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TOPOLOGY OPTIMIZATION AND SENSITIVITY ANALYSIS

A stress-based formulation of the free material design problem

with the trace constraint and single loading condition
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Department of Structural Mechanics and Computer Aided Engineering, Faculty of Civil Engineering, Warsaw University of Technology,
16 Armii Ludowej St., 00-637 Warszawa, Poland

Abstract. The problem to find an optimal distribution of elastic moduli within a given plane domain to make the compliance minimal under
the condition of a prescribed value of the integral of the trace of the elastic moduli tensor is called the free material design with the trace
constraint. The present paper shows that this problem can be reduced to a new problem of minimization of the integral of the stress tensor
norm over stresses being statically admissible. The eigenstates and Kelvin’s moduli of the optimal Hooke tensor are determined by the stress
state being the minimizer of this problem. This new problem can be directly treated numerically by using the Singular Value Decomposition
(SVD) method to represent the statically admissible stress fields, along with any unconstrained optimization tool, e.g.: Conjugate Gradient
(CG) or Variable Metric (VM) method in multidimensions.
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1. Introduction

The structures made of a homogeneous material are non-
optimal even if their shape is rationally designed or obtained
by a certain optimization technique. The additional gain due
to an optimal distribution of the material within a given do-
main can be essential, worth of incurring additional costs of
replacing the homogeneous material by a non-homogeneous
one with rationally designed material properties. A typical ex-
ample of using composites is designing the plates and shells
as laminated bodies in which the fiber directions are chosen
optimally. The recent progress in the technology of compos-
ites makes it possible to control the microstructure in a con-
tinuous manner. This development is a driving force for the
new methods of optimization taking into account variation of
elastic moduli not only in thin-walled structures, but even in
the spatial bodies.

The process of controlling the material anisotropy can
be performed by designing the microstructure at the first
step, or- temporarily- by omitting the microstructural analy-
sis. The stream of papers based on the so-called relaxation
by the homogenization method (see the book by Cherkaev [1]
and the references therein) is concerned with just controlling
and designing the microstructure, usually at finite number of
levels (hence admitting a hierarchy of microstructures). The
anisotropic and non-homogeneous properties are only the by-
products of this modeling. However, one can take a risk to
circumvent the previous method and attack the problem of de-
signing the anisotropic properties directly, treating the process
of designing the microstructures as a post-processing, see [2].
The latter stream of papers refers to the free material design
(FMD). The model problem concerns the maximization of the
stiffness or minimizing the compliance due to a single loading

or by minimizing the linear combination of the compliances
corresponding to various independently applied loadings, see
e.g. Haslinger et al. [3] and [2, 4, 5].

In the papers on designing the microstructures, to make
the problem well-posed, an isoperimetric condition is imposed
on the amount of one material to be used or on the amount
of two or more materials to be used. In the problems of de-
signing of anisotropic properties a counterpart of the latter
isoperimetric condition should be assumed, yet the mass den-
sity cannot now be the integrand of the condition, as this
quantity does not enter the formulation. Instead, an isoperi-
metric condition is usually imposed on certain measures of
the tensor C of elastic moduli. The condition of isotropy of
the integrand Φ (C) of the isoperimetric condition means that
Φ (C) is expressed in terms of the other function whose argu-
ments are eigenvalues of the elasticity tensor C, or in terms
of Kelvin’s moduli. The assumption of convexity of Φ (C)
means that the aforementioned other function, of arguments
being eigenvalues of C is also convex, see Yang [6]. The
natural choice is the p-norm, applied in the present paper.

The version of the FMD method discussed here is stress-
based. This formulation has made it possible to perform the
optimization over the design variables analytically. A single
load condition is dealt with. The FMD problem is reduced to
the quasi-equilibrium problem

min






∫

Ω

‖τ‖ dx |τ statically admissible in Ω




 (P)

the main feature of which is the integrand being of linear
growth. A detailed formulation of this problem will be given
in Sec. 5. Thus the minimizer τ = π of problem (P) is not
characterized by the regularity properties of the elliptic prob-
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lem of elasticity in which the integrand of Castigliano’s prob-
lem has a quadratic growth. To make the problem (P) well
posed one should formulate appropriate assumptions within
the notion of statical admissibility. We can draw upon the
methods developed for the rigid-plastic bodies [7] and lock-
ing bodies, see [8–13]. The stresses are sought in the spaces
of bounded measures on Ω and along its boundaries, imposing
also the conditions on the divergence of stress and imposing,
in a weak sense, the boundary conditions along the edges sub-
jected to the tractions applied. To prove well-posedness of (P)
one can use the mathematical analogy of this problem with
the problem of equilibrium of the bodies with locking. These
problems are of mathematical nature and are not discussed
here; the reader is referred to [11–12].

Thus the solution π of problem (P) can be non-smooth
and constant in some subdomains. Moreover, the stress π can
be concentrated along some curves. The optimal tensor C is
constructed by means of the solution π; consequently, we take
into account that it will vanish in some sub-domains. We see
now, that an priori made assumption of the positive definite-
ness, imposed usually in the analysis of deformation of a body,
becomes too restrictive in the FMD optimization problem. It
is well seen during computations that the sequences of subop-
timal solutions, each of which being characterized by positive
definite Hooke tensors, tend inevitably to the optimum solu-
tion with Hooke’s tensor being degenerated, optimally suit-
ed to the loading applied. Roughly speaking, no stiffness is
required in the directions orthogonal to the non-zero stress
components.

The problem (P) looks similar to Michell’s problems of
construction of the lightest fully stressed trusses transmitting
given loads to a given contour of possible support. The stress-
based Michell problem reads

min






∫

Ω

(|τI | + |τII |) dx |τ statically admissible in Ω




 .

(PM )
We note that the integrand in (PM ) is of linear growth, simi-
larly as in (P). Thus one can expect that the solutions to both
the problems are somehow similar.

An essential part of the present paper is the numerical
treatment of the quasi-equilibrium problem (P) to which the
FMD problem has been reduced. The statically admissible
trial stress fields are interpolated within the finite element
by the same shape functions as those used for the interpola-
tion of the trial displacement fields. The unknowns describing
the stress fields satisfy the set of equilibrium equations, being
highly under-determinate. This set of equilibrium equations is
solved by using the singular decomposition method SVD, but
other numerical treatment have also been used, see Borkowski
[14]. Its numerical treatment is implemented by using special
tools of linear algebra, some of them available in Press et
al. [15]. Consequently, the trial stress fields are expressed in
terms of finite number of parameters on which no constraints
are imposed. Let us remind that the redundants in the force
method, known from structural analysis, are not subject to

constraints, since equilibrium of the basic structure is satis-
fied for arbitrary values of the reduntants; such elementary
analogies with the force method can be viewed as naive but
seem helpful for better understanding of the method used.
Thus the problem (P) is approximated by an unconditional
minimization problem for which one of available optimiza-
tion tools can be applied. Here the routines frprmn(. . . ) and
dfpmin(. . . ) published in Press et al. [15] are used.

Having found the minimizer π of (P) one can determine
optimal values of all components Cαβλµ of the Hooke ten-
sor C. The anisotropic and non-homogeneous plate thus con-
structed is the stiffest with respect to the given loading. In
the examples shown the minimal compliance of the optimal
anisotropic and non-homogeneous plate is more than 7 times
smaller than the compliance of the isotropic and homogeneous
plate satisfying the same isoperimetric condition on the trace
of C. This spectacular result reveals the gain we arrive at by
using composites instead of conventional materials, at least
in those cases when a single load is fixed. Extension of the
results presented to the two-load case can be done, as an-
nounced in [16]. The multi-load case in 2D and 3D is still in
progress.

2. Castigliano formulation

of the plane elasticity problem

Consider a 2D elasticity problem in the plane domain Ω; the
body is fixed along the contour Γ2. The Γ1 segment of the
contour is subject to the tractions of intensity T(s), s being
the natural parameter of the contour line. The domain Ω is
parameterized by the Cartesian coordinates (x1, x2) with the
basis (e1, e2); x = (x1, x2)is a point in Ω. The unknown
displacement field u = (u1, u2) and the virtual displacement
fields v = (v1, v2) are kinematically admissible if they vanish
on Γ2. In the preset paper we shall not discuss the regulari-
ty conditions, implicitly present in the definition of the space
V (Ω) of the kinematically admissible displacement fields. The
linear form on V (Ω)

f (v) =

∫

Γ1

T·v ds (1)

is called the virtual work of the given loading. Let E2
s be the

set of symmetric tensors of 2nd rank. The strains constitute a
tensor ε = (εαβ) ∈ E2

s of components εαβ (u) where εαβ (.)
is viewed as a symmetric part of the gradient

εαβ (v) =
1

2
(vα,β + vβ,α) , (2)

where (),α = ∂/∂xα, α, β = 1, 2. The stresses σ = (σαβ) ∈
E2

s are linked with strains by the Hooke law

σ = Cε (u) , σαβ = Cαβλµελµ (u) , (3)

where C = (Cαβλµ) is Hooke’s tensor of known symmetries.
Such tensors constitute a set E4

s . Almost everywhere in Ω the
components of tensor C satisfy the positivity condition

Cαβλµεαβελµ ≥ cεαβεαβ , c > 0 (4)
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the summation convention over small Greek indices being
applied. Moreover, we assume that Cαβλµ ∈ L∞ (Ω). Ten-
sor fields C satisfying the conditions above constitute a set
H (Ω) of admissible fields of Hooke’s tensors. The test stress
fields τ = (ταβ) of E2

s class at each point x in Ω is said to
be statically admissible if the following variational equation
holds ∫

Ω

τ · ε (v)dx = f(v) ∀v ∈ V (Ω) , (5)

where τ ·ε = ταβεαβ is a scalar product in E2
s which defines

the norm: ‖τ‖ = (τ · τ)1/2. The set of the fields τ satisfying
(5) is denoted by Σ (Ω).

This is a linear-affine set, its full characterization is subtle,
see [17].

If u ∈ V (Ω) while σ = (σαβ) given by (3) satisfies (5),
then such a field u is a solution of the given equilibrium prob-
lem. Let us stress that u depends on the filed C, which will
be written as u(C). The quantity

℘ (C) = f(u (C)) (6)

is called the compliance. It is emphasized that the compliance
is determined by the field C.

The Castigliano theorem provides the formula

℘ (C) = min





∫

Ω

τ ·
(
C−1τ

)
dx |τ ∈ Σ (Ω)



 (7)

see [18], [17]. Let us stress that this formula holds for the non-
homogeneous distribution of the material properties. Thus the
assumption C ∈ H(Ω) is sufficient for (7) to hold.

3. Formulation of the FMD problem

in its conventional setting

Having formulated the elasticity problem we can pass to the
formulation of FMD. Assume that all components of tensor
field C of class H(Ω) are design variables. Moreover, as-
sume that these fields of moduli are subject to the resource
constraint of the form

〈Φ (C)〉 = E0, 〈f〉 = |Ω|−1
∫

Ω

fdx, (8)

where 〈.〉 stands for the averaging over the body domain Ω;
Φ (C) is a scalar function of arguments Cαβλµ, while E0 is a
given elastic modulus which determines the averaged value of
the measure Φ (C). The condition (8) can be interpreted as a
constraint on the cost of the design, the integrand Φ (C) being
viewed as a unit cost of the material. As stressed above, the
solution u does depend on the distribution of Cαβλµ within
Ω under the condition that the loading T, the contours Γ1, Γ2

and the domain Ω are kept fixed. The problem

Y = min {℘ (C) |C ∈ H (Ω) , 〈Φ (C)〉 = E0 } (9)

is usually called the free material design-FMD- (or free mater-
ial optimization) problem. Its origin traces back to Refs. [19].
The meaning of the solutions of problems of type (9) de-
pends upon the choice of the function Φ (C). It is usually

required that this function is isotropic, see [20]. Here we shall
assume additionally that this function is convex. By the theo-
rem by Yang [7] such function can be expressed in terms of
a convex function of the eigenvalues of C. These eigenval-
ues λK = λK (C), K = 1, 2, 3, are called Kelvin moduli, as
proposed by Rychlewski [21], see [22]. In the present paper
the function Φ (C) will be assumed as p-norm of the vector
λ = (λ1, λ2, λ3)

Φ (C) = ‖λ (C)‖p , p ≥ 1,

‖λ (C)‖p =




d(d+1)/2∑

K=1

(λK)
p




1/p

,
(10)

where d is the dimension of Ω which is here equal to 2. Since
p−norm is convex with respect to λK = λK (C), K = 1, 2, 3,
the function Φ (C) is convex either. Let us note that
a) p=1; Φ (C) = trC, trC = Cαβαβ and

Φ (C) = λ1 + λ2 + λ3 (11)

b) p = 2; Φ (C) = (CαβλµCαβλµ)1/2 and

Φ (C) =
(
(λ1)

2 + (λ2)
2 + (λ3)

2
)1/2

. (12)

The FMD problem (9) with Φ (C) given by (10) for p = 1,
p = 2 has been already discussed in Refs. [3]. [19]. If appro-
priately regularized (for p = 1) this problem is solvable, see
Th. 2.8 in Ref. [3]. Insert now the formula (7) into (9) and
interchange the sequence of operators min, thus obtaining

Y = min {Z (τ) |τ ∈ Σ (Ω)} (13)

with

Z (τ) =

min






∫

Ω

τ ·
(
C−1τ

)
dx |C ∈ H (Ω) , 〈Φ (C)〉 = E0




.
(14)

The problem (14) cannot be solved without having a deep-
er insight into the algebraic structure of tensor C. This will
be discussed in the sequel.

4. A version of the free material design

with prescribed Kelvin moduli

Prior to formulate the optimal design problem we are inter-
ested in let us write down the spectral decomposition of the
Hooke tensor C

C = λ1P1 + λ2P2 + λ3P3, (15)

where
P1 = ω1 ⊗ ω1, P2 = ω2 ⊗ ω2,

P3 = ω3 ⊗ ω3

(16)

and ωK ∈ E2
s , K = 1, 2, 3. The quantities λK are Kelvin

moduli, see [21–22]. Let λ1 ≥ λ2 ≥ λ3 ≥ λ0 and λ0 > 0.
Tensors ωK are called eigenstates and satisfy the local or-
thonormality conditions

ωK · ωL = δKL, K, L = 1, 2, 3. (17)
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Let us compute the integrand in (7) by using representa-
tion (15)

τ ·
(
C−1τ

)
=

1

λ1
(ω1 · τ)

2
+

1

λ2
(ω2 · τ)

2

+
1

λ3
(ω3 · τ)

2
.

(18)

By using the spectral representation of the unit tensor
in E4

s

I = (Iαβλµ) , Iαβλµ =
1

2
(δαλδβµ + δαµδβλ) (19)

or
I = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 (20)

we eliminate ω1 in (18) to find

τ ·
(
C−1τ

)
=

1

λ1
‖τ‖2

+ ν2 (ω2 · τ)
2

+ ν3 (ω3 · τ)
2
,

(21)

where ‖τ‖2
= τ · τ and

ν2 =
1

λ2
− 1

λ1
, ν3 =

1

λ3
− 1

λ1
, (22)

where ν3 > ν2 > 0. We re-write (7) as

℘ (λ, ω2, ω3) =

min





∫

Ω

[
1

λ1
‖τ‖2 +ν2 (ω2 · τ)2 +ν3 (ω3 · τ)2

]
·dx

|τ ∈ Σ (Ω)

}
.

(23)

Assume that the Kelvin moduli are fixed within Ω while
the eigenstates ωK , K = 2, 3 are design variables in the
optimum design problem:
find the eigenstate fields ω2, ω3 within Ω satisfying (17)
pointwise and making the compliance (23) minimal. (P1)

Let us write this problem more formally. Let Q (Ω) be the
set of pairs a, b of tensor fields on Ω such that a · b = 0,
a·a = 1, b·b = 1. Like in (23) the compliance ℘ is treated as
a functional depending on the vector λ = (λ1, λ2, λ3) (which
is fixed here) and depending on (ω2, ω3) ∈ Q (Ω) . Problem
(P1) is rewritten as

I (λ) = min {℘ (λ, ω2, ω3) |(ω2, ω3) ∈ Q (Ω)} , (P1)

where ℘ (λ, ω2, ω3) is given by (23). Since the terms under-
lined in (23) are non-negative, the minimum is attained on
tensors ωK , K = 2, 3 such that

ω2 · τ = 0, ω3 · τ = 0. (24)

If one assumes

ω1 =
1

‖τ‖τ (25)

and ω2 is assumed such that

ω1 · ω2 = 0, ω2 · ω2 = 1 (26)

and if we fix ω3 such that

ω1 · ω3 = 0, ω2 · ω3 = 0, ω3 · ω3 = 1 (27)

then the fields ω2 , ω3 chosen this way are minimizers of
(P1). Then I (λ) = I1 (λ) and

I1 (λ) =





∫

Ω

1

λ1
‖τ‖2

dx |τ ∈ Σ (Ω)



 (28)

Let τ = σ̃ be the minimizer of I1. Then the formulae

ω1 =
1

‖σ̃‖ σ̃, ω1 · ω2 = 0,

ω2 · ω2 = 1, ω1 · ω3 = 0,

ω2 · ω3 = 0, ω3 · ω3 = 1

(29)

determine the eigenstates ωK , K = 1, 2, 3. The optimal lay-
out of the moduli is given by (15), (16). These formulae de-
termine the moduli Cαβλµ up to one parameter which fixes
juxtaposition of ω2 with respect to ω1.

5. Releasing the Kelvin moduli

5.1. Formulation of the free material design problem in

the stress-based setting. Let us assume that Φ (C) is given
by (10). Let us re-write the problem (9) as follows

Yp = min {℘ (λ, ω2, ω3) |(ω2, ω3) ∈ Q (Ω) ,

λK ∈ L∞ (Ω) , λK ≥ λ0,
〈
‖λ‖p

〉
= E0

}
.

(30)

We have assumed that λK > λ0, where λ0 > 0 is a given
modulus. Assume, that λ0 < Λ/(3 |Ω|). Minimization in (30)
over (ω2, ω3) has been done in Sec. 4. Thus the problem
above reduces to

Yp = min
{

I1 (λ)
∣∣∣λK ∈ L∞ (Ω) ,λK ≥ λ0,

〈
‖λ‖p

〉
= E0

}
,

(31)
where I1 (λ) is defined by (28). The operation of min over τ

can be put before operation min over λ thus obtaining

Yp = min {Jp (τ) |τ ∈ Σ (Ω)} , (32)

where

Jp (τ) = min






∫

Ω

1

λ1
‖τ‖2

dx |λK ∈ L∞ (Ω) ,

λK ≥ λ0,

∫

Ω

‖λ‖p dx = Λ





(33)

and Λ = |Ω|E0.

5.2. Case of p = 1: the free material design with the

trace condition. Consider the case of p = 1, which
meansΦ (λ(C)) = tr C, tr C = Cαβαβ . The functional (33)
assumes the form

J1 (τ) = min






∫

Ω

1

λ1
‖τ‖2

dx |λK ≥ λ0,

∫

Ω

(λ1 + λ2 + λ3) dx = Λ



 .

(34)
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The minimum will be attained if λ1 runs over the largest
possible set or in the case when λ2, λ3 assume the minimal
value λ0 in the whole domain Ω. Thus

J1 (τ) = min






∫

Ω

1

λ1
‖τ‖2

dx |λ0 − λ1 ≤ 0,

∫

Ω

λ1dx = Λ0



 ,

(35)

where
Λ0 = Λ − 2λ0 |Ω| . (36)

The lagrangian has the form

L =

∫

Ω

1

λ1
‖τ‖2

dx + µ




∫

Ω

λ1dx − Λ0




+

∫

Ω

γ (x) (λ0 − λ1 (x)) dx.

(37)

The stationarity conditions and the Karush-Kuhn-Tucker
(K-K-T) conditions imply

− 1

(λ1 (x))
2 ‖τ (x)‖2

+ µ − γ (x) = 0,

γ (x) ≥ 0,

(λ0 − λ1 (x)) γ (x) = 0,

λ0 − λ1 (x) ≤ 0,
∫

Ω

λ1 (x) dx = Λ0, µ ∈ R.

(38)

The domain Ω is divided into

Ω1 = {x ∈ Ω |λ1 (x) > λ0 } , Ω0 = {x ∈ Ω |λ1 (x) = λ0 } .

Note that γ (x) = 0 if x ∈ Ω1, hence for such x

λ1 (x) =
‖τ (x)‖√

µ
. (39)

Let us re-write the isoperimetric condition in the form
∫

Ω1

λ1dx +

∫

Ω0

λ1dx =Λ0, (40)

hence, by (38, 39), we have

1√
µ

∫

Ω1

‖τ‖ dx + λ0 |Ω0| = Λ0, (41)

which gives
1√
µ

=
Λ1∫

Ω1

‖τ‖ dx

, (42)

where
Λ1 = Λ0 − λ0 |Ω0| . (43)

Note that |Ω0| ≤ |Ω|, hence Λ1 ≥ Λ− 3λ0 |Ω| and by the
condition λ0 < Λ/(3 |Ω|)we conclude that Λ1 ≥ 0 . Thus we
have

λ1 (x) =
Λ1∫

Ω1

‖τ‖ dx

‖τ‖ . (44)

The distribution of the main Kelvin modulus is

λ1 (x) =





λ0 for x ∈ Ω0

Λ1∫

Ω1

‖τ‖ dx

‖τ‖ for x ∈ Ω1 . (45)

The functional (35) can be written as

J1 (τ) =
1

λ0

∫

Ω0(τ)

‖τ‖2
dx +

1

Λ1




∫

Ω1(τ)

‖τ‖ dx




2

, (46)

where it is stressed that the domains Ω0 (τ) and Ω1 (τ) do
depend on τ. We come back to Y1

Y1 = min {J1 (τ) |τ ∈ Σ (Ω)} , (47)

where J1 (τ) is given by (46). The formula becomes effective
if one admits λ0 = 0 in (34). Let us write (35) for the case
of λ0 = 0

J1 (τ) = min





∫

Ω

1

λ1
‖τ‖2 dx

∣∣∣∣∣∣
−λ1 ≤ 0,

∫

Ω

λ1dx = Λ



 .

(48)
The lagrangian has the form

L =

∫

Ω

1

λ1
‖τ‖2 dx + µ




∫

Ω

λ1dx − Λ



 , (49)

while the condition λ1 ≥ 0 can be omitted. Indeed, the K-K-T
conditions and stationarity conditions assume the form

− 1

(λ1 (x))
2 ‖τ (x)‖2

+ µ = 0,

∫

Ω

λ1 (x) dx = Λ, µ > 0.
(50)

Thus

λ1 (x) =
1√
µ
‖τ (x)‖ . (51)

Substitution into the isoperimetric condition leads to the
formula for

1√
µ

=
Λ∫

Ω

‖τ‖ dx

(52)

and substitution into (51) results in

λ1 (x) =
Λ∫

Ω

‖τ‖ dx
‖τ (x)‖ . (53)
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One can compute the target function

J1 (τ) =
1

Λ




∫

Ω

‖τ‖ dx




2

. (54)

Substitution into (47) gives

Y1 =
1

Λ
min









∫

Ω

‖τ‖ dx




2

|τ ∈ Σ (Ω)





(55)

which is equivalent to

Y1 =
1

Λ



min






∫

Ω

‖τ‖ dx |τ ∈ Σ (Ω)









2

. (56)

The minimizer τ = π of the problem

min





∫

Ω

‖τ‖ dx |τ ∈ Σ (Ω)



 (P ) (57)

determines the optimal distribution of the modulusλ1according
to (53)

λ1 (x) =
Λ∫

Ω

‖π‖ dx

‖π (x)‖ (58)

and λ2 = λ3 = 0. Thus the optimal material is degenerated.
Let us re-write (58) as follows

λ1 (x) = E (π (x)) (59)

with

E (π) = E0
‖π‖
〈‖π‖〉 (60)

the averaging 〈.〉 being defined by (8). Let us introduce the
stress tensor of unit norm

π̂ (x) =
1

‖π‖π (x) (61)

and let ω2 (x) , ω3 (x) ∈ E2
s , x ∈ Ω, satisfy the conditions

(29) or
π̂ · ω2 = 0, π̂ · ω3 = 0,

ω2 · ω3 = 0, ‖ω2‖ = 1,

‖ω3‖ = 1.

(62)

The components of the tensor C are expressed by

Cαβλµ = E (π) π̂αβ π̂λµ +0 · (ω2αβω2λµ + ω3αβω3λµ) (63)

hence
σαβ = E (π) π̂αβπ̂λµελµ (64)

or
σ = E (π) (π̂ · ε)π̂. (65)

Remark. The tensor fields σ and π are colinear. The stress
trajectories of the initial problem with optimally chosen elas-
tic moduli follow the trajectories of the pseudo-stresses of
problem (P).

The solution to problem (30) for λ0 = 0 and p = 1 has
the following non-unique form
λ1 – given by (59), λ2 = λ3 = 0
ω1 = π̂, ω2, ω3 chosen such that the triplet (π̂, ω2, ω3)
is orthonormal.

The field π is the minimizer of the problem (P) or (57).
The nonuniqueness of the choice of (ω2, ω3) can be in-

terpreted as the consequence of the formulation (30), where
only one loading condition is assumed. If two loading condi-
tions are assumed, and if the target function is the weighted
sum of two compliances both λ1 6= 0, λ2 6= 0 are determined
by optimization, the smallest Kelvin modulus vanishes, while
the triplet ω1, ω2, ω3 is usually uniquely determined, see
[16, 23]. If three loading conditions are assumed, all three
Kelvin moduli are uniquely determined.

Let us compute the trace of C

trC = Cαβαβ = E(π) (66)

and the average of the trace

〈trC〉 = E0 = Λ |Ω|−1 (67)

which confirms that the condition (8) is fulfilled. Let us com-
pute the Frobenius norm of C

‖C‖2 = (CαβλµCλµαβ)
1/2

= E(π). (68)

We note: trC = ‖C‖2 = E(π) and this equality sug-
gests that the solutions to problem (30) for p = 1, p = 2 are
identical if λ0 = 0. This issue will be discussed later.

The problem (30) for p = 1 has been discussed for the
first time in [19] in the form

Ỹ1 = min

{
℘ (C)

∣∣C ∈ E4
s ,C being positive semi – definite,

∫

Ω

tr C dx = Λ

}
(69)

which means that here λ0 = 0. The equivalence of (30) for
p=1 and (69) follows from the equality:

trC = Cαβαβ = λ1 + λ2 + λ3 = ‖λ‖1 . (70)

The assumption λ0 = 0 implies λ2 = λ3 = 0. Hence the
optimal material is degenerated.

5.3. Case of p > 1. We come back to the problem (33).
To enable λ1 run over possibly large set one should choose
λ2 = λ3 = λ0. Thus the only unknown is λ1 to solve the
problem

Jp (τ) = min






∫

Ω

1

λ1
‖τ‖2

dx |λ0 − λ1 ≤ 0,

∫

Ω

[(λ1)
p + 2 (λ0)

p]
1/p

dx = Λ



 .

(71)
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Consider the lagrangian

L =

∫

Ω

1

λ1
‖τ‖2

dx

+ µ




∫

Ω

[(λ1)
p + 2 (λ0)

p]
1/p

dx − Λ





+

∫

Ω

γ (x) (λ0 − λ1 (x)) dx.

(72)

There, where γ = 0 the stationarity condition of L with
respect to small changes δλ1 assumes the form

(λ1)
p+1

[(λ1)
p

+ 2 (λ0)
p
]
1− 1

p

=
‖τ‖2

µ
. (73)

We shall give up computing λ1 since this is analytically
cumbersome in the case of λ0 6= 0. On the other hand the
assumption λ0 = 0 reduces (73) to (51), which is p indepen-
dent. Indeed, in the case of λ0 = 0 the problem (71) becomes
p independent and the solution for p=1 is here valid. The case
of p=2 was already discussed in [19].

The results above extend to the 3D case. If Ω is a 3D
domain and x = (x1, x2, x3) then representation (15) can be
extended to the case of d = 3. The conditions (17) hold for
K, L = 1, . . . , 6. The results (28), (29) are valid with Σ (Ω)
referring to the 3D setting. The results (64), (65) also extend
to the 3D case.

6. The stress-based numerical approach

to solving the FMD problem

with trace constraint

6.1. Approximation of problem (P ) .The problem (P ) or
(57) will be solved numerically with using the new developed
scheme of construction of statically admissible stress fields
defined element-wise along with the optimizer solving the
minimization problem. The numerical approach starts from
division of the domain Ω into 4-node, quadrilateral, isopara-
metric finite elements with bilinear shape functions interpo-
lating four stress fields τ11, τ22, τ12, τ21

τ11 (ξ, η) = N0 (ξ, η) τ0 + N1 (ξ, η) τ3 + N2 (ξ, η) τ6

+N3 (ξ, η) τ9,

τ22 (ξ, η) = N0 (ξ, η) τ1 + N1 (ξ, η) τ4 + N2 (ξ, η) τ7

+N3 (ξ, η) τ10,

τ12 (ξ, η) = N0 (ξ, η) τ2 + N1 (ξ, η) τ5 + N2 (ξ, η) τ8

+N3 (ξ, η) τ11,

τ21 (ξ, η) = τ12 (ξ, η)

(74)

within an e-th element Ωe , where ξ, η parameterize mas-
ter element ̟ = [−1, 1] × [−1, 1] and τ3i+0, τ3i+1,
τ3i+2 (i = 0, 1, 2, 3) are the unknown nodal stresses τ11 ,τ22,
τ12 in the nodes 0,1,2,3 respectively (see Fig. 1) (we simplify
notation and omit upper index e writing e.g. τj instead more
correctly τe

j ).

Fig. 1. Mapping of the master element ̟ onto e-th real finite element
Ωe

The shape functions N0, N1, N2, N3 are given by the
formulae

Ni (ξ, η) =

[
1 − (−1)

i mod 2
ξ
] [

1 − (−1)
i div 2

η
]

4
(i = 0, 1, 2, 3) ,

(75)

where mod operator computes the integral part of the result
of dividing its first operand by its second, and div operator
returns the integer remainder of the result of dividing its first
operand by its second.

The virtual displacement field v = (v1, v2) in variational
Eq. (5) is interpolated within an e-th element Ωe similarly as
the stress field

vk (ξ, η) =

3∑

i=0

Ni (ξ, η) p2i+k−1 (k = 1, 2) , (76)

where p2i+0, p2i+1 (i = 0, 1, 2, 3) are the unknown nodal vir-
tual displacements v1, v2 at the nodes 0,1,2,3 respectively.
The components of the gradient (∇v)αβ are computed by the
following formulae
[

(∇v)α1 (x)

(∇v)α2 (x)

]
=

[
j11 j12

j21 j22

] [
vα,ξ

vα,η

]
(α = 1, 2) , (77)

where jαβ = jαβ (ξ, η) are the components of the inverse of

the jacobian matrix defined by the partial derivatives
∂xα

∂ξ
,

∂xα

∂η
(α = 1, 2) of the transformation x = (x1, x2) defining

the shape of the body Ω. Substitution of (74)–(77) into the
variational Eq. (5) results in the set of linear equations repre-
senting the equilibrium conditions

B Ξ = Θ, (78)

where B ∈ MM×n is the rectangular M × n statics matrix,
Θ ∈ RM , Ξ ∈ Rn are vectors of nodal forces (only partial-
ly known !) and unknown nodal parameters τj defining the
stress fields, respectively. Number M of rows and number n
of columns (unknown nodal parameters τj , j = 1, ..., n in
global notation ) in the matrix B are equal (in 2D case) to
2× N and 3× N respectively, where N denotes the number
of all nodes in the global finite element mesh. Similarly as in
the Force Method (FM) (see [24]) we perform the partition
of the rectangular matrix B and vector Θ into two matrices:
upper Bu ∈ Mm×n, lower Bl ∈ M(M−m)×n and two vectors
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Θu ∈ Rm,Θl ∈ RM−m, respectively. The first m indices
of the rows in upper matrix Bu correspond to the indices
defining the global, unknown, free degrees of freedom and
the remaining M – m indices of the rows in lower matrix Bl

correspond to the indices of the global, known, constrained
degrees of freedom (boundary conditions). All components
of the vector Θu are known and the vector Θl of the un-
known boundary reactions can be calculated from the relation
Θl = BlΞ upon finding the vector Ξ from the system of rec-
tangular linear equations Bu Ξ = Θu. In the Force Method,
the number M – m defines the degree of statical indetermina-
cy of the bar structure and of course could be equal 0. In the
problem considered the number M – m is always positive.
The set of all solutions of the equations

Bu Ξ = Θu (79)

can be expressed as

ℑ =

{
Ξ = Ξ (α1, ..., αs) ∈ Rn |Ξ

= Ξ∗ +

s∑

k=1

αkhk, αk ∈ R

}
,

(80)

where

hk = [h1 k, h2 k, ..., hn k]
T

, k = 1, 2, ..., s (81)

are the vectors that span the s-dimensional kernel of the ma-
trix Bu and Ξ∗ = [τ∗

1 , τ∗

2 , ..., τ∗

n ]
T ∈ Rn is the arbitrary, fun-

damental solution of the set of linear equations Bu Ξ = Θu.

The source codes implementing the decomposition (80)
are provided by Borkowski [14], the Appendix, the code in
FORTRAN. The representation (80) can be also performed
with using the SVD decomposition and just this method has
been chosen in the present paper. The short description of the
SVD algorithm is given in the Appendix.

In each e-th finite element Ωe, the stress components (74)
depend not only on (ξ, η) ∈ ̟ and local nodal parameters
τ∗

j (j = 0, 1, ..., 11) but additionally on global parameters
α1, ..., αs defining the linear combinations of the particular
local components hj k (j = 1, ..., n, k = 1, ..., s). In other
words, upon constructing the solution (found only once!) of
the linear, rectangular algebraic system Bu Ξ = Θu, one
obtains a very simple approximation of the statically admis-
sible set of the stress fields Σ (Ω) determined by s global
parameters αi ∈ R

Σ (ζ, α1, ..., αs) =

{
τ = τ (ζ, α1, ..., αs)

=

[
τ11 (ζ, α1, ..., αs) τ12 (ζ, α1, ..., αs)

τ21 (ζ, α1, ..., αs) τ22 (ζ, α1, ..., αs)

]
∈ M2 × 2

}
,

where ζ = (ξ, η) ∈ ̟ and

τ11 = N0 τ∗

0 + N1 τ∗

3 + N2 τ∗

6 + N3 τ∗

9

+

s∑

k=1

αk N0 hI0 k +

s∑

k=1

αk N1 hI3 k

+

s∑

k=1

αk N2 hI6 k +

s∑

k=1

αk N3 hI9 k,

τ22 = N0 τ∗

1 + N1 τ∗

4 + N2 τ∗

7 + N3 τ∗

10

+
s∑

k=1

αk N0 hI1 k +
s∑

k=1

αk N1 hI4 k

+

s∑

k=1

αk N2 hI7 k +

s∑

k=1

αk N3 hI10 k,

τ12 = N0 τ∗

2 + N1 τ∗

5 + N2 τ∗

8 + N3 τ∗

11

+

s∑

k=1

αk N0 hI2 k +

s∑

k=1

αk N1 hI5 k

+

s∑

k=1

αk N2 hI8 k +

s∑

k=1

αk N3 hI11 k,

τ21 = τ12.

(82)

Note that j in τ∗

j runs over {0,1,. . . ,11}, while j in
hj kruns over {1,2,. . . ,n}.

The (constrained) problem (P ), see (57) is now reformu-
lated to the algebraic (unconstrained) problem Pα

min
(α1,...,αs)∈Rs

{Fα} , Fα (α1, ..., αs)

=
∑

e

∑

ζQ
∈̟

w
(
ζ

Q
) ∥∥∥τe

(
ζ

Q, α1, ..., αs

)∥∥∥

·
∣∣∣det∇x

(
ζ

Q
)∣∣∣ (Pα).

(83)

where ζ
Q =

(
ξQ, ηQ

)
∈ ̟ and w = w

(
ζ

Q
)

are Gauss

integration points and weights, respectively.
In each arbitrary, but fixed point ζ = (ξ, η) ∈ ̟, the

gradient

df = df (ζ, α1, ..., αs) =

[
∂f

∂α1
...

∂f

∂αs

]T

∈ Rs (84)

of the function

f = f (ζ, α1, ..., αs) = ‖τ (ζ, α1, ..., αs)‖ (85)

is defined by the following formula

df (ζ, α1, ..., αs)

=
1

‖τ‖

[
τ · ∂τ

∂α1
... τ · ∂τ

∂αs

]T

∈ Rs,
(86)

where see (82)

∂τ11

∂αk
= N0 hI0 k + N1 hI3 k + N2 hI6 k + N3 hI9 k,

∂τ22

∂αk
= N0 hI1 k + N1 hI4 k + N2 hI7 k + N3 hI10 k,

∂τ12

∂αk
= N0 hI2 k + N1 hI5 k + N2 hI8 k + N3 hI11 k.

(87)
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The formulae (85)–(87) make it possible to calculate
the components of the gradient of the objective function
Fα (α1, ..., αs) in (83).

6.2. The algorithm. The computational procedure consists
of the following steps

Step 1. Set the rectangular system of linear algebraic Eqs. (78)
B Ξ = Θ, according with FEM.

Step 2. Apply FM to separate upper sub-matrix Bu and up-
per sub-vector Qu corresponding to the unknown degrees of
freedom of the FEM.

Step 3. Define the set (80), i.e. find the solutions Ξ =

Ξ∗ +
s∑

k=1

αk hk of the rectangular system of linear algebraic

equations Bu Ξ = Θu.

Step 4. Apply any algorithm of the nonlinear mathematical
programming to find the solution [α1, ..., αs]

T ∈ Rs of the
minimization problem

min
(α1,...,αs)∈Rs





∑

e

∑

ζQ
∈̟

w
(
ζ

Q
)

fe
(
ζ

Q, α1, ..., αs

) ∣∣∣det∇x
(
ζ

Q
)∣∣∣




 ,

where the function fe = fe
(
ζ

Q, α1, ..., αs

)
and its gradient

dfe are defined in (85) and (86), respectively.

Step 5. According with the formulae (82), find the all com-
ponents π11, π22, π12 of the optimal stress tensor π defined
by the optimal solution α1, ..., αs found in step 4.

Step 6. According with the formulae (60) and (63) find the
distribution of λ1 = E (π) and optimal moduli Cαβγδ.

We have implemented two various, gradient-oriented nu-
merical routines in C language: frprmn(. . . ) and dfpmin(. . . )
(see [15], p. 423 and 428) for obtaining the optimal solu-
tion α1, ..., αs. These routines implement the Fletcher-Reeves
(FR), Polak-Ribiere (PR) or Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms of non-linear mathematical pro-
gramming. We always call routines frprmn(. . . ) or dfp-
min(. . . ) for the initial values of design parameters α1, ..., αs

randomly generated within the arbitrary range [−z, +z] , z >
0 or for all αi = 0 , i = 1, ..., s. The average number of the
main iteration loops for the assumed tolerance tol = 1.0·10−5

was equal from ∼50 to ∼150. The optimal value of the
objective function was independent of the initial values of
αi , i = 1, ..., s and was always the same or nearly the same
after the both routines finished its job. The time of execut-
ing of the optimization procedures was essentially shorter in
comparison with the time of finding the solution with SVD
decomposition of the FEM static problem (for the presented
below two examples: seconds, e.g. ∼ 60-120 and minutes, e.g.
∼60-120 on VAIO laptop, CPU 2.53 GHz). The non-gradient
algorithm powell(. . . ) [15] gave the same numerical results of
optimum point (α1, ..., αs) but the time of executing of the
program was for the relatively small number of the unknowns
unacceptable long (above few hours and more).

Example 1. The first example concerns a rectangular plate
of length Lx = 4.0 [m] and height Ly = 2.0 [m]. The finite
element mesh is defined by nx × ny = 60 × 30 = 1800
quadrilateral modules (see Fig. 2). The total number of nodes
N = (nx + 1) (ny + 1) = 1891, which gives the total number
of the columns and rows in matrix B equal to n = 3N = 5673
and M = 2N = 3782, respectively (n and M are also equal
to the total number of the unknown nodal, stress parameters
τj and total number of the degrees of freedom, respectively).
The 9- and 3- points Hammer – Stroud rules of the Gauss in-
tegration for the two-dimensional cube and one- dimensional
segment are adopted, respectively.

Fig. 2. The body Ω – rectangular plate Lx × Ly , FEM mesh nx × ny , boundary conditions, and loading P defined by weight function
traction
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The plate is supported at two non-sliding supports on the
left edge (lower and upper node) and subject to a vertical load
at the right edge (tangent to the vertical edge), see Fig. 2. The
two point supports are constructed by the three fully clamped
nodes in horizontal and three fully clamped nodes in vertical
direction in the local neighborhood of the both left nodes:
lower and upper, respectively. The traction T is modeled by
the weight function (see Fig. 2)

∀y ∈ [0, Ly] T = T (y) = Tmax e−( y−y0

w )
2

, (88)

where Tmax = 1.0
[
N/m2

]
, y0 = 1.0 [m], w = 0.25 [m].

The vertical resultant of the traction loading equals P =
0.44 Tmax. The optimal distributions of the modulusλ1 (x) =
E (π (x)) and of the components C1111, C1122, C1112, C2222,
C2212, C1212 are shown in Fig. 3 (referred to E0) using the
contours graphic output in Voxler Graphical System. The ini-
tial and optimal values of the objective function (for all initial

αi = 0) were 6.6[Nm] and 5.6[Nm] after 133 iterations, re-
spectively.

The optimal value of the compliance function can be eas-
ily calculated from the formula (56). In our case, we have

Y1 =
1

Λ



min





∫

Ω

‖τ‖ dx | τ ∈ Σ (Ω)








2

=




∫

Ω

‖π‖ dx




2

E0 |Ω| =
(5.633115)2

E0 8.0
∼= 3.9665

E0
.

(89)

This value can be alternatively calculated from the formula
∫

Γ1

T · u ds, (90)

where u ∈ V (Ω) is the solution of Eq. (5), i.e.

Fig. 3. Solution of Example 1. Distribution of the optimal λ1 (π) /E0 , denoted symbolically as E(pi), and optimal moduli Cαβγδ =
Cαβγδ/E0
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∀v ∈ V (Ω)

∫

Ω

σ (u) · ε (v) dx =

∫

Γ1

T · v ds,

σ (u) = C(π)ε (u)

(91)

for the optimal Hooke tensor C = Copt = C(π) giv-
en by (63). The problem (91), involving the optimal non-
homogeneous and (in our case - optimal) anisotropic elasticity
tensor C = Copt = C(π), has been solved by the classical
FEM. Upon finding the numerical solution u, one can com-
pute the components of the stress tensor field σ = σ (u) and
then calculate the optimal compliance from the formulae (32),
(33) for p = 1 and (9), i.e. simply as

∫

Ω

σ (u) · ε (u) dx. (92)

The three results: (89), (90) and (92) should be exactly
the same. In our case we have got the following values (90)
and (92):∫

Γ1

T · uds =

∫

Ω

σ (u) · ε (u) dx ≈ 3.9568

E0
, (93)

which confirms the correctness of the numerical solution cal-
culated from the analytical formula (89). The small differences
between (89) and (93) can be e.g. explained as the result of
the fact that FEM interpolation of the displacement fields u

and v in (91) is defined by the same shape functions (75) used
in the interpolation of the stress field τ in (74) and (78). The
partial derivatives of the shape functions (75) in (91) defining
the interpolation of the strain and next of the stress field are
evidently not the same as the shape functions (75) defining
the interpolation of the stress field (74) directly.

As the last step in the post-processing analysis we
make a comparison of the compliance of the optimal, non-
homogeneous and anisotropic body Ω with the compliance

of the homogeneous and isotropic body Ω. It can be easily
shown that for an isotropic body the Kelvin moduli λ1, λ2,
λ3 are equal to 2k, 2µ, 2µ respectively, where

k =
E

2 (1 − ν)
, µ =

E

2 (1 + ν)
, (94)

here E and ν denote Young modulus and Poisson ratio, re-
spectively. Let E0 in (8) be given. Assume that the condition

λ1 + λ2 + λ3 = const = E0,

i.e.
E (3 − ν)

(1 − ν) (1 + ν)
= E0

(95)

holds pointwise in the design domain, thus satisfying the
isoperimetric condition (34). From (95) we can calculate the
Young modulus and next, for the given Poisson ratio ν, we can
calculate the constants k and µ by (94). The constant compo-
nents of the isotropic Hooke tensor Ciso are then expressed
by

Ciso
1111 = Ciso

2222 = k + µ, Ciso
1122 = k − µ,

Ciso
1212 = µ, Ciso

1112 = Ciso
2212 = 0,

(96)

see e.g. [23]. Next we find the solution of the Eq. (91) for
σ (u) = Ciso (π) ε (u) and calculate compliance from (90)
or (92). In our case, for ν = 0.3, the result is

∫

Γ1

T · u ds =

∫

Ω

σ ·
(
Ciso

)−1
(π) σ dx ∼= 28.5175

E0
. (97)

Therefore, the compliance of the homogeneous, isotrop-
ic material with moduli given by (94), (96) is ∼7.2 greater
than the compliance of the optimal plate. In Fig. 4 below the
components of the three stress fields are shown: minimizer
π of the functional (57), solution σ of the equation (91) for
optimal Copt = Copt (π) and σiso for isotropic Hooke tensor
Ciso.

Fig. 4. The first row shows the contour plots of the components π11, π12, π22 of the statically feasible stress field π being the minimizer in
problem (57). The second row shows the components σ11, σ12, σ22 of the stress field σ corresponding to the optimal, non-homogeneous,
anisotropic Hooke tensor C

opt given by (63). The last row presents the components σiso
11 , σiso

12 , σiso
22 of the stress field σiso corresponding

to the homogeneous, isotropic Hooke tensor C
iso, cf. (96)
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It is numerically confirmed that the fields π, σ are similar:
they have common trajectories but differ in the magnitudes of
their components, see (65) and a remark below this formula.
The field σiso is clearly different.

Example 2. The second example concerns a half-annular plate
being an image of a rectangle of dimensions Lx ≈ 6.0 [m]
and Ly = 2.0 [m]. The finite element mesh is defined by
nx×ny = 60×20 = 1200 quadrilateral elements (see Fig. 5).
The total number of nodes equals N = (nx + 1) (ny + 1) =
1281; the total number of the columns and rows in matrix B

equal to n = 3N = 3843 and M = 2N = 2562, respec-
tively. The half-annular plate is clamped along the lower,

vertical edge and subject to a vertical, constant unit load
Ty = −1.0

[
N/m2

]
at the top edge (tangent to the verti-

cal top edge) in the first case and to a horizontal, constant
pressure load Tx = 1.0

[
N/m2

]
perpendicular to the same

top, vertical edge, see Fig. 5.

The optimal distributions of the modulus λ1 = E (π) are
shown for two load cases considered, see Fig. 6. The initial
and optimal values of the objective function (for all initial
values αi = 0) for the first case of loading are 28.5 [Nm]
and 20.8 [Nm], respectively, after 64 iterations. In the second
case of loading these values are 43.6 [Nm] and 35.3 [Nm],
respectively, after 102 iterations.

Fig. 5. The half-annular plate with lower edge clamped. Two cases of loads (Ty, Tx) is discussed. The FEM mesh nx × ny is shown at the
right-hand side

Fig. 6. Solution of example 2. Distribution of the optimal modulus λ1 (π) /E0 (denoted as E(pi)) for the first case of loading (left figure)
and second case of loading (right figure)
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To make the result of the left layout of Fig. 6 (repeated at
left of Fig. 7) easily manufacturable, this layout is filtered in
black and white to obtain the right-hand layout in Fig. 7. This
sharpened layout can be interpreted as the internal stiffening
of the half-annular plate, which is designed to resist the ver-
tical force, resembling a bow prestressed by a rope. Vertical
displacements are then minimized. Similar filter sharpening
can be performed for the second case of load, in which the
sandwich-like structure emerges to minimize the horizontal
displacements.

Fig. 7. The resulting distribution of λ1 (π) /E0 (at left) and its black-
white filter image

7. Final remarks

The stress-based approach to FMD problem with the trace
constraint has made it possible to reduce the optimization
problem over the Hooke’s tensor at each point to the mini-
mization problem (P) or (57), its formulation being situated
between equilibrium problem of the body (then the norm of
stress should be squared) and the Michell problem (PM ) in
which the integrand is expressed in terms of principal stress-
es and is of linear growth as in (P). The stress-based ap-
proach used is advantageous over the displacement – based
approach, since the whole optimization has been performed
analytically, the remaining problem (P) being reminiscent of
the equilibrium problem which always should be satisfied. The
problem (P) to which the FMD problem has been reduced
is numerically solved by virtue of the SVD decomposition
method and gradient oriented non-constrained optimization
solvers implementing e.g. Fletcher-Reeves, Polak-Ribiere or
Broyden-Fletcher-Goldfarb-Shanno algorithms. The numeri-
cal results obtained compare favourably with the known FMD
results thus proving their correctness.

The paper has dealt with a single load case, for which the
dimension of the problem (2D or 3D) was not an essential

factor. The dimension of the problem becomes an essential
parameter if more than one loading case is discussed. The
aim of the current research and of the forthcoming papers is
to extend the results of [16, 23], where two load cases have
been considered, to the 3D setting. The results concerning the
2D setting were obtained by virtue of the geometric visualiza-
tion of plane stress tensors as vectors in space. To obtain the
desired generalization to 3D one should treat stress tensors as
vectors in R6, including their rules of rotations.

Appendix

The details of the numerical the numerical treatment of the
semi-equilibrium problem (P ) will be presented. The numer-
ical approach is based upon the following theorem of lin-
ear algebra: any m × n matrix A = (Aij) ∈ Mm×n can
be written as the product of an m × n column-orthogonal
matrix U = (Uij) ∈ Mm×n, an n × n diagonal matrix
W = (Wij) ∈ Mn×n with positive or zero elements and the
transpose of an n×n orthogonal matrix V = (Vij) ∈ Mn×n.
Thus A = U W VT . If m < n, the values Wjj for
j = m+1, . . . , n are all zero and the corresponding columns
of U are also zero. The matrices U and V satisfy the following
orthonormality conditions:

∀1 ≤ k ≤ m, ∀1 ≤ l ≤ m,
m∑

i=1

UikUil = δkl,

n∑

j=1

VjkVjl = δkl.
(A1)

The decomposition A = U W VT can always be done,
no matter how singular the matrix A is. The numerically sta-
ble routine svdcmp(. . . ) that performs SVD on an arbitrary
matrix A (see [15], p. 67) was implemented in our program.

Consider the set of equations A x = b, where A∈ Mm×n,
x ∈ Rn , b ∈ Rm in the case when we have fewer lin-
ear equations m than unknowns n. Upon performing the
SVD decomposition, besides n – m zero diagonal elements
Wjj = 0 (since m < n), there may exist additional zero or
negligible Wjj . The SVD decomposition yields an equiva-
lent set of equations Wξ = β where ξ = (ξj) = VT x ∈
Rn, β = (βi) = UT b ∈ Rn. First, we calculate vector
β = UT b taking no account of columns Uj (j = 1, ..., n)
of the matrix U with indices j = jk (k = 1, ..., s) defining
Wjkjk

= 0. Next we calculate vector ξ, dividing all elements
βj (j 6= jk, k = 1, ..., s) by non-zero diagonals Wjj , i.e.

ξj =
βj

Wjj
(j 6= jk, k = 1, ..., s)

·(ξ = W−1 β only if all diagonals Wjj 6= 0)

(A2)

All remaining elements ξj (j = jk, k = 1, ..., s) will
be equal zero. Then, the first (non-unique) basic solution
x∗ ∈ Rn of the non-homogeneous set of equations A x = b

will be calculated as x∗ = Vξ. The simple numerical
“back-substitution” routine svbksb(. . . ) (see [15]) for obtain-
ing a fundamental solution vector x∗ was implemented in our
program. The solutions x̂ ∈ Rn (or rather a complete fami-
ly of the solutions) of the non-homogeneous set of equations
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A x = b can be written as x̂ = x∗+xo, where the linear com-

binations xo =
s∑

k=1

αk Vjk
∈ Rn, αk ∈ R of the columns

Vj (j = jk, k = 1, ..., s) of the matrix V that correspond to
Wjkjk

= 0, are the arbitrary solutions of the homogeneous
set of equations A x = 0. Denoting the base of the kernel of
A by {hk}k=1,...,s, we define the set of all solutions of the
equation A x = b as

ℑ=

{
x=x (α1, ..., αs)∈ Rn |x =x∗+

s∑

k=1

αk hk, αk ∈R

}
,

(A3)
where hk = Vjk

, k = 1, ..., s. This construction makes it
possible to represent the statically admissible stress fields in
the numerical treatment of problem (P ), which is a crucial
tool in the present paper.
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