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Abstract. In this paper we present implementation of the MUSCL-Hancock method for numerical solutions of the Euler equations. As a result
of the internal complexity of these equations solving them numerically is a formidable task. With the use of the original C++ code, we
developed and presented results of a numerical test that was performed. This test shows that our code copes very well with this task.
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1. Introduction

In this paper we concentrate on a first-order, one-dimensional
hyperbolic system, a related form of hyperbolic equations,

q,t + f(q),x = 0. (1)

Here we specify a state vector q and a flux function f as

q = [q1, . . . , qm]T, f = [f1, . . . , fm]T,

m = 1, 2, . . . ,
(2)

where T denotes the vector transposition, and the derivatives
with the respect to time t and the spatial coordinate x are
expressed as

q,t ≡
∂q

∂t
, f,x ≡ ∂f

∂x
. (3)

The above equation is called hyperbolic if the Jacobian,

A =
∂f

∂q
, has real eigenvalues and is diagonalizable, i.e., has

a complete set of linearly independent eigenvectors. Among
others, examples of hyperbolic equations are the Euler equa-
tions which consist a set of three nonlinear equations (see
Sec. 3). Because of their complexity, usually they cannot be
solved analytically and therefore they must be calculated nu-
merically. A numerical approach requires a model, which can
be developed from a set of discretized differential equations
(see Sec. 3).

These days, there is a number of numerical methods that
attempt to solve hyperbolic equations. Godunov-type methods
are considered as one of the most successful. These meth-
ods originate from the upwind scheme which was developed
by Godunov [1]. In his approach a numerical approximation
to a solution of hyperbolic equations is computed by means
of a scheme which is derived from the integral form of the
hyperbolic equations (see Eq. (5)). The original scheme of

Godunov [1] uses the solution of the Riemann problem with
piece-wise constant initial data within a numerical cell to com-
pute the upwind numerical flux. The Riemann problem is de-
fined as the initial problem with conditions represented by two
constant states separated by a discontinuity [2]. At each jump
of such a function a Riemann problem is solved for some
time interval to fulfill the stability constraint. The resulting
solution is averaged over the grid cells to get a piece-wise
constant function, approximating the solution at the new time
level.

Godunov [1] developed the first-order-accurate upwind
scheme among a family of simple discretizations. It is note-
worthy that Godunov [1] proved the theorem in which he
stated that if an upwind scheme preserves the monotonici-
ty of the solution this scheme is at most first-order accurate.
This result could discourage anyone attempting to improve
his scheme. Despite of that, the extension to second-order of
accuracy in time and space was carried out by using a non-
oscillatory piece-wise linear representation of data in a nu-
merical cell. As a result of these efforts, nine years later the
IBM researcher, J. Fromm, developed a higher-order scheme
of low level of erroneous oscillations. By combining schemes
with predominantly both positive and negative phase errors,
Fromm received low dispersive errors [2]. Later on Kolgan [3]
proposed to reduce spurious oscillations by applying the so-
called principle of minimal values of derivatives, producing in
this manner a non-oscillatory Godunov-type scheme of second
order spatial accuracy. Van Leer [4] developed Monotone Up-
stream Scheme for Conservation Laws (MUSCL) in which he
included a linear representation of a solution within each nu-
merical cell. MUSCL was greatly simplified in 1980 by Steve
Hancock but the modified method was actually published in
1984 by van Leer [5] and since that time it bears a com-
mon name MUSCL-Hancock method. See also van Leer [6].
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A variant of the MUSCL-Hancock method was proposed by
Falle [7]. This method was proved to be stable by Berthon
[8, 9] and it was used in a number of applications, see for
instance [10, 11], and references therein.

The goal of this paper is to present and adopt the MUSCL-
Hancock method in numerical solutions of hyperbolic equa-
tions. The reason we pay our attention on this method is
its robustness and accurate representation of complex solu-
tions [10, 11]. We realize our aim by reviewing theory of
the Euler equations in the following section. Here we intro-
duce the Euler equations and specify the Riemann problem
for them. In Sec. 3 we describe briefly the finite-volume and
Godunov methods. We devote Sec. 4 to review the HLL and
HLLC Riemann solvers. We present more accurate methods
such as the MUSCL-Hancock method in Sec. 5. In the follow-
ing section we present results of original studies of coding the
above described numerical methods to solve one-dimensional
Euler equations. This paper is completed by a summary of
the main results and conclusions in Sec. 7.

2. Theory of the Euler equations

We recall that the differential form of the conservation law,
Eq. (1), breaks down in the presence of discontinuities
(shocks, contact waves). The integral form of the conserva-
tion law, which works for both continuous and discontinuous
solutions is

d

dt

xr∫

xl

q(x, t)dx = f(q(xl, t)) − f(q(xr, t)). (4)

Consider the control volume [xl, xr] × [t1, t2]. Integration in
time of Eq. (4) leads to

xr∫

xl

q(x, t2) dx =

xr∫

xl

q(x, t1) dx

+

t2∫

t1

f(q(xl, t)) dt −
t2∫

t1

f(q(xr, t))dt.

(5)

We use the above form in construction of finite-volume nu-

merical methods which are introduced in Sec. 3.

2.1. The Euler equations. We can express the Euler equa-
tions in the conservative form of Eq. (1) with the conservative
state vector,

q(x, t) =




q1

q2

q3


 =




̺(x, t)

̺u(x, t)

E(x, t)


 (6)

and the flux function,

f(q) =




̺u

̺u2 + p

u(E + p)


=




q2

1

2
(3 − γ)

q2
2

q1
+ (γ − 1)q3

q2

q1

(
γq3 −

γ − 1

2

q2
2

q1

)




. (7)

Here ̺ is a mass density, u velocity, and E energy density
such as

E =
p

γ − 1
+

̺u2

2
. (8)

The symbol γ denotes the specific heats ratio.
We rewrite now the Euler equations in the quasi-linear

form,
q,t + Acq,x = 0 , (9)

with the Jacobian,

Ac = f,q

=




0 1 0
1

2
(γ − 3)

q2
2

q2
1

(3 − γ)
q2

q1
γ − 1

−γ
q2q3

q2
1

+ (γ − 1)
q3
2

q3
1

γ
q3

q1
− 3

2 (γ − 1)
q2
2

q2
1

γ
q2

q1




=




0 1 0
1

2
(γ − 3)u2 (3 − γ)u γ − 1

u

[
(γ − 1)

u2

2
− H

]
H − (γ − 1)u2 γu


 ,

(10)
where H = (E + p)/̺ is the total specific enthalpy.

With a use of the non-conservative state vector

w =




w1

w2

w3


 =




̺

u

p


 (11)

we rewrite the Euler equations in the quasi-linear form,

w,t + Anw,x = 0 . (12)

Here the matrix An is

An =




u ̺ 0

0 u
1

̺
0 ̺c2

s u




with the sound speed cs =
√

γp/̺.
The eigenvalue problem for Ac or An is

Alr
(i)
l = λ(i)r

(i)
l , l = c, n, i = 1, 2, 3 (13)

with r
(i)
l being the right eigenvector and λ(i) denoting the

corresponding eigenvalue.
We have

R−1
c AcRc = Λ (14)

with the eigenvector matrix Rc whose columns consist of the
right eigenvectors, viz.

Rc =
[
r(1)
c , r(2)

c , r(3)
c

]

=




1 1 1

u − cs u u + cs

H − ucs
u2

2
H + ucs


 .

(15)
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Here the matrix Λ is

Λ =




λ(1) 0 0

0 λ(2) 0

0 0 λ(3)




=




u − cs 0 0

0 u 0

0 0 u + cs


 .

(16)

From Eq. (13) we find the right eigenvectors of An as

Rn =
[
r(1)
n , r(2)

n , r(3)
n

]
=




1 1 1

−cs/̺ 0 cs/̺

c2
s 0 c2

s


 . (17)

Note that the right eigenvectors of Ac and An differ one
from each other, while the eigenvalues of Ac and An are
identical and they are

λ(1) = u − cs, λ(2) = u, λ(3) = u + cs. (18)

As these eigenvalues are real and they correspond to a set
of linearly independent eigenvectors r

(1)
l , r

(2)
l , r

(3)
l , l = c, n,

we conclude that the Euler equations are hyperbolic.

2.2. The Riemann problem for the Euler equations. For
the Euler equations we can always solve the Riemann prob-
lem. The solution consists of three simple waves (a shock,
a contact wave, and a rarefaction wave) traveling with finite
velocities which are specified by Eq. (18). The procedure for
constructing the solution of the Riemann Problem is called
a Riemann solver. We discuss below these simple waves sep-
arately.

For a shock we can apply either the Rankine-Hugoniot
condition [2],

f(qr) − f(ql) = λs(qr − ql), (19)

or the Riemann invariants [2]. Note that a shock moving with
its speed λs should satisfy the entropy condition

λ(i)(ql) > λs > λ(i)(qr). (20)

Hence, we infer that the characteristics are convergent.
We can describe a contact wave either by the Rankine-

Hugoniot condition,

f(qr) − f(ql) = λc(qr − ql), (21)

or by the Riemann invariants. Here λc is the contact wave
speed. For this wave characteristics are parallel

λ(i)(ql) = λ(i)(qr) = λc. (22)

For a rarefaction wave we adopt the generalized Riemann
invariants. For this wave characteristics are divergent as we
have

λ(i)(ql) < λ(i)(qr). (23)

As a rarefaction wave corresponds to a smooth flow it is con-
venient to rewrite the Euler equations with the use of the state
vector,

w = [̺, u, s]T, (24)

where s ∼ p/̺γ is the entropy. Then we have

w,t + A(w)w,x = 0 (25)

with

A(w) =




u ̺ 0

c2
s/̺ u p,s/̺

0 0 u


 . (26)

The eigenvalue, λ(i), and the right eigenvector, r(i), i = 1, 2, 3,
of A(w) are

λ(1) = u − cs, λ(2) = u, λ(3) = u + cs, (27)

[r(1) , r(2) , r(3)] =




1 −p,s 1

−cs/̺ 0 cs/̺

0 c2
s 0


 . (28)

Equation (25) can be used for a description of rarefaction
waves. Indeed the Riemann invariants for the left propagating
rarefaction wave lead to [2]

d̺

1
=

du

−cs/̺
=

ds

0
. (29)

Hence, we conclude that

s = const, u +

∫
cs

d̺

̺
= u +

2cs

γ − 1
= const. (30)

By performing similar computations but for the rarefaction
wave propagating with λ(3) we get

s = const, u −
∫

cs
d̺

̺
= u − 2cs

γ − 1
= const. (31)

Equations (30) and (31) are useful in finding solutions of
the Riemann problem in the case of the rarefaction waves.

We consider the following cases:

1. a left propagating wave which is:

(a) a shock. This wave can be described by the Rankine-
Hugoniot conditions. It is convenient to rewrite these
conditions in the reference frame moving with the
shock speed, λs. Then we have these conditions writ-
ten as

̺lûl = ̺∗lû∗l, (32)

̺lû
2
l + pl = ̺∗lû

2
∗l + p∗, (33)

ûl(Êl + pl) = û∗(Ê∗l + p∗), (34)

where

ûl = ul − λs, û∗ = u∗ − λs; (35)

(b) a rarefaction wave which is described by the isentrop-
ic law (entropy is constant),

p = C̺γ , C = const, (36)

and the generalized Riemann invariant which follows
from Eq. (30),

ul +
2csl

γ − 1
= u∗ +

2cs∗

γ − 1
; (37)

2. a right propagating wave, which consists either of a shock
or rarefaction wave, is described by analogous conditions
to the left wave.
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We can use Eqs. (32)–(37) to solve the Riemann problem
for the Euler equations. As a result, we arrive at a transcen-
dental algebraic equation for a gas pressure p∗. See Eq. (4.5)
of Toro [2]. This equation can be solved numerically with the
use of an iterative method.

3. The finite-volume and Godunov’s methods

With the use of Eq. (5) we discretize the system of hyperbolic
equations as

qn+1
i = qn

i +
∆t

∆x
(fi−1/2 − fi+1/2). (38)

Here we introduced a uniform grid size ∆x and a time-step
∆t as

xi = i∆x, i = 0, 1, . . . , imax, ∆x = xi+1 − xi, (39)

tn = n∆t, n = 0, 1, . . . , nmax, ∆t = tn+1 − tn (40)

and implemented

qn
i =

1

∆x

xi+1/2∫

xi−1/2

q(x, tn) dx,

fn
i±1/2 =

1

∆t

t+∆t∫

t

f(q(xi±1/2, t)) dt.

(41)

The indices i± 1/2 correspond to the intercells. Equation
(38) results from the finite-volume method which mimics con-
servative properties of the Euler equations.

We specify the Riemann problem as

q,t + f(q),x = 0, (42)

q(x, 0) =

{
ql , x < 0,

qr , x ≥ 0.
(43)

Its solution is
qi+1/2(x/t), (44)

which determines Godunov’s numerical flux

fn
i+1/2 =

1

∆t

t+∆t∫

t

f(q(0/t)) dt = f(q(0/t)). (45)

For a system of linear equations the flux f(q) is

f(q) = Aq. (46)

Then, Godunov’s flux is

fi+1/2 = Aqi+1/2(0/t). (47)

For a linear system we find the stability condition as [2]

∆t = ccfl
∆x

s
, s = max(|λ(i)|), i = 1, 2, 3, (48)

where we implemented the Courant-Friedrichs-Lewy (CFL or
Courant) number ccfl as

ccfl =
s∆t

∆x
=

s

∆x/∆t
=

advection speed

grid speed
. (49)

We conclude this part of the paper saying that a careful
care in choosing maximum wave speeds s for CFL condi-
tion is required, and Godunov’s numerical methods can be
successfully adopted both to linear and nonlinear systems.

4. Approximate Riemann solvers

As we already showed in Subsec. 2.2 the exact Riemann solver
is available for the Euler equations but, as it leads to a tran-
scendental equation, it is numerically expensive. Therefore,
approximate Riemann solvers can be constructed instead. We
present below two examples of approximate Riemann solvers.

4.1. The HLL Riemann solver. We review here the Harten-
Lax-van Leer (HLL) Riemann solver which takes into account
the fastest waves only. To do so, we apply the integral form
of the conservation laws in the control volume of Fig. 1. The
integral form of the set of hyperbolic equations, in the control
volume [xl, xr] × [0, T ] is

xr∫

xl

q(x, T )dx =

xr∫

xl

q(x, 0)dx

+

T∫

0

f(q(xl, t))dt −
T∫

0

f(q(xr, t))dt.

(50)

Fig. 1. Control volume for the HLL Riemann solver

Evaluating the right hand side of this expression, we ob-
tain

xr∫

xl

q(x, T )dx = xrqr − xlql + T (fl − fr), (51)

where fl = f(ql) and fr = f(qr). We express now the integral

xr∫

xl

q(x, T )dx =

Tsl∫

xl

q(x, T )dx

+

Tsr∫

Tsl

q(x, T )dx +

xr∫

Tsr

q(x, T )dx.

(52)
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Hence evaluating the first and third integrals on the right hand
side, we find

xr∫

xl

q(x, T )dx =

Tsr∫

Tsl

q(x, T )dx

+ (Tsl − xl)ql + (xr − Tsr)qr.

(53)

Comparing Eqs. (51) and (53), we get

Tsr∫

Tsl

q(x, T )dx = T (srqr − slql + fl − fr). (54)

We divide now the above expression by T (sr − sl) and intro-
duce an average state

qHLL ≡ 1

T (sr − sl)

Tsr∫

Tsl

q(x, T ) dx

=
srqr − slql + fl − fr

sr − sl
.

(55)

Note that the above HLL average state, qHLL, is not used
for flux evaluation. We express this flux as follows. Apply-
ing the integral form of the conservation law to the control
volume [xl, 0] × [0, T ], we get

0∫

Tsl

q(x, T )dx = −Tslql + T (fl − f0l) . (56)

Here f0l is the flux at x = 0. Hence we get

f0l = fl − slql −
1

T

0∫

Tsl

q(x, T )dx. (57)

In the above expression we replace q(x, T ) by qHLL. As a
result of that we get

f0l = fl + sl(q
HLL − ql). (58)

Note that this expression can be obtained from the Rankine-
Hugoniot conditions

f0l − fl = sl(q
HLL − ql), (59)

fr − f0l = sr(qr − qHLL). (60)

Replacing f0l by fHLL in Eq. (58) and using Eq. (55), we find
that the flux, corresponding to the HLL state, is

fHLL =
srfl − slfr + srsl(qr − ql)

sr − sl
. (61)

In summary, the HLL intercell numerical flux is

fHLL
i+1/2 =





fl, 0 ≤ sl,

fHLL, sl ≤ 0 ≤ sr,

fr, 0 ≥ sr.

(62)

The HLL solver is very simple and entropy satisfying [2].
This solver performs well at critical (sonic) rarefactions, the

left (right) hand side of which moves to the left (right) with
velocities higher than the sound speed. As middle waves are
ignored in the HLL solver an excessive smearing of contact
waves and vortices occur. The HLL Riemann solver is exact
for a system of two equations such as shallow water equations
[2]. For this solver wave speed estimates are still required. We
discuss this issue in Subsec. 4.3.

4.2. The HLLC Riemann solver. The HLLC Riemann
solver is a modification of the HLL Riemann solver. Here C
stands for a contact wave. Contact and shear waves, missing in
the HLL solver, are taken into account in the HLLC solver [2].
As a result, the star region contains two sub-regions, q∗l, q∗r,
(Fig. 2). We have

Tsr∫

Tsl

q(x, T )dx =

Ts∗∫

Tsl

q(x, T )dx +

Tsr∫

Ts∗

q(x, T )dx. (63)

Fig. 2. The HLLC Riemann fan

We define now

q∗l =
1

T (s∗ − sl)

Ts∗∫

Tsl

q(x, T )dx, (64)

q∗r =
1

T (sr − s∗)

Tsr∫

Ts∗

q(x, T )dx. (65)

Applying the Rankine-Hugoniot conditions across each of
the waves of speeds sl, s∗ and sr, we get

f∗l = fl + sl(q∗l − ql), (66)

f∗r = f∗l + s∗(q∗r − q∗l), (67)

fr = f∗r + sr(qr − q∗r). (68)

Note that there are three equations for the four unknown vec-
tors q∗l, f∗l, q∗r, and f∗r. So, there are more unknowns than
equations.

The additional conditions for the HLLC Riemann solver
are

u∗l = u∗r = u∗ = s∗, p∗l = p∗r = p∗. (69)
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From Eqs. (66) and (68) we find that

slq∗l − f∗l = slql − fl, (70)

srq∗r − f∗r = srqr − fr. (71)

From the first and second components of these equations we
get

p∗l = p∗ = pl + ̺l(sl − ul)(s∗ − ul),

p∗r = p∗ = pr + ̺r(sr − ur)(s∗ − ur).
(72)

Hence we obtain

s∗ =
pr − pl + ̺lul(sl − ul) − ̺rur(sr − ur)

̺l(sl − ul) − ̺r(sr − ur)
. (73)

From Eqs. (70) and (71) with the use of Eq. (72) we find

f∗k = fk + sk(q∗k − qk), k = l, r. (74)

Here the intermediate states q∗k are

q∗k = ̺k
sk − uk

sk − s∗




1

s∗
Ek

̺k
+ (s∗ − uk)

(
s∗ +

pk

̺k(sk − uk)

)


,

k = l, r.
(75)

In summary, the HLLC intercell numerical flux is

fHLLC
i+1/2 =





fl, 0 < sl,

f∗l, sl ≤ 0 ≤ S∗,

f∗r, S∗ ≤ 0 ≤ sr,

fr, 0 ≥ sr.

(76)

4.3. Wave speed estimates. We need estimates for wave
speeds sl and sr. The use of the eigenvalues,

λ(1) = u − cs, λ(2) = u, λ(3) = u + cs, (77)

is unproductive and therefore it is not recommended. Instead,
we can use information from other Riemann solvers, e.g., the
Roe average eigenvalues [12], which works well [2]. As a
result, we imply

s1 = ũ − c̃s, sr = ũ + c̃s, (78)

where ũ and c̃s are the Roe-averaged quantities as

ũ =

√
̺1u1 +

√
̺rur√

̺1 +
√

̺r
,

c̃2
s = (γ − 1)

(
H̃ − ũ2

2

) (79)

with ̺l and ̺r denoting the left and right (to the interface)
values of mass density. Here the enthalpy H = (E + p)/̺ is
averaged as

H̃ =

√
̺1H1 +

√
̺rHr√

̺1 +
√

̺r
. (80)

The other possibility is to adopt the expression for the gas
pressure p∗. See [2] for details.

5. Higher-order numerical schemes

for hyperbolic equations

As the first-order numerical methods, introduced in Sec. 3,
are too diffusive and therefore impractical to use we aim here
to construct high-resolution schemes. These schemes should
be at least second-order accurate in smooth regions of the
solution, be free from spurious oscillations, and give high-
resolution of large-gradient regions. There are a number of
higher-order methods. For a review see, e.g. [2, 13]. In this
paper we limit our discussion to the MUSCL-Hancock method
as this method is recognized as very robust and therefore it
is widely used in many modern numerical codes. Examples
of such codes are NUMERIKA [2], FLASH [14], ATHENA
[15], GAMER [16], and others.

5.1. MUSCL method. The low accuracy and the complex-
ity of Godunov’s method meant that other methods needed
to be developed. Such development effort was undertaken
by Kolgan [3] who proposed to suppress spurious oscilla-
tions and produced in this way a non-oscillatory Godunov-
type scheme of second order spatial accuracy. Further, more
well-known, developments were due to van Leer [4] who ex-
tended Godunov’s approach to second-order spatial accuracy
by the MUSCL approach. See also [5]. Van Leer’s approach
consists of two key steps: (a) an interpolation (projection or
reconstruction) step where, within each cell, the data is ap-
proximated by linear functions; (b) an upwind step where the
average fluxes at each interface are evaluated by taking into
account the upwind direction.

A great deal of effort was spent to enhance the accura-
cy of the interpolation step, and to improve the efficiency
and robustness of the upwind step (e.g. [12]). Accurate in-
terpolations are derived by assuming that the data is smooth.
However, in the presence of a shock, these interpolations lead
to oscillations which can be prevented by an introduction of
a monotonicity constraint for a numerical scheme [4]. In this
scheme the accuracy was increased by constructing a piece-
wise linear approximation of q(x, t), viz.

q(x, t) = qi + si(x − xi),

xi−1/2 < x < xi+1/2.
(81)

Here si is a slope and xi = (xi + xi+1)/2 = xi + ∆x/2 is
the center of the grid cell. So, q(xi, t) = qi. Moreover, it
is required that the average value of q(x, t) over the cell is
equal to qi. The slope si can be constructed by a number of
ways, e.g.

si =
qi+1 − qi−1

2∆x
(centered slope, Fromm′s scheme),

(82)

si =
qi − qi−1

∆x
(upwind slope, Beam-Warming scheme),

(83)

si =
qi+1 − qi

∆x
(downwind slope, Lax-Wendroff scheme),

(84)
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si = minmod

(
qi − qi−1

∆x
,
qi+1 − qi

∆x

)
(minmod slope).

(85)
Here the minmod function,

minmod(a, b) =





a, for |a| < |b| and ab > 0,

b, for |a| > |b| and ab > 0,

0, for ab ≤ 0,

(86)

returns the smallest argument in magnitude if the arguments
are of the same sign, and zero if they are not.

For other choices of slopes see, for instance, [2, 12]. Note
that choosing si = 0 in the above expressions leads to Go-
dunov’s method [1].

5.2. MUSCL-Hancock scheme. As the original MUSCL
method [4] was modified in 1980 by UC Berkeley gradu-
ate student of fluid mechanics, Steve Hancock, the modified
scheme bears a common name MUSCL-Hancock method. See
[6].

Fig. 3. Boundary extrapolated values

The MUSCL-Hancock method consists of the following
steps:

1. Data reconstruction and boundary extrapolated values.

At this stage we reconstruct linear subcell distributions of
a (non-conservative or conservative) vector state wi and
compute intercell values from

wil = wi −
1

2
∆x si, wir = wi +

1

2
∆x si. (87)

Here wil (wir) denotes w at the left (right) intercell of
the i-th grid, si is a limited slope which is introduced in
Eq. (81);

2. Evolution of the boundary values. We let the boundary

extrapolated values evolve by a time
1

2
∆t according to

wil = wil +
∆t

2∆x
[f (wil) − f (wir)] , (88)

wir = wir +
∆t

2∆x
[f (wil) − f (wir)] . (89)

3. The Riemann problem. We solve the Riemann Problem
with data

wil∗ = wir, wir∗ = w(i+1)l. (90)

Hence, we compute the intercell flux fi+ 1
2

(wil∗,wir∗) with

a use of the similarity solution, wi+ 1
2

(x

t

)
,

fi+ 1
2

= f
(
wi+ 1

2
(0)

)
. (91)

This flux is used in the discretized version of the Euler
equations to evaluate the updated value of the vector state,
wn+1

i .

6. C++ coding of the MUSCL-Hancock method

for the Euler equations

We organize this section by presenting the MUSCL-Hancock
method for one-dimensional Euler equations which is the set
of three nonlinear hyperbolic equations given by Eqs. (1), (6),
(7). First we review the numerical code and later on present
results of the numerical test we perform.

All results showed in this section are obtained with the
use of the original code which was written in C++. All nu-
merical simulations are performed on a PC computer with
the use of g++ compiler. A typical numerical session lasted
a dozen or so minutes on Intel Core 2 Duo T8300 (2.4 GHz)
CPU with 3 GB of RAM. The obtained numerical data was
visualized with the use of Interactive Data Language (IDL)1

scripts which allowed to visualize the results of numerical
simulations in the form af animations (stored here in avi for-
mat) or at given moments of time in the form of postscript
files which were adopted for presentation of the results in this
paper.

The code Euler1d MH.cpp which solves the Euler equa-
tions consists of the following routines:

• readIniFile – reads parameters of the problem from the file
advect.ini

• setInitialConditions – specifies the initial conditions
• setBoundaryConditions – specifies the boundary conditions
• setCFLConditions – imposes Courant-Friedrichs-Lewy

(CFL) condition
• estimate – computes wave speed estimates for HLLC Rie-

mann solver
• fluxVal – computes flux vector components from the com-

ponents of the vector state of conserved variables
• computeIntercellFluxes – computes intercell numerical

fluxes
• evolve q – evolves the solution to a new time level using

the explicit conservative formula
• output – dump the numerical data to files euler.xxx
• evolveInTime – main loop, sets the boundary conditions

and performs iteration in time
• saveConfigIdl – writes to file config.ini the number of out-

put files used by the IDL script movie.pro
• main – calls the required routines

1http://www.ittvis.com/ProductServices/IDL.aspx

Bull. Pol. Ac.: Tech. 60(1) 2012 51



K. Murawski, K. Murawski, and P. Stpiczyński

This code implements several slope limiters, such as: Go-
dunov, Fromm, Superbee, van Leer, van Albada, MinMod and
MinMax. Other slope limiters can be easily implemented. As
a default initial condition a user can optionally set values of
mass density, velocity and gas pressure in the left, middle and
right sections which are divided by two diaphragms. Spatial
positions of diaphragms can be set arbitrarily. For the numer-
ical results presented in this paper we set these diaphragms
at x = 4 and x = 6. See Eq. (94).

We perform numerical simulations with the use of the
code Euler1d MH.cpp. At t = 0 s we specify initial condi-
tions as

̺(x, t = 0) = 1, (92)

u(x, t = 0) = 0, (93)

p(x, t = 0) =





1 x < 4,

1.25, 4 ≤ x ≤ 6,

1, x > 6.

(94)

Such initial conditions, displayed in Fig. 4 (top-left panel),
results in counter-propagating waves. The leading signals cor-
respond to shocks represented by discontinuities in gas pres-
sure profiles (middle-left). At t = 1 s (top-right panel) and
t = 2 s (middle-left) these shocks are located at x ∼= 2.5,
x ∼= 7.5 and x ∼= 1.5, x ∼= 8.5, respectively. These shocks are
followed by rarefaction waves which at t = 2 s are located at
x ∼= 3 and x ∼= 7 (middle-left). For t > 5 s behind the shocks
and rarefaction waves contact waves are present. These con-
tact (or entropy) waves settle as stationary structures which
are well observed at x = 4 and x = 6 for t ≥ 1 s. Note
that the final product of the initial pressure perturbation is a
rarefied gas in the region where the initial perturbation was
launched. This rarefied region corresponds to a new equilibri-
um which remains a good evidence of the initial perturbation.
In conclusion, the initial perturbation of Eqs. (92)–(94) re-
sults in stationary contact (or entropy) waves which bounds a
region of permanently rarefied plasma. Therefore, the above
proposed test can serve as a good check of a performance of
a numerical code.

Fig. 4. Mass density (solid line) and gas pressure (dashed line) profiles of the Euler equations for SUPERBEE slope limiter and 1000 grid
cells. Profiles are displayed at t=0 s (top-left panel), t=1 s, t=2 s, t=3 s, t=4 s and t=5 s (bottom-right panel)
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7. Summary and conclusions

In this paper we described the MUSCL-Hancock method for
numerical solutions of the initial-value problem for the Euler
equations and its implementation into the C++ code. Addi-
tionally, we presented theory of the Euler equations. In par-
ticular, we introduced the Riemann problem for Euler equa-
tions and reviewed three solvers: Godunov’s, HLL and HLLC.
In the following section we presented the numerical methods
we used, their original implementation and description of the
original C++ code. We presented and described results of the
numerical test we performed.

The approach presented in this paper can be extend-
ed along various ways. In particular, future works can con-
sist of modification of the code for solving two- and three-
dimensional Euler equations. Another option is to make it
parallel and implement to work on graphical cards such as
NVIDIA (CUDA) or ATi (OpenCL).

The authors express their thanks to the referee for his/her
stimulating comment.
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