
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 1, 2012

DOI: 10.2478/v10175-012-0022-9

Algorithms of parallel calculations in task of tolerance ellipsoidal
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Abstract. The methods of the tolerance ellipsoidal estimation for the tasks of synthesis of the tolerances to parameters of radio-electronic

circuits and possibility of its parallelization are considered. These methods are the result of the task of estimation the solutions of an interval

system of linear algebraic equations (ISLAE) which is built according to given criteria of optimality. The numerical algorithm is proposed

for solving the tolerance ellipsoidal estimation tasks with a possibility of parallelization.
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1. Task statements

The methods of tolerance ellipsoidal estimation are used for

the tasks of tolerance synthesis of the parameters of radio-

electronic circuits [1], and for the tasks of design the techni-

cal devices for surgical operations assisting in particular for

decreasing risk of damage the function-of important organs

when the surgical area of safe operation is necessary to de-

fine. The indicated tasks are the result of the mathematical

task estimating the solutions of an interval system of linear

algebraic equations (ISLAE). It is described in [2, 3] that

quality criteria for methods of receiving tolerance estimations

of model parameters are: minimal computational complexi-

ty, maximal volume of tolerance estimation the parameters

area and minimal computational resources for realization the

resulting model. It is described in [3, 4] that the ellipsoidal

estimations are the most effective estimations of ISLAE solu-

tions and mostly satisfy the indicated criteria. Let’s consider

the mathematical definition of the indicated estimation task.

Let the construction of interval models has such data:

X = (~xi), [~Y ] = ([y−

i ; y+
i ]), i = 1, . . . , N, (1)

where y−

i , y+
i are lower and upper bounds of output charac-

teristic values; ~x ∈ Rn is a vector of input variables.

Let’s assume that the “input-output” model structure given

as a linear equation in relation to parameters has the following

form:

ŷ(~x) = b0 + b1ϕ1(~x) + ... + bmϕm(~x), (2)

where ŷ(~x) is a predicted value of output characteristic; ~b is

a vector of unknown model parameters; ~ϕ(~x) is a vector of

the known base functions; ŷ(~xi) ⊂ [y−

i , y+
i ].

For the model construction it is necessary to estimate the

parameters bi, i = 0, ..., m that is to find the solutions of

ISLAE

y−

i ≤ b0 + b1ϕ1(~xi) + ... + bmϕm(~xi) ≤ y+
i ,

i = 1, . . . , N.
(3)

In space of parameters, in the case of compatibility of the

system (3), the solution of ISLAE is an area of parameters

values in kind of polyhedron

Ω = {~b ∈ Rm
∣∣∣y−

i ≤ ~b~ϕT (~xi) ≤ y+
i , i = 1, ..., N },

which is showed in Fig. 1.

Fig. 1. Illustration of area Ω for m = 2, N = 4

For estimating the area of model parameters a tolerance

ellipsoid is used of a following kind

Qm = {~b ∈ Rm
∣∣∣(~b −~b)T H(~b −~b) ≤ r }, (4)

where
~b is a center of weight; H is a matrix which sets the

ellipsoid configuration; r ≤ 1.

Thus corridor of interval models [ŷ(~xi)]|~b∈Qm

which is

built on the basis of the tolerance ellipsoidal estimation (TEE)

of parameters area is to be in kind:

[ŷ(~xi)]|~b∈Qm

= [~ϕT (~xi) ·
~b − ∆by(~xi)

∣∣
~b∈Qm

;

~ϕT (~xi) ·
~b + ∆by(~xi)

∣∣
~b∈Qm

],
(5)

where

∆by(~xi)

∣∣
~b∈Qm

= r0,5 ×
√

~ϕT (~xi)H−1~ϕ(~xi). (6)

∗e-mail: mdy@tneu.edu.ua

159



M. Dyvak, P. Stakhiv, and A. Pukas

Then the task of the tolerance ellipsoidal estimation the

parameters of model (2) are to be defined in kind:

V (Qm)
Qm

−−→ max, Qm ⊆ Ω, (7)

where V (Qm) is a volume of tolerance ellipsoid (4) which is

proportional to the value det(rH−1).

2. Numerical solving method

Evidently, a task of tolerance ellipsoidal estimation is a com-

plex nonlinear task. For its solving the next sequence is of-

fered:

1 – search the TEE configuration;

2 – search the suboptimal TEE with taking into account

all limitations.

For many tasks a matrix of TEE configuration may

be unknown, however there is information about some m-

dimensional parallelepiped, so-called saturated block which

forms the configuration of estimations area. The large group

of guaranteed estimation methods is developed for estimating

the area of interval model parameters. Although they do not

allow to get the tolerance estimations, however it is possible

to use their some scientific results and, taking into account the

features of tolerance area, to offer the methods of tolerance

area search.

After research on the multiple estimations of parameters

area it is shown that the solution of m equations from ISLAE

(3) is m-dimensional parallelepiped which enables a search

of the tolerance ellipsoid with maximal volume.

In paper [5] it is proposed the guaranteed estimation of pa-

rameters area to search a m-dimensional parallelepiped with

minimal volume which is built on the basis of the choice of

m equations as saturated block from a system (3), and after

that taking into account the rest equations from system (3) for

the guaranteed estimation clarifying.

As a result of modification the method for search the guar-

anteed estimation of parameters area offered in [5] and tak-

ing into account the features of tolerance estimation, gets the

method of a search the tolerance estimation of parameters

area as m-dimensional parallelepiped Ω̃m from which it is

simple on the basis of lemma in [6] to go to the ellipsoidal

estimation.

Formally the task of search the tolerance area as m-

dimensional parallelepiped Ω̃m on the basis of criterion (7) it

is possible to present it in the following manner:

VeΩm

eΩm−−→ max, (8)

Ω̃m ⊆ Ω. (9)

Let’s notice that configuration of area Ω̃m is known pri-

ori or found using methods of the design of experiment on

discrete set of an experimental area [7].

Geometrically, this task is reduced to the construction of

m-dimensional parallelepiped with maximal volume, which

is found on the basis of criterion (8) that is inscribed in the

parameters area from ISLAE (3).

Let’s consider in detail the method of finding the solution

of task (8) in conditions (9).

For a search Ω̃m from the solution of tasks (8) and (9)

let’s consider the iteration procedure on each k + 1 step on

which it is to be searched a tolerance area Ωm(k + 1) with

adding next one interval equation from N −m that remained

in the system after a choice of the base of m equations. More-

over, Ωm(0) is a parallelepiped that in a space of parameters

is formed by the base equations of the system.

Then it is possible to rewrite the task (8)–(9) for k + 1
step in the following form:

VΩm(k+1)
Ωm(k+1)
−−−−−−→ max, k = 0, ..., N − m − 1, (10)

on condition of including

Ωm(k + 1) ⊆ Ω ⊆ {Ωm(k) ∩
⌣

Ω(k + 1)},

k = 0, ..., N − m − 1,
(11)

where Ωm(k + 1) is m-dimensional parallelepiped which is

got on k +1 iteration;
⌣

Ω(k +1) is hyperplane which is deter-

mined by k + 1 equation from those which remained in the

system (3) after a choice of m base equations.

Actually, the procedure for obtaining the tolerance estima-

tion Ωm(k + 1) on k + 1 step consists in moving the proper

facets of parallelepiped Ωm(k) in such way that the top, which

on step k placed on the largest distance to hypherplane, must

appear on this hyperplane. This hyperplane is set by an active

limitation as a certain part of the interval equation in ISLAE

(3) from N − m.

The procedure of borders moving for two steps in the case

m = 2 is depicted in Fig. 2.

Fig. 2. Illustration of procedure of tolerance estimation of parameters

area for a case m = 2

As a result of this procedure realization for N − m steps

the tolerance area Ω̃m = Ωm(k = N − m) is obtained.

Let’s conduct equivalent transformations for task (10) and

for conditions (11).

As it is higher marked, the solution to this task on k + 1
step is to be obtained as a result of moving the proper facets

of parallelepiped Ωm(k) on a condition of an implementation

the including (11). Let’s consider more detailed providing of

this including. Let’s use results from [8], where for every top

of hyperparallelepiped it is proposed to use scalar functions
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Ls(k) and L′

s(k) which characterize a distance between the

proper top and a border of hyperplane
⌣

Ω(k + 1):

Ls(k) = y−

k+1 − ~ϕT (~xk+1) ·~bs(k), (12)

L′

s(k) = ~ϕT (~xk+1) ·~bs(k)− y+
k+1 = −Ls(k)−∆k+1, (13)

where ~xk+1 is a vector of input values in k + 1 observation

which determines k + 1 equations in the system (3); y−

k+1,

y+
k+1 are lower and upper bounds of intervals the “outputs”

in k + 1 observation; ∆k+1 = y+
k+1 − y−

k+1.

In Eqs. (12) and (13) ~bs(k)(s = 1, ..., 2m) there is a vec-

tor of coordinates the top s of hyperparallelepiped Ωm(k) on

k + 1 iteration which is calculated by Eq. (14) [9]

~bs(k) = F−1
m · ~Ys(k), (14)

where ~Ys(k) is a vector which is composed from combina-

tions of lower y−

k and upper y+
k interval values for each base

m equations; F−1
m is a matrix of values of the base functions.

On the basis of the statement from [8]: if Ls(k) > 0
(L′

s(k) > 0), than top s of hyperparallelepiped is placed out-

side of hyperplane which is obtained from an active limi-

tation that is cut off by this hyperplane; else if Ls(k) < 0
(L′

s(k) < 0), than limitation is not active; else if Ls(k) = 0
(L′

s(k) = 0), than top s belongs to “hyperplane” which is

obtained from this active limitation.

Then for a top which is placed on the largest distance to

the bound of a hyperplane which is set by an active limitation

it is correct to state that

Ls∗(k) = max
s=1,...,2m

Ls(k) > 0,

L′

s∗(k) = max
s=1,...,2m

L′

s(k) > 0.

So for a case Ls∗(k) > 0 (L′

s∗(k) > 0) the condition (10)

on k + 1 step can be possibly written in the following form:

Ls∗(k + 1) = 0, (15)

L′

s∗(k + 1) = 0. (16)

Let’s put to conditions (15) and (16) the values of the

proper functions from Eqs. (12)–(14), it is obtained

y−

k+1 − ~ϕT (~xk+1) · F
−1
m · ~Ys∗(k + 1) = 0, (17)

~ϕT (~xk+1) · F
−1
m · ~Ys∗(k + 1) − y+

k+1 = 0, (18)

where ~Ys∗(k+1) is a vector which comes from combinations

y+
i (k + 1) = y+

i (k) − δ+
i (k + 1), (19)

y−

i (k + 1) = y−

i (k) + δ−i (k + 1). (20)

For example ~Ys∗(k + 1) can be:

~Ys∗(k + 1) = (y+
1 (k) − δ+

1 (k + 1), ...,

y−

i (k) − δ−i (k + 1), ..., y+
m(k) − δ+

m(k + 1))T .

Moreover, 0 ≤ δ+
i (k+1) ≤ y+

i (k)−y−

i (k), 0 ≤ δ−i (k+1) ≤
y+

i (k) − y−

i (k).

Taking into account the aforementioned it is evident that

the iterative procedure (8) can be rewritten in the following

equivalent form:

m∏

i=1

(y+
i (k + 1) − y−

i (k + 1))2

× det(FmFT
m)−1 y

+

i
(k+1),y−

i
(k+1), i=1,...,m

−−−−−−−−−−−−−−−−−−→ max .

(21)

Let’s conduct equivalent transformations of Eq. (21) on

the basis of substitutions by Eqs. (19) and (20) and then find

the logarithm from a result, and also, replacing a condition

(9) by Eqs. (17) and (18), then the task of mathematical pro-

gramming is to be obtained:

2 ·

m∑

i=1

ln(y+
i (k) − δ+

i (k + 1) − y−

i (k) − δ−i (k + 1))

+ ln(det(FmFT
m)−1)

δ−

i
(k+1), δ+

i
(k+1), i=1,...,m

−−−−−−−−−−−−−−−−−−→ max,

(22)

y−

k+1 − ~ϕT (~xk+1) · F
−1
m · ~Ys∗(k + 1) = 0, (23)

~ϕT (~xk+1) · F
−1
m · ~Ys∗(k + 1) − y+

k+1 = 0, (24)

0 ≤ δ+
i (k + 1) ≤ y+

i (k) − y−

i (k),

0 ≤ δ−i (k + 1) ≤ y+
i (k) − y−

i (k).
(25)

As a configuration of an area the estimations is given, then

in Eq. (22) it is possible to omit an element ln(det(FmFT
m)−1

that simplifies an optimization task

m∑

i=1

ln(y+
i (k) − δ+

i (k + 1) − y−

i (k) − δ−i (k + 1)) →

δ
−

i
(k+1), δ

+

i
(k+1), i=1,...,m

−−−−−−−−−−−−−−−−−−→ max .

(26)

Taking into account the monotonicity of the function

ln(x), the mathematical programming task with conditions

(22)–(25) can be solved by methods of linear programming

and actually reduced on step k + 1 to moving the no more m
facets of polyhedron Ωm(k). This means that on step k + 1
for a given i the next rule is true: if δ+

i (k + 1) 6= 0 then

δ−i (k + 1) = 0, and conversely if δ−i (k + 1) 6= 0, then

δ+
i (k + 1) = 0.

Let’s notice that in the process of the calculable procedure

realization which consists in solving the task of mathemati-

cal programming (22)–(25) on k + 1 step simultaneously in a

space of tolerance parameters no more m facets of polyhedron

Ωm(k) is moved.

The realization of the tolerance estimation method fore-

sees using the algorithm which on step 1 sets the tolerance

area configuration and after that N − m iteration steps.

Let’s consider step-by-step of a numerical algorithm in

detail.

Step 1. Setting the configuration matrix of estimation area.

Step 2. Calculation of the functions Ls(k) or L′

s(k) by

Eqs. (12) or (13).

Step 3. Solving Ls∗(k) = max
s=1,...,2m

Ls(k), L′

s∗(k) =

max
s=1,...,2m

L′

s(k).
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Step 4. Solving the mathematical programming task with

an goal function (22)–(25).

Step 5. Calculation of the interval bounds y−

i (k + 1);
y+

i (k + 1) by Eqs. (19) and (20), accordingly.

Step 6. If k ≤ N − m then go to step 2 else end of the

procedure.

The result of calculations by a numerical algorithm is a

tolerance polyhedron Ω̃m which tops are determined by equa-

tion:
~bs(k) = F−1

m · ~Ys(k = N − m). (27)

An ellipsoid estimation of polyhedron Ω̃m is found according

to the theorem from [10, 11] and has the following form:

Qm = {~b ∈ Rm
∣∣∣(~b −~b)T · FT

m · E−2 · Fm · (~b −~b) ≤ 1},

(28)

where
~b = F−1

m · (0.5 · (y+
1 (N −m) + y−

1 (N −m)), ..., 0.5×
×(y+

m(N − m) + y−

m(N − m)))T is a vector which sets

the center of ellipsoid; E = diag(y+
1 (N − m) − y−

1 (N −
m), ..., y+

i (N −m)− y−

i (N −m), ..., y+
m(N −m)− y−

m(N −
m)) is a diagonal matrix of resultant interval errors.

On the whole the offered method is reduced to the iteration

procedure of solving the linear programming tasks. However,

as it is evident from the higher resulted algorithm the most

complex calculable procedure is calculations on step 2, which

enable to find limitations (23) and (24). Moreover, this proce-

dure repeats oneself iteratively, and its realization has a high

time complexity, especially in a case of the high dimension

task.

Therefore, in the paper parallelization of the procedure of

calculation of the functions Ls(k) (L′

s(k)) is offered.

3. Parallelization of calculations of the tolerance

ellipsoid estimations

The important property of hyperparallelepiped Ωm(k) is that

the tops ~bs(k) belong to one plane if in Eq. (14) the proper

vectors ~Ys(k) have at least one joint component. Thus, itera-

tive “moving” of bounds y−

i (k) and y+
i (k) by Eqs. (19), (20)

in space of parameters is equivalent to moving of the prop-

er borders of hyperparallelepiped Ωm(k) in a direction of its

size diminishing.

As it is shown above, the analysis of the values of func-

tions Ls(k) and L′

s(k) allows to find the hyperparallelepiped

tops location in relation to hyperplane which is formed by

k + 1 equation.

Let’s find a recurrent formula for Ls(k +1). For this pur-

pose in Eq. (14) instead of i component y−

i (k + 1) of vector
~Ys(k + 1) its value y−

i (k) + δ−i (k + 1) from Eq. (19) is put

and the recurrent formula is achieved:

~bs(k + 1) = ~bs(k) + ~fi · δ
−

i (k + 1), (29)

where ~fi is i column of matrix F−1
m .

Considering (29) a calculation formula for values Ls(k +
1) of k + 1 iteration is:

Ls(k + 1) = Ls(k) − ~ϕT (~xk+1) · ~fi · δ
−

i (k + 1). (30)

As follows from Eq. (30), that with positive value δ−i
(k + 1) the simultaneous implementation of conditions (15)

and (16) is possible only in the case ~ϕT (~xk+1) · ~fi > 0.

Using properties of hyperparallelepiped Ωm(k) the fol-

lowing assertion is true.

Assertion 1. Let the vector of coordinates of the some top
~bs∗(k) of hyperparallelepiped Ωm(k) is known, then coordi-

nates of tops ~bs(k) s = 1, ..., m which lie on the edges that

come from this top, is calculated by such formula

~bs(k) = ~bs∗(k) ± ∆i(k) · ~fi, i = 1, ..., m, (31)

where ∆i(k) = y+
i (k) − y−

i (k) and its sign is “+” if in

Eq. (14) for calculation of top ~bs∗(k) the component i of

vector ~Ys∗(k) is y−

i (k) and its sign is “-“ if this component

is y+
i (k).
After substituting recurrent Eq. (31) with the sign “+” and

“-” before ∆i(k) in proper Eqs. (12), (13) which are used for

calculation Ls(k) and L′

s(k) get

Ls(k) = Ls∗(k) − ∆i(k) · ξi,

L′

s(k) = L′

s∗(k) − ∆i(k) · ξi,

i = 1, ..., m,

(32)

where Ls∗(k), L′

s∗(k) are scalar functions that calculated for

fixed top ~bs∗(k); ξi = ~ϕT (~xk+1) · ~fi.

Let’s notice that values of all ξi, i = 1, ..., m can be cal-

culated before beginning the k iteration.

Let’s define an optimum, that is without reiterations, se-

quence of recurrent calculations of values Ls(k) and L′

s(k).
For this purpose conditionally all tops of hyperparallelepiped

Ωm(k) are divided into two groups of 2m−1 tops, so that for

tops of the first group it is possible to calculate values Ls(k)
by a proper part of recurrent Eq. from (32) and then L′

s(k)
by an equation:

L′

s(k) = −Ls(k) − ∆k+1.

For the second group at first also a proper part of recurrent

Eq. from (32) for a calculation L′

s(k) is used and then a value

Ls(k) is calculated by equation:

Ls(k) = −L′

s(k) − ∆k+1.

Under such calculation conditions in the first group of tops

should be the top ~bs(k) which coordinates are calculated by

Eq. (14) that includes vector ~Ys(k) consisting only of compo-

nents y−

i (k), ∀ i = 1, ..., m. Similarly, the top of the sec-

ond group includes vector ~Y ′

s (k) which contains only the

component y+
i (k), ∀ i = 1, ..., m. Let these tops in the

groups have number s = 1. Then, using Eqs. (12) and (13)

with replacement of appropriate vectors ~bs(k) by Eq. (14) on

F−1
m · ~Ys=1(k) and F−1

m · ~Y ′

s=1(k), the ratio for calculating the

function values Ls=1(k) and L′

s=1(k) for top s = 1 of the

first and second groups is get

Ls=1(k) = y−

k+1 − ~ϕT (~xk+1) · F
−1
m · ~Ys=1(k), (33)

L′

s=1(k) = ~ϕT (~xk+1) · F
−1
m · ~Y ′

s=1(k) − y+
k+1, (34)

where ~Ys=1(k) and ~Y ′

s=1(k) are vectors which include only

components y−

i (k) and y+
i (k) ∀ i = 1, ..., m accordingly.
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Considering Eqs. (33) and (34) the diagram of relation-

ship between given recurrent ratios (32) is represented by two

parallel calculable graphs.

The parallel calculable graphs for the case m = 5 are

showed in Fig. 3.

a) b)

Fig. 3. Computational graphs on iteration k of localization method

The top of the first graph (see Fig. 3a) marked “0” is in

accordance with the calculation Eq. (33) and Eq. (34) is in

accord with a top “0′” of second graph (see Fig. 3b). Other

tops of both graphs marked by characters ξi (i = 2, ..., m) are

in accord with recurrent Eqs. (32). Let’s fix any top on the

first graph (Fig. 3a) for which the known value of function

Ls∗(k) corresponds. Then it moves downward on the edges of

graph to the contiguous tops ξi. For calculation of the values

Ls(k) in these tops Eq. from (32) is used, in which a value ξi

is chosen on the basis of marking the received tops of a graph.

On the second graph for a calculation L′

s(k) similar pro-

cedures are applied.

The analysis of these graphs shows that a sequence of

calculations which are implemented in order a “top-down”

and “right-left” include the total number of intermediate val-

ues Ls∗(k) (L′

s∗(k)) not more m − 1. These values must

be remembered for calculations of the functions for the next

tops by recurrent Eqs. (32). Let’s denote an array of elements

L∗

j(k), j = 1, ..., m− 1 which is designed to store intermedi-

ate values of calculations. Then using the graph (Fig. 3a) the

order of calculations Ls(k), L′

s(k) (s = 1, ..., 2m−1) for cur-

rent top of hyperparallelepiped and values of elements L∗

j (k),
j = 1, ..., m − 1 is determined.

If s = 1 then conduct next calculations:

1. Calculation of the function value Ls=1(k) (for the top “0”)

by Eq. (33) and Eq.:

L′

s(k) = −Ls(k) − ∆k+1.

2. Setting L∗

j (k) = Ls=1(k) ∀ j = 1, ..., m − 1.

If number s − 1 is odd then

Ls(k) = L∗

m−1(k) − ∆m(k) · ξm,

L′

s(k) = −Ls(k) − ∆k+1,

and values L∗

j (k) remain unchanging for all j =
1, ..., m−1.

If s − 1 is even then

a) determining the number p by a condition of simple division

(s − 1)/ max
p=1,..,m−2

2p.

The number p sets the amount of arcs in graph Fig. 3a

which come out from this top. Accordingly, the calculated

value Ls(k) in this top is to be used for calculation of the p
values of scalar functions of other tops;

b) calculating the values Ls(k) and L′

s(k) by Eqs. according-

ly:

Ls(k) = L∗

m−p(k) − ∆m−p(k) · ξm−p,

L′

s(k) = −Ls(k) − ∆k+1;

c) setting L∗

m−1(k) = ... = L∗

m−p−1(k) = Ls(k).
The similar order of calculations must be applied for the

graph Fig. 3b with replacement Ls(k) on L′

s(k) and Eq.

L′

s(k) = −Ls(k)−∆k+1 on an Eq. Ls(k) = −L′

s(k)−∆k+1.

Graphs shown in Fig. 3, allow to perform recurrent pro-

cedures for the values calculation of scalar functions Ls(k)
and L′

s(k) for all tops of hyperparallelepiped. However, a full

implementation of the computational graph of the current it-

eration is undesirable due to considerable computational and

time costs. For example the tests showed that the full imple-

mentation of both graphs for the task dimension m = 30 (230

tops of hyperparallelepiped) in one iteration run take about 3.5

seconds of machine time. The tests conducted on a computer

processor type CELERON, with a clock speed of 2.3 GHz

and RAM 1 GB.

The above considerations allow to construct an efficient

implementation of computations on each iteration of the lo-

calization method as a software module LOCNAS. The soft-

ware interface of this module allows to set or to calculate the

configuration of localization set and also to input the structure

of interval model and observations in interval kind. A com-

putational scheme built on the graphs (Fig. 3) allows for par-

allelization of a computing process. So, to implement this it

is advisable to use the multiprocessor or multicomputer sys-

tem.
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