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Abstract. Morphogenetic theories investigate the mechanisms of creation and regulation of definite biological forms in living organisms.
The incredible diversity of shapes and sizes is generated through a barely unknown coordination of biochemical processes occurring at
molecular levels. Such a crosstalk not only defines the rules of a robust scheme of matter differentiation, but it also has the capacity to adapt
with respect to some variations of the environmental conditions. In this work, we propose a continuum model of growth and mass transport
for biological materials during morphogenetic processes. Using the theory of configurational forces, we define the thermomechanical bases
for understanding how both the mechanical and the biochemical states can orchestrate growth. The model is successfully applied to describe
the morphogen-driven growth control in the imaginal wing disc of Drosophila melanogaster.
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1. Introduction

The first mechanistic treatment of the interrelations between
growth and form is due to D’Arcy Thompson, who sought
to explain the generation of organic forms from a structural
optimization principle under given physical forces [1]. This
approach practically identifies form as Goethe’s concept of
’Gestalt’, being described like a mathematical mapping of
the same organic structure. A radical conceptual change later
arose thanks to the combined development of genetics and em-
bryology. In 1938, Waddington used the term ’evocator’ to in-
dicate a biochemical substance enabling certain potential abil-
ities in the embryonic tissue [2]. This concept was implicitly
employed by Turing for the definition of *'morphogens’, intend-
ed as diffusible secreted substances acting like evocators of
shape [3]. In Turing’s idea, morphogens behave like activators
and inhibitors in chemical reactions, directing the formation of
complex patterns from homogeneous states through the cou-
pling between their reaction-diffusion mechanisms. Wolpert
later simplified this concept of reacting substances, introduc-
ing the seminal idea that cells acquire positional informa-
tion by reading the local signalling level of diffusive mor-
phogens [4]. In the so-called *French flag” model, he proposed
that target cells might use this information as a paradigm
to give rise to spatial patterns, activating different transcrip-
tion genes depending on given concentration thresholds of the
morphogens. This apparently simplistic model was later con-
firmed by experimental observations on the early Drosophila
embryo, where the concentration gradient of the protein Bi-
coid (a transcription factor) drives an antero-posterior differ-
entiation in three separated domains, scaling with embryo size
like the colours in a flag. Although successful and long time
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accepted as a universal mechanism, this patterning model is
based on two controversial issues, as one can question if mor-
phogens can actually freely diffuse, and if their concentration
field is sufficiently stable. Wolpert himself later argued that
passive diffusion might not be a reliable mechanism inside
cells [5]. Morphogenetic movements are rather determined
by other transport mechanisms, such as planar transcytosis
(via endocytosis and re-secretion), cytonemes (using actin fil-
aments bridging) or through heparan sulphate proteoglycans
(enhancing the spreading at the cell surfaces) [6]. Moreover,
graded morphogens generally travel through individual cells
with different sizes and mechanical/chemical properties, being
subjected to fluctuations on short length-scales, while driving
precise positional information. Without discussing in further
details such limiting aspects, it is now generally accepted that
more complicated morphogenetic models are needed in the
wide scenario of embryogenesis. In fact, it has been also
pointed out that morphogens have a much broader function-
ality, behaving as both patterning agents and growth factors
[7]. Grafting experiments on amphibians have shown that re-
generation, i.e. intercalary growth, occurs between cellular
boundaries that are not normally in contact. Furthermore, par-
ticular tissue components, called ’organizers’, have the ability
to coordinate defined structural changes in neighbouring cells,
intrinsically carrying information about the final size. Unlike
their function in pattern formation, the role of morphogens in
the regulation of growth, shape and size is largely unknown.
On one hand, their local concentration can trigger an increase
of mass resulting from a random cellular proliferation. Pre-
ferred orientation may exists in cellular division as well as
competition between different cell populations. On the other
hand, further spatial orchestration is needed in order to trans-
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form random proliferations into a uniform growth, which must
ultimately ceases as the correct size is reached. The control of
shape can therefore depend both on cell number and on over-
all size, suggesting that the spatial gradient of morphogens
can provide cells a dimension-sensing mechanism. This early
vision was also supported by the discovery that cells have the
ability to measure gradients comparing their own signalling
level with those of their neighbours through specific regula-
tory pathways [8]. Nevertheless other interpretations are also
possible. In fact, cells can change relative position undergoing
a rearrangement process (e.g. during intercalation), implying
that they are able to remodel their adhesive contacts making
use of a mechanical feedback with their environment to adjust
their position [9]. Giving a practical example, the stop signal
for growth, thus determining the final size, could be triggered
by a morphogen gradient level below a minimal threshold, as
well as by a critical increase in tissue compression, causing
a progressive inhibition of growth.

In summary, the orchestration of shape and size in the bi-
ological realm is more likely based on a combination of me-
chanical and biochemical feedbacks. Despite of the explosive
rate of new knowledge on the biochemistry of morphogenesis,
a major challenge is to understand the coordination between
mechanical properties of the cells and the morphogenetic sig-
nals. In the following, we will discuss how the configuration
forces theory can be used as a suitable theoretical framework
for bridging this gap. The theoretical framework is defined
in Sec. 2, and it is applied in Sec. 3 to a biological model
system.

2. Definition of the theoretical model

The aim of this section is to introduce the proper kinematical
description and the basic balance principles necessary to de-
fine a configurational-force theory of volumetric growth and
mass transport inside a continuous body.

2.1. Kinematics. Let us consider a mapping x = f(X,¢)
that provides the actual position x of a material point of a
continuum body at time ¢, with position X in the reference
configuration. The deformation field is described through the
tensor gradient of deformation F = Grad x = V xXx, and the
second gradient of the deformation VxF = VxVxx. The
mechanical problem for volumetric growth and mass trans-
port can be formulated in material and spatial references, us-
ing two different space-time parametrizations: the so-called
direct and inverse kinematics, respectively. The direct kine-
matics is based on the set of variables (X,?) belonging to
the physical space, and the equations involves the spatial
velocity v = 0x/0t|x, and the material (spatial) velocity
gradient 1 = OF/dt|x (L = OF/dt|xF~!). On the other
hand, the inverse kinematics is based on the inverse motion
X = f~l(x,t), where the material domain changes over time
keeping its range fixed. When dealing with inhomogeneities
(or pseudo-inhomogeneities, in a more general framework)
in the material setting, the theory of configurational forces
demonstrates that the spatial parametrization is unable to ac-
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count for all the degrees of freedom associated to the deforma-
tion fields [10]. In particular, the physical linear momentum
density p, conjugated to the spatial velocity v, is uniquely as-
sociated to the translational momentum. In the material man-
ifold, the inverse motion velocity V can be defined through
the identity:

dX  OfY(x,t)

of H(x,t) ox|
dat o

ox EX_

e))
=V+Flv=0.

When dealing with problems involving local rearrangements
of the material manifold, we must therefore consider the bal-
ance of conjugated momentum P,,,, also referred as pseudo-
momentum density or canonical energy-momentum density.
Furthermore, as accurately discussed in [11], a second gradi-
ent morphoelastic model is necessary if we want to include
mass transport phenomena.

2.2. Balance principles. A continuum treatment of growth
must account for a volumetric creation and/or absorption of
mass (through source/sink terms in the balance equation) as
well as for a surface flow, defined by a material flux M. The
balance of mass in the material manifold is expressed in func-
tion of the time derivative (indicated as an upper dot) of the
reference density pg at the material point in X:

po =I'(ca; Vxca)po + Vx. M )

where c,,, with a = 1, ....n, are passive scalar fields determin-
ing the time- and space-dependent characteristics of growth
inside the continuum. In our modeling framework, the scalars
ca(X,t) can be seen as the concentration per unit of ma-
terial volume of chemical substances (e.g. nutrients) and/or
molecular signals (e.g. growth factors, morphogens) which are
dispersed in the biological matter during the morphogenetic
processes. In particular, the volumetric source of mass I' and
the surface mass flux M may depend on both the local con-
centration and on the gradient of the internal variables, for
consistency with the preliminary discussed experimental ob-
servations.

In terms of configurational forces, such scalar fields can
be treated as internal variables in the expression of the
free energy W per unit mass of the system, with U =
Y (F,VxF, c,, Vxca,0; X, t). Here an explicit dependence
both on the absolute temperature © and on X are consid-
ered (so that the material can be smoothly material inho-
mogeneous), while we drop an explicit dependence on time,
discarding phenomena like ageing.

Indicating with T' ¢, T, the first Piola-Kirchhoff stress and
hyperstress, i.e. the energy conjugates of F and V xF, we can
write the balance of mechanical energy of the body. Exploit-
ing the principle of virtual powers and taking into account
Eq. (2), we can write the local form for the balance of linear
momentum in direct kinematics, as follows:

d dp
< =P _gar
I (pov) 0 o + L pov 3

+ Vx. (Tf — Vx. T5+M®V),
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where f represents the body force, and ® is the dyadic prod-
uct. In Eq. (3), we assumed that the internal variables have
negligible inertia, so that they do not represent internal de-
grees of freedom (see [10], Ch. 5, for a broader discussion).
As already discussed, a more suitable description of the evo-
lution of material inhomogeneities requires a balance princi-
ple for the pseudo-momentum vector P,,, = poF7.F.V. This
balance equation can be obtained by a canonical projection of
Eq. (3) in the material setting, and reads:

dP.,
dt
Equation (4) states that there are five sources of material in-
homogeneities: the convection of the body forces in £¢%¢, the
volumetric growth in f9, the true material inhomogeneities in
f»" the internal variables in f¢, and the temperature in f ©
They are defined as:

=frt LI L1 9 L Uk, b (4)

fert — _§) F,

£9 = %Pm — (Vxv.M) F,

(K — po¥)

inh __
= oX

|empl7 (5)

ov ov
= —pg <—cha +

Ocq, B(VXCQ)VXVXCQ) ’

ov
Po 90
where K = 1/2poV.C.V is the kinetic energy density, and
7 is the entropy density per unit mass. The explicit derivative
on X for " is defined keeping any other field constant. Ac-
cording to Eq. (4), the evolution of material inhomogeneities
is driven by the second-gradient Eshelby stress tensor, defined
as b = by + Vx.b,, whose components read:

O = VxO = ponVx0O,

bf = —(K — po¥)Ig — T;.F — 2T, : (VxF), (6)

b, = Vx.(T,.F). 7

In addition, we must impose that the Helmholtz free ener-
gy be frame-indifferent for arbitrary rotations of the actual
configuration. This condition gives:

FT;+VxF:T,=FT;+VxF:T,)" (8

and corresponds to a second-order balance principle for the
angular momentum, imposing the symmetry of the general-
ized first-order Cauchy stress.

Let us now investigate the thermodynamic requirements
for our growing continuum. Indicating with ¢ the internal en-
ergy per unit mass, the local form of the first law of thermo-
dynamics can be expressed as follows:

poé¢ =T; :F+ Ty VxF —Vx. Q419+ M.Vye, (9)
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where 7 is the external heat supply per unit of volume, and
Q is the heat flux. Equation (9) is complemented by the lo-
cal form of the second law of thermodynamics, imposing the

following entropy inequality:
(Q + 6) . (10

. T
poil > M.Vxn+ = — Vx. )

)
where Q represents an ‘extra’ entropy flux, possibly driven
by the diffusion of the internal variables inside the material.
Recalling that the Helmholtz free energy per unit of mass is
defined as ¥ = ¢ — On, we put together Egs. (9), (10) obtain-
ing the Clausius-Duhem form of the dissipation inequality for
a second gradient continuum:

—po(T+On) +T;:F+T,: VxF
(11)
+M- (VX\I/ +77VX@) — % . Vx@—F@Vx.Q >0

Equation (11) describes the thermodynamical restriction for
the energy dissipation rate inside a growing second gradient
hyperelastic continuum.

2.3. Constitutive equations with growth. As discussed in
a preceding paper [12], volumetric growth can be mod-
eled using a material isomorphism based on both a first-
and a second-order transplant F';, and Qg, respectively. In
this framework, the strain energy density is given by ¥ =
(detFy) - ¥o(Fe, Qe, ca, Vxca, ©), where the elastic terms
F., Q. read as follows:

F.=FF,"
1 1 1 1 (12)
Q. =VgF:[F, ' F,'|-F.Q,:[F, ', F,]

from the composition laws of the first and second derivatives,
where (C : [A, B))ijx = CiapAa;Bar. In the geometrical
line description, in Eq. (12) we introduce a first-order (gener-
ally not symmetric) material connection I', and a symmetric
second-order linear connection A, defined as:

I=-F,'VxF,; A=F,.Q, (13)

representing the torsion and the curvature of the true material
inhomogeneities. Using the transformation rules of Eq.(12) in
the dissipation inequality, we derive the following constitutive
equations in isothermal conditions:

T ov
T . gl w7 _ 0
(v.7: FDFT]) = Trgq
’ (14)
AN
Qg : Ts + FqTf = Jpoa—:Fe,
while Eq. (11) can be simplified as:
—by: (F,F, ) + M.V T + b A +0Vx.Q
15
ov . n ov Voo ) >0 (1)
- —Co+ =—=——Vxéa | >0.
po OCq d(Vxca) X
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In summary, the first-order Eshelby stress in the grown state,
given by

T ¢ 9
bf—pO (1/)1—8—]?8.]?@—28—(26.Qe>,

and the material Eshelby hyperstress by drive the evolution of
F, and Qg, respectively. The Clausius-Duhem inequality in
Eq. (15) provides the thermodynamic basis for understanding
how the regulation mechanisms of growth and shape are cou-
pled with both the mechanical and the biochemical state of
the continuum. In the following, we discuss the role of con-
figurational forces during morphogenesis in a simple model
system.

3. Application: the growth control
in the imaginal wing disc of Drosophila

The imaginal wing disc of Drosophila melanogaster is a flat
pouch of tens of epithelial cells formed at the early larval
stage of development. During the metamorphosis in the pupa,
the cells inside the disc multiply their number by a factor one
thousand in about four days, while the disc dimensions pre-
determine the final size of the adult fly. In this larval period,
the disc growth is regulated by the morphogen Decapenta-
plegic (DPP), which is secreted in a central smooth boundary
between two sets of cell compartments. While the local con-
centration of DPP is found to trigger growth by activating
wing patterning genes, DDP also spreads in the disc, form-
ing a concentration gradient which is somehow implicated in
growth and shape regulations. The aim of this paragraph is to
investigate such orchestration mechanisms using the proposed
theoretical framework.

Experimental studies have observed that growth inside
the imaginal disc is spatially homogeneous [13], so that we
can set Fy = g(¢)I, where g(¢) is a time-dependent scalar
growth rate. Moreover, the relative position between cells
is found to remain unaltered over time, allowing to impose
M = 0 everywhere. For the sake of simplicity, we neglect
the presence of second-order inhomogeneities in the growth
process, setting Q, = 0 and not evolving. The strain ener-
gy density per unit mass of the imaginal disc takes the form
U =J- -¥y(Fe,c Vxe, 0), where J = (detF) is the area
increase of the disc and c is the local material concentration of
DDP. Using a suitable field-theoretic viewpoint we envisage
an extra-entropy flux given by

ov
d(Vzc)
so that the reduced dissipation inequality in Eq. (15) reads:

Q:PO C/@v

~by: (FgFgl)—po‘;—fez 0, (16)
where the chemical potential associated to the morphogen,
given by the functional derivative of W, is coupled with the
growth evolution. Guided by the experimental knowledge, re-
porting a morphogen gradient scaling with tissue size [14],
we can postulate the following simplified form of the strain
energy density:
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\IJO(Fea C, VXCa 6)

B (17)
(DVXC.VXC + 'YCQ) + \IJO(Fea 6)7

|

where 7, D, ~ are positive coeflicients which may depend at
most on the temperature. In agreement with Eq. (16), a dissi-
pative evolution equation for the morphogen can be given in
the material setting by:

65—\?/7 = —yc+ Vx.(DVxc)
Eq. (18) is a mobility equation having both an intrinsic time-
scale T = vy~ !, e.g. the half-life of DDP inside the disc, and
a typical lengthscale L = /DT, which may represent the de-
cay length of the exponential decrease of DDP from the source
in experiments. In the following, we will consider dimension-
less equations using the variables = ¢/T and X = X/L.
Wartlick et al. [14] have also reported that all cells in the disc
measured the same temporal changes in DDP signalling, so
we can give the solution of Eq. (18) using a variable separa-
tion ¢(X,7) = cx(X) - ¢;(t), which reads:

. T 2 ~

alt) g VexX) (19)
c(t) cx (X)
where « is a positive constant, which represents the space
invariant temporal increase in DDP. Such a value is empiri-
cally found to correlate with the growth rate of cells, so that
a < 1, representing the ratio between the half-life time of
DDP (about 30 minutes) and the doubling-time of cells in-
side the imaginal disc (about 4 hours) [14]. The exponential
distribution cx is therefore completely defined imposing the
growth-triggering value Cy at the external border of the disc,
together with the border continuity of ¢ and V¢ with the out-
er solution, which must vanish at long distances. This simple
derivation is left as an exercise to the readers.

In absence of external geometrical constraints, the growth
process does not generate residual stresses inside the imagi-
nal disc, so that F, = I and Bf = Jpo¥ol. Moreover, we
can postulate that po7¢? = £JpoWo + X, where € represents
the constant production rate of strain energy density per unit
volume, so that ¥ > 0 is the energy dissipation rate of the
growth process. Considering that the cells keep their spatial
density p. unchanged during the growth process, and recall-
ing that pg = p. - J, we derive from Eq. (16) the following
constitutive equation for growth:

é=—

(18)

J po DR
SR @ E Y =

Putting together Egs. (19), (20), we find that

log(ci(F)) = %mg(w)) = 2§log<g<f>>,

which corresponds to the experimental curves in [15]. In par-
ticular, the cellular proliferation rate inside the disc is corre-
lated to the temporal signalling increase in DDP through a
system constant, experimentally measured at /& ~ 0.59.

In conclusion, we have demonstrated that the DDP mor-
phogen controls growth and shape regulations inside the imag-
inal disc at the larval stage. An additional hypothesis can be

(20)
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done on the control of its final size, which can be determined
by the spatial gradient of ¢, given by V,c = F~T.Vxe.
When V,c decreases under a minimal threshold at the bor-
der, growth stops in an outer ring of the disc. Consequently,
inner cells proliferation provokes residual compression inside
the disc, which in turn gradually inhibits growth thanks to the
Eshelbian coupling in Eq. (16). Further developments in this
sense will make the object of a future work.

4. Conclusions

Developmental biologists made enormous progress over the
past decades in deciphering the molecular bases of pattern
formation; however, shape and size regulations are still poor-
ly understood. In this work, we proposed a continuum model
for growth and mass transport during morphogenetic process-
es. Using the theory of configurational forces, we have de-
termined the thermo-mechanical bases of growth regulation
mechanisms based on both the mechanical and the biochemi-
cal state of the tissue. The model is successfully applied to de-
scribe how the DDP morphogen in Drosophila melanogaster
not only triggers growth of the imaginal wing disc, but can
also control its shape and final size.

REFERENCES

[1] D’Arcy W. Thompson, On Growth and form, Cambridge Univ.
Press, Cambridge, 1917.

[2] C.H. Waddington, “The distribution of the evocator in the un-
fertilized egg”, J. Exp. Biol. 15, 382-384 (1938).

[3] A.M. Turing, “The chemical basis of morphogenesis”, Proc.
R. Soc. Lond. Biol. Sci. B 237, 37-72 (1952).

Bull. Pol. Ac.: Tech. 60(2) 2012

[4] L. Wolpert, “Positional information and the spatial pattern of
cellular differentiation”, J. Theor. Biol. 25, 1-47 (1969).

L. Wolpert, “Positional information and patterning revisited”,
J. Theor. Biol. 269, 359-365 (2011).

S.J. Day and P.A. Lawrence, “Measuring dimensions: the
regulation of size and shape”, Development 127, 2977-2987
(2000).

T. Lecuit and L. Le Goff, “Orchestrating size and shape during
morphogenesis”, Nature 450, 189-192 (2007).

AJ. Zhu and M.P. Scott, “Incredible journey: how do devel-
opmental signals travel through tissue?”, Gene Dev. 18, 1985—
1992 (2004).

T. Lecuit and P.F. Lenne, “Cell surface mechanics and the con-
trol of cell shape, tissue patterns and morphogenesis”, Nature
Rev. Mol. Cell. Biol. 8, 633-644 (2007).

G.A. Maugin, Configurational Forces: Thermomechanics,
Physics, Mathemathics and Numerics, CRC Press Taylor and
Francis, Boca Raton, 2010.

P. Ciarletta and G.A. Maugin, “Elements of a finite strain gra-
dient thermomechanical theory for material growth and remod-
elling”, Int. J. Nonlinear Mech. 46, 1341-1346 (2011).

P. Ciarletta, D. Ambrosi, and G.A. Maugin, “Mass transport in
morphogenetic processes: a second gradient theory for volu-
metric growth and material remodelling”, J. Mech. Phys. Solids
60 (3), 432-450 (2012).

L. Le Goff and T. Lecuit, “Gradient scaling and growth”, Sci-
ence 331, 1141-1142 (2011).

O. Wartlick, P. Mumcu, F. Julicher, and M. Gonzalez-Gaitan,
“Understanding morphogenetic growth control — lessons from
flies”, Nature Rev. Mol. Cell. Biol. 12, 594-604 (2011).

O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum,
F. Julicher, and M. Gonzalez-Gaitan, “Dynamics of Ddp sig-
nalling and proliferation control”, Science 331, 1154-1159
(2011).

(3]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

257



