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Abstract. The problem of small-signal stability considering load uncertainty in power system is investigated. Firstly, this paper shows

attempts to create a nonlinear optimization model for solving the upper and lower limits of the oscillation mode’s damping ratio under an

interval load. Then, the effective successive linear programming (SLP) method is proposed to solve this problem. By using this method,

the interval damping ratio and corresponding load states at its interval limits are obtained. Calculation results can be used to evaluate the

influence of load variation on a certain mode and give useful information for improvement. Finally, the proposed method is validated on

two test systems.
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1. Introduction

The small-signal stability analysis is mainly focused on low

frequency electromechanical oscillations within the range of

0.1-2.0Hz, which are poorly damped. For a long time, many

studies such as modal analysis, controller design [1–2] and

algorithm development [3–4] have been conventionally based

on deterministic operation parameters. However, the power

system is affected by various uncertain factors all the time

[5], so that the operation state is fluctuant within a certain

range. It is of practical importance to determine the influence

of operation state variation on system low frequency oscilla-

tion.

Load uncertainty, which is one of the most important un-

certainty factors in a network, has great influence on a power

system and should be considered in the small-signal stabil-

ity analysis. At present, some research are developed in the

field of small-signal stability taking account of load uncer-

tainty. K.W. Wang and others [6–9] studied the probabilistic

eigenvalue analysis method when the load is uncertain. In

their studies, assuming normal distribution, normal operation

values of load powers are used as the corresponding means.

The interval distribution model, which is a general mod-

el to describe uncertain information, just needs to know the

upper and lower limits of uncertain information. The theo-

ry of interval mathematics has some development in recent

years and has been partly applied to research of power system

[10–12].

In [13–14], power system damping variation due to the

interval uncertainty of load characteristic parameters, is in-

vestigated by using a special sampling method which samples

limited number of points within interval limits of load pa-

rameters. However, the active and reactive steady-state load

magnitudes are considered to be invariable in these papers. In

fact, the uncertainty of load magnitude changes an operation

condition of the system and thus the oscillation modes.

On the background, this paper proposes an analysis

method for small-signal stability under interval load. The pa-

per is organized as follows: In Sec. 2, the interval damping

ratio optimization model is built, by which the upper and low-

er limits of interval damping ratio under interval load can be

solved. In Sec. 3, the principle of successive linear program-

ming (SLP) method applied to this problem is introduced. In

Sec. 4, the SLP model for interval damping ratio optimiza-

tion is formulated and the procedure of algorithm is given. In

Sec. 5, two numerical examples are used to test the proposed

methodology. Finally, conclusions are given in Sec. 6.

2. The interval damping ratio optimization

model

2.1. Definition of interval damping ratio. A power system

is a non-linear self-consistent system. The eigenvalues of the

linearized system depend on the steady-state operating point.

Each eigenvalue is a function of power system operation vari-

ables. We assume that λk and ζk are the k-th eigenvalue and

its damping raito. With the variation of loads in their interval

ranges, system eigenvalues and damping ratios also change in

their interval ranges. Following the definition of interval load,

interval eigenvalue and interval damping ratio are defined as

follows.

Interval Eigenvalue: Within the interval load, a certain

load condition corresponds to lots of eigenvalues, conjugated

eigenpair of them standing for oscillation mode. Any eigen-
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value among them changes with load variation. Every eigen-

value submits to an interval distribution under interval load.

The distribution is defined as interval eigenvalue, written as

[λk min, λk max], where λk min and λk max represent the lower

limit and upper limit of λk, respectively.

It should be interpreted that the ranking of interval eigen-

value, which is not unique, depends on the aim of investiga-

tion. For a complex eigenvalue, either its real part or imag-

inary part can be used to arrange elements of interval. In

this paper, we sort the interval distribution of eigenvalue by

its damping ratio which is an important index to judge the

small-signal stability of system.

Interval damping ratio. The damping ratio range cor-

responding to the interval eigenvalue is defined as interval

damping ratio, written as [ζk min, ζkax], where ζk min and

ζk max are the lower limit and upper limit, respectively. Ac-

cording to this definition, the conjugate complex eigenpair

representing an oscillation mode have the same interval damp-

ing ratio.

2.2. Optimization model for solving interval damping ra-

tio. According to the definition of interval damping ratio in

Subsec. 2.1, the lower and upper limits of interval damp-

ing ratio of a certain oscillation mode reflect its weakest and

strongest damping within interval load.

For any eigenvalue λk , the optimization model to solve its

upper or lower limit of interval damping ratio is described as

follows,

max ζk/min ζk (1)

s.t.

f(X,PL, QL) = 0, (2)

A(X,PL, QL)ϕk = λkϕk, (3)

ζk = −σk

/

√

σ2
k + ω2

k, (4)

PL min ≤ PL ≤ PL max, (5)

QL min ≤ QL ≤ QL max, (6)

where ζk is the damping ratio of eigenvalue λk = σk + jωk

(σk is real part and ωk is imaginary part); A is the reduced

state matrix of linearized model in small-signal stability analy-

sis [15]; ϕk is the right eigenvector associated with the eigen-

value; X denotes all state variables except load powers, i.e.

voltage amplitudes, voltage phases, power angles and so on;

PL and QL are space vector composed by active load and

reactive load in system and their dimensions are the num-

ber of loads; PL max, PL min are the upper and lower limits

of interval active load, respectively; QL max, QL min are the

upper and lower limits of interval reactive load, respectively.

The objective function (1) is the maximal or minimal damp-

ing ratio of eigenvalue, which is selected in order to solve the

interval of damping ratio for every oscillation under interval

load [PL min, PL max] and [QL min, QL max]. When the upper

and lower limit of the the interval number are solved, the in-

terval number can be ascertained, so the objective function is

max ζk or min ζk. The power flow constraint is expressed by

Eq. (2). The eigen-relationship is expressed by Eq. (3). Equa-

tion (4) is the formula to calculate the damping ratio. The

interval constraints of load are presented by Eqs. (5) and (6).

3. Successive linear programming method

The problem stated in (1)–(6) is a rather complicated nonlin-

ear programming problem. It is difficult to be solved directly

by using conventional nonlinear optimization technique due to

its non-convexity and multi-variables. The successive linear

programming (SLP) method is adopted to solve this problem.

In SLP method, the original problem is linearized around

the current operating state. And then the linearized model is

solved to compute new state. This process is successively re-

peated until the desired objective is achieved [16]. The SLP

method has been successfully used to solve the optimal power

flow problem in [17–18].

The model based on SLP method is stated in the standard

form, given by

minF (x, u) (7)

s.t.

h(x, u) = 0, (8)

umin ≤ u ≤ umax, (9)

where x and u are indirect vector and direct vector, respec-

tively.

Using the first-order Taylor series expansion at the cur-

rent operating point (x(r), u(r)), the original problem (7)–(9)

is transformed into the following linear programming (LP)

problem [19–20]:

min ∆F (∆x(r),∆u(r))

=

[

∂F

∂x

]T (r)

∆x(r) +

[

∂F

∂u

]T (r)

∆u(r)
(10)

s.t.
[

∂h

∂x

]T (r)

∆x(r) +

[

∂h

∂u

]T (r)

∆u(r) = 0, (11)

umin − u(r) ≤ u ≤ umax − u(r), (12)

where T is the symbol of transpose and r in round bracket

represents the number of iteration.

This linearization is only accurate for a small variation

of the increment. Therefore, ∆u(r) should be in its bounds,

written as:

−η(r) ≤ ∆u(r) ≤ η(r), (13)

where η(r) are vector with all positive small components.

The solution of linear programming model (10)–(13) gives

the incremental change ∆u(r) of direct vector, which is added

to u(r) to get a new updated vector: u(r+1) = u(r)+∆u(r). By

solving equality constraints (8) with the new updated vector

u(r+1), a new indirect vector x(r+1) is computed. Therefore,

a new operating state (x(r+1), u(r+1)) is obtained. Under this

new state, a new LP model can be formed again. This proce-

dure is successively repeated until the optimum is achieved.

In a word, by solving a series of LP models, a sequence of

optimal solutions of LP model are obtained, which converge

to the optimal solution of original nonlinear problem [16].
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The basic steps of the SLP algorithm to solve (7)–(9) are

summarized as follows:

1) Set initial direct variables u(0) which satisfy inequali-

ty constraints (9). Calculate initial indirect variables x(0) by

solving Eq. (8). Set the step limit η(0) of direct vector in-

crement, contractible coefficient β ∈(0, 1), and user defined

tolerance ε. Assume the number of direct variables is l. Set

iterative number r = 0.

2) Form the linearized interval damping ratio optimization

model (10)–(13) under variables x(r) and u(r).

3) Solve the LP problem (10)–(13) and obtain optimal

incremental variables ∆u(r).

4) Update the direct variables: u(r+1) = u(r)+∆u(r). Ob-

tain the new indirect variables x(r+1) with updated variables

by solving equality constraint (11).

5) If F (x(r+1), u(r+1)) < F (x(r), u(r)), then r = r + 1
and go to step 2).

6) If F (x(r+1), u(r+1)) ≥ F (x(r), u(r)) and

∣

∣

∣
η
(r)
j

∣

∣

∣
≥ ε

(j = 1, 2, . . . , l), then η
(r+1)
j = βη

(r)
j and go to step 2).

7) If F (x(r+1), u(r+1)) ≥ F (x(r), u(r)) and

∣

∣

∣
η
(r)
j

∣

∣

∣
< ε

(j = 1, 2, . . . , l), then the optimal solution x(r), u(r) converge

and the program terminates.

4. The SLP method for solving the interval

damping ratio optimization model

4.1. The SLP model for solving interval damping ratio.

According to the procedure of SLP method, the original non-

linear programming model (1)–(6) can be restated as the SLP

standard model (7)–(9), where PL, QL are used as direct

variables and X are indirect variables. Indirect variables are

decided by direct variables.

The linearization process of original model is summarized

in this section.

The linearized objective function (1) is given by

max ∆ζk/∆ζk. (14)

The power flow constraints represented by Eq. (2) can be

written in detail:














Pdi = Pgi − Ui

n
∑

j=1

Uj(Gij cos θij +Bij sin θij)

Qdi = Qgi − Ui

n
∑

j=1

Uj(Gij sin θij −Bij cos θij)

where i = 1, 2, ..., n except the slack bus (n is the number

of buses) and θij = θi − θj . Just considering the regulation

of the generator at slack bus, the linearization of power flow

Eq. (2) can be written as follows,

[

∂f

∂X

]

X0

∆X =

[

∆PL

∆QL

]

(15)

where

[

∂f

∂X

]

X0

is the Jacobian matrix.

The linearization of Eq. (3) yields

∆Aϕk0 +A0∆ϕk = λk0∆ϕk + ∆λkϕk0.

Premultiplying by the left eigenvector ψT
k0 and noting that

ψT
k0ϕk0 = 1 and ψT

k0A0 = ψT
k0λk0, the equation above be-

comes

∆λk = ψT
k0

(

[

∂A

∂X

]

X0

∆X

+

[

∂A

∂PL

]

PL0

∆PL +

[

∂A

∂QL

]

QL0

∆QL

)

ϕk0.

(16)

The elements calculation of

[

∂A

∂X

]

X0

,

[

∂A

∂PL

]

PL0

and

[

∂A

∂QL

]

QL0

can be seen in [21–22].

The damping ratio calculation formula of Eq. (4) can be

linearized as follows,

∆ζk = (σ2
k0 + ω2

k0)
−

3

2 (−ω2
k0∆σ + σk0ωk0∆ω). (17)

The linearized form of inequality constraints (5)–(6) are

PL min − PL0 ≤ ∆PL ≤ PL max − PL0, (18)

QL min −QL0 ≤ ∆QL ≤ QL max −QL0. (19)

The bounds on ∆PL and ∆QL

−ηP ≤ ∆PL ≤ ηP , (20)

−ηQ ≤ ∆QL ≤ ηQ, (21)

where ηP , ηQ are the limits of active load and reactive load

increment.

Model (14)–(21) is a linear programming model derived

from (1)–(6). From Eq. (15), ∆X can be expressed in terms of

∆PL and ∆QL. Substituting the expression for ∆X in (14),

(16) and (17), we obtain the formulation of ∆ζk expressed

by ∆PL and ∆QL. The equivalent optimization model in the

desired final form is

min cTP ∆PL + cTQ∆QL

s.t.
PL min − PL0 ≤ ∆PL ≤ PL max − PL0,

QL min −QL0 ≤ ∆QL ≤ QL max −QL0,

−ηP ≤ ∆PL ≤ ηP ,

−ηQ ≤ ∆PL ≤ ηQ,

(22)

where cP , cQ are coefficients in objective function. When the

objective function in (14) is max ∆ζk , it can also be repre-

sented by the minimization equation in (22) in form of min

−∆ζk.

Due to constraints of optimization model (22) are only the

limits of direct vector, the optimal increment of direct vector

can be solved by following equations.

∆PLj =

{

max(PLj min − PLj0,−ηPj) for cPj ≥ 0

min(PLj max − PLj0, ηPj) for cPj < 0
(23)

∆QLj =

{

max(QLj min −QLj0,−ηQj) for cQj ≥ 0

min(QLj max −QLj0, ηQj) for cQj < 0
(24)

where j = 1, 2, ..., l (l is the number of loads).
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4.2. Algorithm to solve the interval damping ratio op-

timization model. The interval damping ratio optimization

model (1)–(6) can be solved by successive linear program-

ming method introduced in Sec. 3. The basic steps to solve the

interval damping ratio of eigenvalue are summarized as fol-

lows:

Step 1. Set initial load states P
(0)
L , Q

(0)
L as initial vector,

which satisfy constraints (5) and (6). Compute indirect vector

X(0) under given load states by Eq. (2). Then calculate system

eigenvalues and their damping ratios. Set the initial increment

limits η
(0)
P , η

(0)
Q of P

(0)
L and Q

(0)
L . Set the contractible coef-

ficient β, which is a positive number less than unit. Set the

user defined tolerance ε.

Step 2. Select the required eigenvalue λk and its damping

ratio ζk. Let iterative number r equal to 0.

Step 3. Linearize the interval damping ratio optimization

model (1)–(6) around the current operation states X(r), P
(r)
L

and Q
(r)
L . Formulate the linear programming model (14)–(21).

Step 4. Transform model (14)–(21) into the equivalent

desired final form (22) and obtain the coefficient vectors of

objective function: c
(r)
P , c

(r)
Q .

Step 5. According to (23) and (24), the incremental

changes in the load vector, ∆P
(r)
L and ∆Q

(r)
L , are computed.

Step 6. Update load states: P
(r+1)
L = P

(r)
L + ∆P

(r)
L ,

Q
(r+1)
L = Q

(r)
L + ∆Q

(r)
L . Solve power flow Eq. (2) to get

the new variables X(r+1) with updated load states P
(r+1)
L

and Q
(r+1)
L . Recalculate eigenvalue λ′k and its damping ratio

ζ′k.

Step 7. If ζ′k − ζk < 0, let ζ′k = ζk, r = r + 1 and go to

step 3.

Step 8. If ζ′k − ζk ≥ 0, reformulate the LP model (22)

with P
(r+1)
L , Q

(r+1)
L and X(r+1), in which new coefficient

vectors of objective function are c
(r+1)
P and c

(r+1)
Q .

Step 9. If there is sign-changing between c
(r)
Pj and c

(r+1)
Pj

(j = 1, 2, . . . , l, l is the number of direct variables), let

η
(r+1)
Pj = βη

(r)
Pj ; If there is sign-changing between crQj and

c
(r+1)
Qj (j = 1, 2, . . . , l, l is the number of direct vari-

ables), let η
(r+1)
Qj = βη

(r)
Qj . Else, if P

(r+1)
Lj = PLj max or

P
(r+1)
Lj = PLj min, let η

(r)
Pj = 0; if Q

(r+1)
Lj = QLj max or

Q
(r+1)
Lj = QLj min, let η

(r)
Qj = 0.

Step 10. If |ηP | < ε and |ηQ| < ε, the optimum is ob-

tained and output the results, otherwise go to step 3.

For the procedure above, there are several points which

should be interpreted.

Method to set the interval value of uncertain load. The

load in power system is always changing. It is difficult to get

its precise value. So it is uncertain. In this paper, the interval

model is used to describe the uncertainty of load. The interval

value of the uncertain load is set by the power system oper-

ator according to the practical operation condition of power

system. The interval number can be set according to the load

value in history, so its upper and lower limits are very easy to

be set. The range of the interval can be set wider if the load

uncertainty is greater. In this paper, we adopted ±5% offset

of basic states in the numerical examples.

Regulation of increment step. In Step 1, the initial load

states P
(0)
L and Q

(0)
L are the middle values of their interval

distributions.

From the realization process of successive linear program-

ming method, it can be seen that the increment step limits η
of direct variables are important parameters to judge the al-

gorithm convergence and determine convergent speed, which

is dynamically adjusted when solving the optimum.

For example, the initial increment step limits η
(0)
Pj is de-

pendent on the initial load value P
(0)
Lj and its interval range.

In order to converge quickly, η
(0)
Pj is given a big initial value.

With the objective value approximating to the optimum, η
(r)
Pj

should be reduced dynamically. The reduction magnitude is

determined by the contractible coefficient β whose value is

constant and we adopt 1/2 in examples. The detailed proce-

dure of regulation is as follows.

When the objective value increases and the element c
(r)
Pj

of vector c
(r)
P changes its sign, the original direction of re-

lated load variation is not at the direction of searching the

optimum, because the slope of damping ratio with respect to

load is opposite due to the large load increment step. In such

case, η
(r)
Pj should be reduced to limit the variation step of load,

that is η
(r+1)
Pj = βη

(r)
Pj .

Nevertheless, if P
(r+1)
Lj reaches its upper limit PLj max or

lower limit PLj min, the increment step limit η
(r)
Pj will be of no

use, because P
(r+1)
Lj cannot be changed beyond its constraint

of interval range. So the value of η
(r)
Pj is set to zero.

Selection of objective function. In theory, the objective

function can solve the limits of interval damping ratio for any

eigenvalue. Generally speaking, we are only interested in sev-

eral eigenvalues with the weakest damping ratios. Therefore,

in Step 6, after recalculating the eigenvalues, the required sev-

eral smallest damping ratios will be sequenced and selected

for the next optimization procedure.

Ccalculation of eigenvalue and eigenvector. In order not

to miss eigenvalues, the QR algorithm is used to calculate the

eigenvalues. In order to form constraint (16), after calculating

the eigenvalues, the inverse power method is used to calcu-

late the eigenvector just for that several selected eigenvalues.

In addition, interval damping ratios of two complex conjugate

eigenvalues are uniform. So it just needs to solve one of them.

Explanation of the algorithm. Because the realization

of algorithm is based on iterative search, the interval damp-

ing ratios solved actually exist in system and there are actual

operation conditions corresponding to them.

5. Numerical examples

The proposed method is tested with two different networks.

The program is based on Small Signal Stability Analysis Pack-

age (SSAP) developed by Shanghai Jiao Tong University [23].
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Machine system. In the 4-machine system of Fig. 1, all

machines are equipped with controllable rectifier excitations.

Parameters of machine are shown in [15]. The operation sce-

nario deterministic load condition is shown in Appendix.

Fig. 1. 4-machine system

With all generators represented by the sixth order ma-

chine model, solution under the deterministic load condi-

tion gives 36 eigenvalues (22 real and 14 complex). 7 pairs

of complex eigenvalues have the frequency between 0.1 Hz

and 2.0 Hz, in which electromechanical swings modes can

be judged by calculating their electromechanical relative co-

efficients. In this numerical example, only some important

modes’ interval damping ratios sorted by frequency are cal-

culated. In fact, all of other modes’ interval distribution can

be gotten in the same way.

When the load is uncertain, without loss of generality, its

interval distributions of active power and reactive power are

assumed to be [0.95PL0, 1.05PL0] and [0.95QL0, 1.05QL0],

where PL0 and QL0 are the deterministic load condition in

Appendix.

Firstly, under the initial load state PL0 and QL0, the inter-

val damping ratio optimization model (1)–(6) is established

and linearized in the form of (22). Then, taking the five weak-

est pairs of eigenvalues for example, their interval damping

ratios are solved by the proposed SLP method. The calcula-

tion results are shown in Table 1. In the five pairs of modes,

the first three ones are electromechanical modes.

Table 1

Interval damping ratio results of 4-machine system

Mode
[ζmin, ζmax]

(The Proposed Method)

[ζmin, ζmax]

(MCS)

λ1,2 [0.022021, 0.032179] [0.022500, 0.031814]

λ3,4 [0.103732, 0.104264] [0.103835, 0.104229]

λ5,6 [0.135715, 0.160957] [0.136412, 0.160674]

λ7,8 [0.603064, 0.606813] [0.603295, 0.606468]

λ9,10 [0.617165, 0.631879] [0.619322, 0.630617]

In order to validate the results of the proposed method, the

Monte Carlo Simulation (simply denoted as MCS) method is

also used to solve the problem in this paper. MCS is a com-

mon method to analyze uncertainty. Through random sam-

pling within the interval load, many samples with determin-

istic load states can be got and their corresponding damping

ratios can be solved. Then, by choosing the maximum and

minimum damping ratio of each eigenvalue from simulation

results, the interval damping ratio of each eigenvalue can be

obtained. The more times the samplings are done, the more

precise the interval damping ratio will be. For this 4-machine

test system, the sampling times of MCS is 5000. The calcu-

lation results are also shown in Table 1.

By comparing the results in Table 1, it is clearly seen

that the interval damping ratios solved by the method pro-

posed in this paper are in reasonable ranges. From the real-

ization process of the algorithm, it can be seen that the upper

and lower limits of damping ratio resulted from the proposed

method corresponds to certain load states, so the results do

exist. However, some load states are missed by MCS due to

the restriction of sampling times. It is why our interval damp-

ing ratios contain the ones form MCS. Comparison results

illustrate that the proposed method is effective for the prob-

lem.

The optimum of damping ratio is searched by adjusting

load along the optimal incremental direction from the ini-

tial load condition PL0 and QL0. Take λ1,2 with the weakest

damping ratio for example to explain the searching procedure

in detail, as shown in Fig. 2. The start point at y-axis rep-

resents the damping ratio of λ1,2 when PL and QL are in

the initial deterministic load values PL0 and QL0. The x-axis

stands for the number of iteration. Two curves in figure de-

note the searching process of damping ratio until the upper

and lower limits are reached.

Fig. 2. Searching procedure of the interval damping ratio for

4-machine system

The active load and reactive load are adjusted during each

iteration according to the optimization method. The changing

procedures are shown in Figs. 3 and 4, separately.

By analyzing the curves in Figs. 2 and 3, we can find that

when PL9 rises, the damping ratio of λ1,2 increases. So the

relationship between λ1,2 and PL9 is monotonic increasing.

Similarly, it can be found that the relationship between λ1,2

and PL7 is monotonically decreasing.

Bull. Pol. Ac.: Tech. 60(1) 2012 155



J. Xing, C. Chen, and P. Wu

Fig. 3. The changing procedure of active load for 4-machine system

Fig. 4. The changing procedure of reactive load for 4-machine system

The law of damping ratio changing with reactive load is

illustrated in Fig. 4. In this example, the initial value and ad-

justing procedure of the reactive load QL7 and QL9 are the

same during whole iterations. Therefore the curves of QL7

and QL9 for searching the minimal (maximal) damping ratio

are superposition.

In Table 2, the load states corresponding to the interval

limits of five modes are shown. The first four columns are

the load states corresponding to the minimal damping ratio

of every mode. The load states corresponding to the maxi-

mal damping ratio of every mode are listed in the last four

columns.

From Table 2, we can find that the damping ratio lim-

its of different oscillation modes correspond to different load

conditions. When the active load or reactive load increase, all

damping ratio will not always become worse. For example,

when active powers of load 7 and load 9 are at their upper

limits, the damping ratios of mode 2 and mode 4 get their

maxima. When reactive powers of load 7 and load 9 are at

their upper limits, the damping ratios of mode 3 and mode 5

get their maxima. Moreover, the damping ratio of oscillation

mode changing with load is not always monotonicity, for ex-

ample, when the damping ratio of mode 4 is at its minimum,

the active load PL9 is not at its limits. When the damping

ratio of mode 5 is at its maximum, the active load PL7 is not

at its limits.

Table 2

Load states corresponding to the interval limits of 4-machine system

Mode
ζin ζmax

PL7 QL7 PL9 QL9 PL7 QL7 PL9 QL9

1 916 105 989 105 828 95 1093 95

2 828 105 1093 95 916 95 1093 105

3 916 95 1093 95 828 105 989 105

4 828 95 1033 95 916 95 1093 105

5 916 95 1093 105 843 105 989 105

In addition, because the relationship between load power

and oscillation mode is nonlinear, the influence of load power

variation on oscillation modes is not simple combination of

just considering the active load variation or the reactive load

variation. In order to estimate the influence of load uncertain-

ty on system oscillation modes correctly, the uncertainty of

active and reactive power should be considered at the same

time.

The computing time to obtain the interval damping ratio

of different mode is listed in Table 3. The second column and

the third column give the time to solve the lower limit and

upper limit of interval damping ratio for different mode, re-

spectively. The total time to obtain the interval damping ratio

is the sum of them, given in the fourth column.

Table 3

Computing time of the interval damping ratio of 4-machine system

(unit: second)

Mode Time to get ζmin Time to get ζmax Total Time

1 2.56 2.57 5.13

2 2.57 7.22 9.79

3 2.31 2.57 4.88

4 3.58 6.19 9.77

5 6.16 3.33 9.49

New England system. The New England system com-

prising of 10-machine and 39-bus is frequently cited in the

small signal stability analysis. In the New England system, all

machines are equipped with continuous rotating DC exciters.

All generators are represented by the sixth order model. The

operating condition is given in Appendix.

The small signal stability analysis under the deterministic

load condition gives 110 eigenvalues (54 real and 56 com-

plex). Now, suppose the load is uncertain and the interval dis-

tributions of its active power and reactive power are [0.95PL0,
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1.05PL0] and [0.95QL0, 1.05QL0] respectively, where PL0

and QL0 are the deterministic load condition in Appendix.

Applying the proposed method, two electromechanical

swings modes with smallest damping ratios are selected and

their interval damping ratios are solved. The interval damping

ratio and its calculation time are shown in Table 4.

Table 4

Interval damping ratio and computing time of New England system

Mode Interval Damping Ratio Calculation Time (unit: second)

1 [0.0382, 0.0394] 40.67

2 [0.0409, 0.0428] 40.14

Take the weakest mode for example, the procedure to solve

the interval damping ratio is shown in Fig. 5. Meanwhile, the

load states corresponding to the interval damping ratios are

obtained. When the weakest damping ratio is at the upper

limit, the active and reactive power of load 3, 4, 7, 8, 15, 16,

18, 25, 26, 27 are at their upper limits, while the active power

of load 12, 20, 24, 28, 29 are not at their interval limits.

Fig. 5. Searching procedure of the interval damping ratio for New

England system

6. Conclusions

This paper builds a nonlinear damping ratio optimization

model for analyzing small-signal stability under interval load.

An effective successive linear programming method is pro-

posed to solve this problem. By using this method, the upper

and lower limits of interval damping ratio can be solved and

the interval distribution of the damping ratio can be deter-

mined, as well as the load states at the limits of the interval

damping ratio. The proposed method is tested on two exam-

ples. Computation results reveal that load variations have a

great impact on damping of oscillation modes. The interval

damping ratio supplies distributions of damping modes and

assists in taking measures to improve them when the load is

interval uncertainty.

Appendix

Figure 1 shows the 4-machine system one-line diagram where

bus 1 is considered to be the slack bus. Each machine is de-

scribed by the sixth order model in the following order of

state-variables ω, δ, E′

q , E′′

q , E′

d, E′′

d . The deterministic op-

eration condition is shown in Table A1. The bus 7 and bus 9

are the load buses.

Table A1

Deterministic operation condition of 4-machine system

Node P (MW) Q (MVar) Voltage(p.u.) Angle(◦)

2 610 104.2 1.010 1.8

3 660 165.7 1.030 20.5

4 500 189.4 1.010 9.7

7 872 100 0.970 −8.6

9 1041 100 0.951 −2.1

In New England 10-machine 39-bus system, bus 31 is the

slack node and buses numbered from 30 to 39 are generator

buses. All machines are described by sixth order models. The

deterministic operation condition is shown in Table A2.

Table A2

Deterministic operation condition of New England system

Node P (MW) Q (MVar) Voltage(p.u.) Angle(◦)

3 297 2.4 1.024 −18.6

4 535 184 0.993 −18.5

7 257 84 0.984 −18.1

8 583 176 0.984 −18.9

12 9 88 0.990 −14.3

15 353 153 1.005 −18.3

16 339 32.3 1.022 −17.2

18 155 30 1.024 −18.7

20 762 103 0.988 −15.5

21 287 115 1.024 −14.8

23 230 84.6 1.039 −10.4

24 325 10 1.023 −17.1

25 215 47.2 1.054 −14.9

26 142 17 1.048 −16.5

27 285 75.5 1.032 −18.4

28 218 27.6 1.048 −13.3

29 300 26.9 1.048 −10.6

31 10 4.6 0.982 0

39 1246 250 1.030 −21.9
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