec. 4. This paper is completed by summary of

the main results.

2. MHD equations

The MHD equations can be written in the following form:

∂̺

∂t
+ ∇ · (̺V) = 0, (1)

̺
∂V

∂t
+ ̺ (V · ∇)V = −∇p +

1

µ
(∇× B) × B + ̺g, (2)

∂B

∂t
= ∇× (V × B), (3)

∇ ·B = 0, (4)

∂p

∂t
+ ∇ · (pV) = (1 − γ)p∇ · V, (5)

p =
kB

m
̺T. (6)

Here ̺ is mass density, V is flow velocity, B is the mag-

netic field, p is gas pressure, γ = 5/3 is the adiabatic index,

g is gravitational acceleration, T is temperature, m is mean

particle mass and kB is the Boltzmann’s constant.
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It is noteworthy that the set of Eqs. (1)–(6) consists of 10
scalar equations which contain 8 unknowns. Equation (4) is

the selenoidal condition which constraints the system by im-

posing the absence of magnetic monopoles. Equation (6) is

the ideal gas law which relates ̺, p and T . Therefore having

known two quantities we can determine from this law third

one as, for instance, T = T (̺, p).

2.1. Conservative form of the MHD equations. The MHD

Eqs. (1)–(5) can be written in the conservative form

q,t + ∇ ·F = 0 (7)

with the selenoidal condition

∇ ·B = 0. (8)

Here the state vector

q = (̺, ̺v,B, E)T (9)

and in the gravity-free case, g = 0, the flux

F =

(
̺v, ̺vv + I

(
p +

B2

2

)
− BB,vB− Bv,

(
E + p +

B2

2

)
v − B(v · B)

)T

,

(10)

where

E =
p

γ − 1
+ ̺

v2

2
+

B2

2
(11)

is the total energy density, I is the 3 × 3 identity matrix,

vv stands for the 3 × 3 tensor vivj , and without loosing any

generality B is replaced by B
√

µ.

The momentum equation of (7) can be rewritten as

(̺v),t + ∇ · (̺vv) + ∇
(

p +
B2

2

)
−

(B · ∇)B = B(∇ ·B).

(12)

Clearly the term on the right hand side of this equation should

be equal to zero. Any ∇ · B 6= 0 results in an unphysical

force that is parallel to B and that exerts a destabilizing effect

on numerical algorithms [10]. A remedy is to add the term

−B(∇·B) to the right hand side of Eq. (12) [10] which leads

to a non-conservative form of the MHD equations.

In the finite volume method the state of Eq. (9) is advanced

in time by evaluating the fluxes of Eq. (10) at the interfaces

between neighboring numerical cells. These fluxes must con-

tain some dissipation which is introduced into the system by

a flux limiter which minimizes oscillations [1, 2, 11]. To elim-

inate these oscillations, a spatially averaged primitive state,

q̃ = (̺,v,B, E)T (13)

may be required at the interfaces [12–15].

2.2. Non-conservative equations. The MHD equations can

be rewritten in the non-conservative form (e.g., [16])

q,t + ∇ · F = −∇ ·B(0,B,v,v ·B)T , ∇ ·B = 0. (14)

The induction equation can now be expressed as

B,t + v(∇ ·B) + B(∇ · v) − (B · ∇)v = 0. (15)

Hence by taking the divergence of both sides and using mass

continuity equation, we get

(∇ ·B
̺

)

,t

+ v · ∇
(∇ ·B

̺

)
= 0. (16)

As the above equation advects the quantity ∇ ·B/̺ we infer

that a new divergence wave propagates with the speed v. As a

result, a partially conservative form of the multi-dimensional

equations, obtained by adding terms proportional to ∇ · B,

adds an eighth wave that advects ∇ ·B as a passive scalar.

The original MHD equations can be written in the quasi-

linear form

q,t + Aq,x = 0 (17)

with

q = (̺, ̺v,B, p)T , (18)

A=




vx ̺ 0 0 0 0 0 0

0 vx 0 0 −
Bx
̺

By

̺

Bz
̺

1

̺

0 0 vx 0 −
By

̺
−

Bx
̺

0 0

0 0 0 vx −
Bz
̺

0 −
Bx
̺

0

0 0 0 0 0 0 0 0

0 By −Bx 0 −vy vx 0 0

0 Bz 0 −Bx −vz 0 vx 0

0 γp 0 0 (γ − 1)v · B 0 0 vx




.

(19)

Note that a consequence of (∇ · B),t = 0 the 5-th row from

the top of A contains zeros. As a result of that, we infer that

the 8-th eigenvalue of A is zero, i. e.

w8
,t + 0w8

,x = 0 (20)

with w8 = Bx.

Equation (14) for q = q can be rewritten as

q,t + Aq,x = −




0 0 0 0 0 0 0 0

0 0 0 0 Bx
̺

0 0 0

0 0 0 0
By

̺
0 0 0

0 0 0 0 Bz
̺

0 0 0

0 0 0 0 vx 0 0 0

0 0 0 0 vy 0 0 0

0 0 0 0 vz 0 0 0

0 0 0 0 (γ − 1)v · B 0 0 0




q,x.

(21)

Here A is the matrix defined by Eq. (19). The above equation

can be rewritten in the quasilinear form

q,t + Aq,x = 0 (22)
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with

A =




vx ̺ 0 0 0 0 0 0

0 vx 0 0 0
By

̺
Bz

̺
1

̺

0 0 vx 0 0 −
Bx

̺
0 0

0 0 0 vx 0 0 −
Bx

̺
0

0 0 0 0 vx 0 0 0

0 By −Bx 0 0 vx 0 0

0 Bz 0 −Bx 0 0 vx 0

0 γp 0 0 0 0 0 vx




.

(23)

It is clear that the zero row has disappeared and the eight

wave now satisfies the advection equation

w8
,t + vxw8

,x = 0. (24)

As this wave carries non-zero magnetic field divergence it is

nicknamed the divergence wave.

2.3. Eigenvalues and eigenvectors of the Jacobian matrix.

The Jacobian matrix A has the eigenvalues (λ) and left (l)

and right (r) eigenvectors which correspond to the following

waves [16]:

(a) four magnetoacoustic waves with:

λ± = vx ± c±, (25)

l± = N±




0

±̺c±

∓BxBy̺c±
̺c2

± − B2
x

∓BxBz̺c±
̺c2

± − B2
x

0

By̺c2
±

̺c2
± − B2

x

Bz̺c2
±

̺c2
± − B2

x

1




T

,

r± = N±




̺

±c±

∓ BxByc±
̺c2

± − B2
x

∓ BxBzc±
̺c2

± − B2
x

0
By̺c2

±

̺c2
± − B2

x

Bz̺c2
±

̺c2
± − B2

x

γp




.

(26)

Here N± stands for a normalization factor such that l±r± =
1. This factor is too complicated to be printed here. The su-

perscript ± corresponds to the fast (c+) and slow (c−) mag-

netoacoustic wave speeds;

(b) two Alfvén waves with:

λa = vx ± cA, (27)

la =
1

2
√

N

(
0, 0,−Bz, By, 0,±Bz√

̺
,∓By√

̺
, 0

)
, (28)

ra =
1√
N

(0, 0,−Bz, By, 0,±Bz

√
̺,∓By

√
̺, 0)

T
. (29)

Here N = 1/(B2
y +B2

z) is a normalized factor and the Alfvén

speed cA = Bx/
√

̺;

(c) one entropy wave with:

λe = vx, (30)

le =

(
1, 0, 0, 0, 0, 0, 0,

−1

c2
s

)
, (31)

re = (1, 0, 0, 0, 0, 0, 0, 0)T . (32)

Here the entropy s is defined as

s = log

(
p

̺γ

)
; (33)

(d) one divergence wave with:

λdiv = vx, (34)

ldiv = (0, 0, 0, 0, 1, 0, 0, 0), (35)

rdiv = (0, 0, 0, 0, 1, 0, 0, 0)T . (36)

The Alfvén eigenvectors become singular when

B⊥ ≡
√

B2
y + B2

z → 0. (37)

The magnetoacoustic eigenvectors are singular for c2
± → c2

A,

c2
+ → c2

−. In the latter limit the wave speeds c−, c+, and cA

coincide. One has to deal with these singularities before edit-

ing any code. The first solution to this problem was provided

by [12]. Another approach was made by [17]. We describe it

in some details in the text below.

Let us define

βy =
By

B⊥

, βz =
Bz

B⊥

. (38)

Then, the Alfvén eigenvectors can be written as follows:

la± =
1

2

(
0, 0,±βz,∓βy, 0,

− βzsgn(Bx)√
̺

,
βysgn(Bx)√

̺
, 0

)
,

(39)

ra± = (0, 0,±βz,∓βy, 0,

− βz

√
̺sgn(Bx), βy

√
̺sgn(Bx), 0)T .

(40)

The singularities in the Alfvén speed can be fixed by imply-

ing [12]

lim
B⊥→0

βy = lim
B⊥→0

βz =
1√
2
. (41)
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An elegant way of implementing the above limit into a code

is to set

βy =
By + ǫ

B⊥ + ǫ
√

2
, ǫ ≪ 1. (42)

Now, we define

α2
− =

c2
s − c2

−

c2
+ − c2

−

, α2
+ =

c2
+ − c2

s

c2
+ − c2

−

. (43)

A lengthy algebra leads to the eigenvectors for the magnetoa-

coustic waves [18]

l+ =
1

2c2
s




0

±α+c+

∓α−c−βy sgn(Bx)

∓α−c−βz sgn(Bx)

0

α−csβy/
√

̺

α−csβz/
√

̺

α+/̺




T

,

r+ =




α+̺

±α+c+

∓α−c−βy sgn(Bx)

∓α−c−βz sgn(Bx)

0

α−csβy
√

̺

α−csβz
√

̺

α+̺c2
s




,

(44)

l− =
1

2c2
s




0

±α−c−

±α+c+βy sgn(Bx)

±α+c+βz sgn(Bx)

0

−α+csβy/
√

̺

−α+csβz/
√

̺

α−/̺




T

,

r− =




α−̺

±α−c−

±α+c+βy sgn(Bx)

±α+c+βz sgn(Bx)

0

−α+csβy
√

̺

−α+csβz
√

̺

α−̺c2
s




.

(45)

These eigenvectors contain only the triple umbilic singularity

which occurs at c2
+ = c2

− = c2
A when B⊥ → 0. The triple

umbilic point occurs, where the fast, slow, and Alfvén speeds

coincide. It can be shown that around this point

α− = cos
α

2
+ δ−, α+ = sin

α

2
+ δ+ (46)

with

tan α ≡ Bx − cs
√

̺

B⊥

. (47)

The errors δ± satisfy

|δ±| ≤
B⊥

4cs
√

̺
. (48)

For B⊥ = 0 it can be proved that α− = H(Bx − cs
√

̺) and

α+ = H(cs
√

̺−Bx), where H is the Heaviside function [18].

3. Difficulties with numerical solutions

of the MHD equations

An important problem in developing a scheme for the MHD

equations is that these equations are neither strictly hyperbol-

ic nor strictly convex [12]. The MHD equations form a non-

strictly hyperbolic system as some eigenvalues may coincide

at some points and that compound wave structures, involving

both shocks and rarefactions, may sometimes develop. It oc-

curs that when the magnetic field components disappear the

eigenvectors become singular. By renormalizing the eigenvec-

tors, these singularities can be removed [8, 12].

Contrary to the hydrodynamic case, the Riemann prob-

lem [1] for the ideal MHD is not completely consistent and

unique as one of the eigenvalues of the Jacobian matrix is

zero, see Eq. (20). This zero eigenvalue is non-physical as the

eigenvalues should appear either singly as the x-component of

the flow, vx, or in pairs symmetric about vx. Physical eigen-

values and eigenvectors are given by Eqs. (25)–(36).

The zero eigenvalue leads to numerical difficulties asso-

ciated with nonzero divergence of the magnetic field. Con-

sequently, characteristics can become degenerate, depending

on the orientation of the magnetic field. It turns out that the

solution of this problem is to consider a form of the equations

that is not strictly in a conservation form [16]. See Eq. (14).

3.1. Divergence cleaning methods. There are several im-

portant issues in developing a new MHD code. One of these

is ensuring ∇ · B = 0 [13, 19, 20]. Clearly, the discretiza-

tion errors lead to non-zero divergence over time. Physically,

this means that nothing maintains conservation of a magnetic

flux in the Gauss’ law. Several remedies have been proposed.

Dedner et al. [21] proposed a method of adding a diffusion

term in the induction equation that makes the divergence-free

error diffuse away from the source. By this term magnetic

monopoles are locally suppressed but they are not completely

eliminated [14, 15, 21], among others, utilized a numerical

technique called constraint transport to transform the induc-

tion equation in such a way that it maintains vanishing diver-

gence of the field components to within machine round-off

error. This can be done by placing field components at ap-

propriate locations of a numerical cell. This technique was

implemented in a number of numerical codes (e.g., [4, 13–

15, 22, 23]).

Here we list few traditional approaches to enforce the

divergence-free constraint:

222 Bull. Pol. Ac.: Tech. 59(2) 2011



Numerical solutions of magnetohydrodynamic equations

(a) a direct magnetic flux function, B = ∇×A, approach.

Obviously, the divergence-free condition is satisfied automati-

cally. The difficulty with this approach is that a representation

of the Lorentz force requires taking a second derivative of

the flux function, A. That forces an application of the higher-

order numerical schemes. Even then, one can encounter seri-

ous problems due to anomalous Lorentz force which apparent-

ly reveals itself in the neighborhood of large spatial gradients;

(b) a projection scheme which forces the divergence-free

constraint by solving a Poisson equation to subtract off the

portion of the magnetic field that leads to non-zero diver-

gence [24]. Suppose that magnetic field has a non-zero di-

vergence, ∇ · B 6= 0. We can fix this problem by adding

a correction term Bc such that

∇ · (B + Bc) = 0. (49)

Clearly, to have the Lorentz force zero Bc must not generate

new current jc =
1

µ
(∇× Bc) = 0. Hence,

∇× Bc = 0, (50)

from which we infer that

Bc = ∇φ. (51)

Here φ is a scalar potential. Substituting Eq. (51) into Eq. (49)

we obtain

∇2φ = −∇ · B. (52)

This is the Poisson equation which has to be solved in the

whole computational domain. The resulting solution φ should

be used to evaluate Bc according to Eq. (51) and this to clean

the magnetic field B. However, this method has its disadvan-

tages. Its major drawback is that it requires a global solution

to the elliptic Eq. (52) which is computationally expensive.

Moreover, the global nature of the cleaning procedure violates

the hyperbolicity of the MHD equations in regions where the

flow is supersonic and superalfvénic [25];

(c) a staggered-grid approach in which the divergence-

free constraint is satisfied by placing the magnetic field com-

ponents at the centroids of appropriate cell faces and rem-

nant plasma variables such as mass, momentum and energy

are stored at the centroids of computational cells. On such

a grid the MHD equations can be approximated in a way

that preserves selenoidality of discrete magnetic field [4, 14,

15, 22, 23]. This approach comes from incompressible fluid

mechanics where the velocity field must be kept divergence-

free. However, staggered grids are expensive for storage and

handling on meshes with hanging nodes that are common to

unstructured grid methods;

(d) the truncation-level error method which was developed

by Powell [16] and used by [26, 27], and [28]. This approach

relies on an addition to the original set of the MHD equations

the source term that is proportional to ∇ · B. See Eq. (14).

By that way any local ∇·B that is created is convected away

in accordance to Eq. (16). It was found by Janhunen [29] that

in the case when the contribution to the total energy from

the fluid pressure is small in comparison to the magnetic and

kinetic energies this approach may lead to an unphysical inter-

mediate state with negative fluid pressure. As a consequence

of that computing the pressure from the conserved quantities

may involve the difference between two nearly equal terms

and the numerical errors result. Janhunen [29] showed that

this problem can be overcome by discarding the source terms

in the energy and momentum equations, so that Eq. (14) be-

comes

q,t + ∇ ·F = −∇ · B(0, 0,v, 0)T , ∇ · B = 0; (53)

(e) a parabolic divergence cleaning method which is based

on a modified system in which the divergence constraint is

coupled with the conservation laws by introducing a gener-

alized Lagrange multiplier. Such formulation results in the

divergence errors transported to the domain boundaries with

the maximal admissible speed while they are damped simul-

taneously. See [23] for details;

(e) the unstaggered constraint transport method was de-

veloped by [13]. In this method all quantities, including all

components of the magnetic field and magnetic flux func-

tion which expresses the magnetic field, are treated as cell-

centered. A high-resolution wave propagation scheme for

evolving the magnetic flux function was developed. In a re-

cent extension of the method to a 3D case this scheme results

in the transport equation that must be solved for the magnetic

flux function is only weakly hyperbolic and the problem of

weak hyperbolicity was handled [20].

4. Numerical results

As a consequence of complexity of MHD waves in highly

inhomogeneous plasma it is necessary to understand simpler

phenomena which may play the role of elementary building

blocks in the construction of a more elaborated theory. As a

result, our strategy is to develop simpler models at the ini-

tial stage of the research and progressively extend and gen-

eralize them to more complex models at subsequent stages.

Therefore in this study, we assume that at the equilibrium

the solar atmosphere is settled in a two-dimensional (2D) and

still (V = 0) environment. At the equilibrium, the pressure

gradient force is balanced by the gravity, that is

−∇p + ̺g = 0. (54)

Here we set g = 2.74 · 102 m s−2. Using the equation of

state, given in Eq. (6), and the y-component of hydrostatic

pressure balance indicated by Eq. (54), we obtain equilibrium

gas pressure and mass density as

p(y) = p0 exp


−

y∫

yr

dy
′

Λ(y′)


 , (55)

̺(y) =
p(y)

gΛ(y)
. (56)

Here

Λ(y) = kBT (y)/(mg) (57)
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is the pressure scale-height, and p0 denotes the gas pressure

at the reference level, y = yr, which we choose and set fixed

as yr = 10 Mm.

We adopt a realistic temperature profile T(y) for the solar

atmosphere [30], which is displayed in Fig. 1. Note that T
attains a value of about 5700 K at the top of the photosphere

which corresponds to y = 0.5 Mm. At higher altitudes T(y)
falls off until it reaches its minimum of 4350 K at the altitude

of y ≃ 0.95 Mm. Higher up T(y) grows gradually with height

up to the transition region which is located at y ≃ 2.7 Mm.

Here T(y) experiences a sudden growth up to the coronal

value of 1.5 MK at y = 10 Mm. Having specified T(y) with

a use of Eqs. (55) and (60) we can obtain mass density and

gas pressure profiles.

Fig. 1. Equilibrium temperature (in Kelvins) profile vs. height y (in

Mm) for the solar atmosphere

For the initial magnetic field, we adopt the model which

was devised by Priest [31]. In this model, we assume that

magnetic field is current-free (∇ × B = 0) and potential

(B = ∇× (Aẑ)) with the magnetic flux function

A(x, y) = B0ΛB cos (x/ΛB)exp[−(y − yr)/ΛB] . (58)

Here B0 denotes the magnetic field at y = yr and ΛB = 2L/π
is the magnetic scale-height. We choose 2L = 30 Mm which

correspond to the size of a supergranular cell. It is noteworthy

that the magnetic field is predominantly vertical at supergran-

ular boundaries (x = 0, x = 2L), while it reveals a horizontal

canopy structure at the supergranular center (x = L).

A magnitude of magnetic field is chosen to specify at

y = yr the plasma β = 2µp/B2 = 2c2
s/(γc2

A) equal to 0.048.

Here the sound speed cs =
√

γp/̺ and the Alfvén speed,

cA =
√

B2/(µ̺). Figure 2 illustrates vertical profile of the

plasma β which attains a value of about 0.015 around the

transition region, y ≃ 2.7 Mm, while it grows with depth

reaching a value of about 6 at y = 1.5 Mm that is located

within the solar chromosphere. This growth results from the

abrupt increase of gas pressure there.

Fig. 2. The plasma β profile vs. height y

We excite waves in the above described solar atmosphere

by launching initially, at t = 0, the Gaussian pulse in a vertical

component of velocity Vy, i.e.

Vy(x, y, t = 0) = Av exp

[
−x2 + (y − y0)

2

w2

]
. (59)

Here Av = 5 km s−1 is the amplitude of the pulse, y0 =
0.5 Mm is its vertical position and w = 0.3 Mm is its width.

Equations (1)–(6) are solved numerically using the code

FLASH [27] which implements a second-order unsplit Go-

dunov solver and Adaptive Mesh Refinement (AMR). We set

the simulation box as (−15, 15) Mm ×(−0.5, 29.5) Mm and

fix at all four boundaries of the simulation region the plasma

quantities to their equilibrium values. In our studies we use

AMR grid with a minimum (maximum) level of refinement

blocks set to 5 (8). The refinement strategy is based on con-

trolling numerical errors in a gradient of mass density. Such

settings result in an excellent resolution of steep spatial pro-

files, which significantly reduce numerical diffusion within

the simulation region.

Figure 3 illustrates spatial profiles of log̺ and veloci-

ty vectors at t = 250 s (left panel) and t = 1500 s (right

panel). The initial pulse splits in a usual way into counter-

propagating waves. The wave propagating upwards grows in

its amplitude as a result of the rapid decrease of mass den-

sity in the chromosphere. As a consequence of that a shock

results in. Photospheric and chromospheric plasma is lifted

up by underpressure which settles in below the shock. The

pressure gradient force overwhelms gravity and it pushes the

photospheric and chromospheric material towards the solar

corona. This scenario is clearly seen at t = 250 s. At a later

time the plasma becomes attracted by gravity and as a result is

falls off towards the low layers. However, the secondary shock

which results from the original pulse works against this fall off

as it lifts up the photospheric and chromospheric plasma. As

a result, a complex bi-directional flows arises. The whole sce-

nario bares many features of solar spicules. It is noteworthy

that the magnetic field-free case, B = 0, was recently dis-

cussed by Gruszecki et al. [32] who revealed similar features

of quasi-periodic shocks traveling from the chromosphere to

the corona. However, in this hydrodynamic case spatial wave

profiles were more symmetric in space and spicules were not

observed.
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Fig. 3. Mass density (colour maps, log scale) and velocity (arrows) profiles at t = 250 s (left panel) and t = 1500 s (right panel). Mass

density and velocity are expressed in units of 10
−12 kg m−3 and 1 Mm s−1, respectively

Figure 4 displays time-signatures of the vertical compo-

nent of velocity for the case of Fig. 3. This velocity is col-

lected in time at the detection point (x = 0, y = 20) Mm.

The arrival of the shock front to the detection point occurs at

t ≃ 200 s. The second, third, and fourth shocks fronts reach

the detection point at t ≃ 350 s, t ≃ 650 s, and t ≃ 950 s,

respectively. This secondary shock results from the nonlinear

wake which lags behind the leading signal. In the linear ap-

proximation and magnetic-free case, the wake oscillates with

the acoustic cut-off frequency

Ωac =
cs

2Λ

√

1 + 2
dΛ

dy
. (60)

Fig. 4. The plasma β profile vs. height y

This scenario consists the building block of one-

dimensional (1D) rebound shock model of [33] who proposed

that the secondary shock (or rebound shock) lifts up the tran-

sition region higher than the first shock thereby resulting in

a spicule appearance at observed heights. The process is well

studied in the frame of 1D numerical simulations. Howev-

er, our 2D numerical simulations introduce new interesting

features in comparison to the 1D rebound shock scenario.

There are few conclusions which result from our simula-

tions:

a) according to the theory of Klein-Gordon equation an ini-

tial pulse generates a wave front and a trailing wake which

oscillates with acoustic cut-off frequency [33];

b) even a small amplitude initial pulse launched at the top

of the photosphere exhibits a tendency to generate shocks.

These shocks result from a nonlinear wake.

5. Summary

This paper presents several mathematical aspects in numer-

ical methods for magnetohydrodynamic equations. Although

this presentation is far from complete the emphasis is on the

methods which are the most effective and the best known to

the author.

There are several conditions that numerical schemes

should satisfy: accuracy and speed of numerical simulations,

adequate representation of complex flows and steep profiles,

lack of generation of spurious oscillations as well as robust-

ness. A computer code is called robust if it has the virtue of

giving reliable results to a wide range of problems without

needing to be retuned. Numerical schemes such as shock-

capturing schemes described in this paper satisfy these con-

ditions.
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Existing numerical models such as was used in Sec. 4

with an adaptation of the FLASH code demonstrate the feasi-

bility of fluid simulations in obtaining at least qualitative and,

to some extent, quantitative features in the magnetized flu-

id. With continued improvements in computational methods

and computer resources, the usefulness and capability of the

numerical approach should continue to improve.
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