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Abstract. In this paper a new flow control strategy for connection-oriented communication networks is presented. It utilises methods of
control theory, in particular the Smith predictor and dead-beat control, to achieve desirable dynamics of the considered network. In contrast
to a number of earlier proposals in which the controller command is interpreted as the rate transmission, in our solution it is interpreted as
the quantity of data that the controlled node is expected to send. This allows us to model a single virtual connection with non-persistent
data source as a time-delay system in which the delay may temporarily exceed its assumed boundary. Favourable properties of the proposed
control strategy are formulated as mathematical theorems and thoroughly discussed.

Key words: telecommunication networks, congestion control, Smith predictor.

1. Introduction

Various forms of digital data transfer play more and more
important role in the global economy as well as our day-to-
day life. Business transactions, video streaming, worldwide
publishing, WEB 2.0 – all these features of modern Inter-
net causes the rapidly growing demand for high data transfer
rates. To fulfil this demand, new physical layer technologies
are introduced so that the available throughput of network
links is increased. As the data transmission through a net-
work link is subject to the signal propagation delay (which
is a physical property of the link), modern communication
networks are characterised by large bandwidth-delay product.
Moreover, multiple data flows, that impose different quality
of service (QoS) requirements (such as minimum delay, max-
imum throughput or transfer reliability) are passing through
the network links in parallel, sharing the bandwidth. Taking
this into account we can clearly see that the throughput avail-
able for a specific flow may vary with time in an unpredictable
way. Thus, to achieve satisfactory throughput utilisation and
transfer reliability, a suitable flow control strategy must be
applied to such networks.

The problem of data flow control in fast communication
networks has been subject of a number of research efforts. A
good survey on earlier data flow control schemes is present-
ed in [1]. Afterwards, various control strategies, employing
artificial intelligence [2–4], fuzzy logic [5], game theory [6,
7] and other approaches, were proposed. Furthermore, it is
worth notifying that the communication network can be mod-
elled as a time-delay control system. This allowed many re-
searchers to apply numerous methods of control theory (such
as classic PD [8, 9], PID [10], sliding mode [11–15], stochas-
tic [16] or adaptive [17] controllers) to the problem of data
flow control in these networks. As the propagation delays may

be significant, the use of the Smith predictor combined with
proportional, dead-beat, on-off and other types of controllers
has been the subject of many research projects [18–26].

In this paper we propose a flow control strategy for fast,
connection-oriented communication networks. The strategy
combines the benefits of the Smith predictor and dead-beat
control. On the contrary to the most earlier solutions, the
strategy described here assumes that the data source in virtu-
al connection interprets the control value (received from the
controller placed at the node) as the quantity of data that it is
expected to send, instead of the rate at which it should transfer
the data [11–15]. The change of the control value interpreta-
tion is motivated by the fact that the idea of rate-based control
is noticeably inconsistent with the way the real communica-
tion networks work. First, it cannot be assumed that the source
is able to send data at the rate that is exactly equal to the value
established by the controller. In fact, the source always sends
data at the rate determined by the physical layer that supports
the transmission. Therefore, the term “rate control” can be
referred only to an average rate value calculated within some
time window. Taking into account the granularity of data units
that are transmitted in the network we can obviously state that
the data transmission rate can be controlled only with some
finite accuracy. Moreover, we cannot guarantee that the prop-
agation delay between the controlling node and the source is
constant. Even if we assume that the overall delay is variable
but bounded, the upper bound may be exceeded, i.e. due to
the congestion of some of the intermediate nodes. Combining
both issues mentioned above one should easily conclude that
it is impossible to guarantee node congestion avoidance if we
apply rate-based flow control scheme to a real communication
network.

The remainder of the paper is organised in the following
way. The model of the considered network is described in
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the second section. Then the design of the proposed control
strategy is presented, along with theorems and discussions
of its important properties, such as congestion avoidance and
effective throughput utilisation. Finally, the fourth section con-
cludes the paper.

2. Network model

We consider a packet-switching telecommunication network,
consisting of data sources, intermediate nodes and destina-
tions. The data stream partitioned into packets is transmit-
ted from a source to its destination through a number of
intermediate nodes. Every intermediate node works in the
store&forward mode, that is each packet received by the node
is stored in a buffer where it waits until it is sent to another
node. As the capacity of the buffer is limited, excessive inflow
rate may cause that the received packet need to be dropped. In
such a situation we state that the node is congested. An occur-
rence of the node congestion and packet loss usually impose
several negative consequences on the network performance,
in particular throughput degradation.

We assume that the network is of connection-oriented
type, which means that before any data is transmitted, a virtu-
al connection between the source and the destination has to be
established. The virtual connection defines a set of nodes that
transmit packets from the source to the destination, called the
path. The path for an established virtual connection remains
unchanged until the connection is closed.

We take into account a set of J (where J > 1) virtual con-
nections that pass through a specified intermediate node. We
assume that this node is the bottleneck node for every virtual
connection belonging to set J , that is, the available through-
put at the node limits the throughput of each connection. Thus
the state of the other intermediate nodes is negligible from the
perspective of data flow control. This allows us to reduce the
considered virtual connections to the configuration consisting
of their sources, destinations and the single bottleneck node,
as it is shown in Fig. 1. Similar approach is widely used in
research works [18–20, 22–26].

Fig. 1. Model of multi source connection-oriented communication
network with bottleneck node R

The queue of packets stored in memory buffer of the bot-
tleneck node can be then modelled as dynamic system depict-
ed in Fig. 2.

Fig. 2. Model of packets queue in the bottleneck node buffer

Let j = 1, 2, ..., J and t, t ≥ 0, denote time. The symbol
uj(t) represents the rate at which the data sent by j-th source
is being received by the node. Thus, the overall rate at which
data reaches the buffer, denoted as u(t), can be calculated as

∀
t≥0

u(t) =

J
∑

j=1

uj(t). (1)

The throughput available for the connections is denoted as
d(t). This function cannot be determined a priori, although it
is known that its values are nonnegative and bounded by posi-
tive constant dmax. Function h(t) represents the rate at which
the data stored in the buffer is sent by the node. This value
is also nonnegative and not greater than available throughput,
so we have

∀
t≥0

0 ≤ h(t) ≤ d(t) ≤ dmax. (2)

Then, assuming that the buffer is initially empty, the queue
length, denoted by x(t), can be calculated as

∀
t≥0

x(t) =

t
∫

0

u(τ)dτ −

t
∫

0

h(τ)dτ . (3)

We expect that the considered network is able to provide ex-
plicit feedback to the sources. It is accomplished by using
special units called control units, which are sent periodically
by the source to the destination and immediately sent back to
the source. Every intermediate node is allowed to put the con-
trol value into control unit, and the source utilises obtained
control value to adjust its operation to the state of the network.
A good example of such a solution is ATM network with ABR
service category [27]. We assume that the control units are
numbered starting from 0, and for every virtual connection it
is assured that k-th control unit (k = 0, 1, 2, . . .) arrives at a
bottleneck node at time instant t(k) = kT, where T denotes
the discretisation period. Thus control values calculated by
the node form a sequence denoted by {a(k)}. Further in the
paper we use notation x(k), u(k) and for other functions in-
stead of x(kT ), u(kT ) etc. This applies to every time function
except h(k) defined below.

For any positive integer k we also define h(k) (i.e. the
amount of data sent by bottleneck node) within time period
[(k − 1)T ; kT ]

∀
k>0

h(t) =

kT
∫

(k−1)T

h(τ)dτ . (4)

3. Proposed control strategy

We propose a control strategy that combines the Smith pre-
dictor and a dead-beat control. For every nonnegative k the
control value is obtained from the following formula
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∀
k≥0

a(k) = XD − x(k) − w(k), (5)

where positive reference value XD is a parameter of the con-
trol strategy and w(k) denotes the amount of ‘in flight’ data.
Such a data exists due to the delay in the considered system
incurred by the propagation latency on the network links. The
k-th control packet sent by the bottleneck node is received by
the source of the j-th virtual connection with backward prop-
agation delay denoted as TB:j , at the moment tR:j(k). Let
wB:j(t) represent the sum of the control values carried by
the control packets not yet received by the source. Further-
more, additional delay may be introduced by the source, if it
does not have enough data to be sent according to the control
value. tS:j(k) denotes the moment when the source of the j-
th virtual connection starts sending data packets according to
the control value obtained from the k-th control packet. Let
wQ:j(t) denote the sum of the control values queued by the
source. The data packets sent by the source of the j-th virtual
connection are received by the node with forward propagation
delay denoted as TF :j , at the moment tN :j(k). Let wF :j(t)
represent the quantity of data carried by the data packets not
yet received by the node. The sum of forward and backward
propagation delays is called round-trip time and represent-
ed by the symbol RTTCj . Consequently, there is always a
number of control values that have been previously calculat-
ed by control algorithm, but did not yet affect the state of the
bottleneck node, and this number can be obtained from the
following formula

∀
t≥0

w(t) =

J
∑

j=1

[wB:j(t) + wQ:j(t) + wF :j(t)]. (6)

We assume that the time delays are constant, thus the follow-
ing statements are valid

∀
k≥0

tR:j(k) − t(k) = TB:j,

tN :j(k) − tS:j(k) = TF :j.
(7)

We can also distinguish the moment when the first data unit
reaches the node

tN (0) = min { tN :j(0), j = 1, 2, . . . , J}. (8)

The control value, calculated according to (5), is distributed
equally among considered virtual connections. Upon receipt
of the control packet the source is obliged to send the amount
of data equal to the obtained control value.

Consider the j-th virtual connection and let t ≥ tN :j(0).
The node receives the data that was sent by the source as the
realisation of some control value. Let kd:j(t) denote the num-
ber of this control value. Obviously kd:j(t) < [[t/T ]], where
[[·]] denotes the integer part of a number. Furthermore, no-
tice that the control value aj(kd:j(t)) can be divided into two
factors: aI:j(kd:j(t), t) – amount of data that already reached
the node and aO:j(kd:j(t), t) – amount of data that is still ‘in
flight’

∀
t≥tN :j(0)

aj(kd:j(t)) = aI:j(kd:j(t), t)

+aO:j(kd:j(t), t).
(9)

On the other hand we define k0:j as the number of the first
control value calculated after the first data packets in j-th
virtual connection reach the node

∀
j=1,2,...,J

k0:j

= min { k = 0, 1, 2 . . . : tN (0) ≤ t(k)},
(10)

k0 = min { k0:j = 0, 1, 2 . . . , J}. (11)

Note also that since before setting up the connections (i.e. for
t < 0) we assume u(t) = 0 and as a consequence there are
no data units in the buffer, i.e. x(k)|k<0 = 0, and even no
‘in flight’ data, we get from (5) a(0) = XD. Moreover, it can
be easily stated that

∀
t≤tN (0)

x(t) = h(t) = 0 ∀
k<k0

x(k) = h(k) = 0. (12)

Consider again t ≥ 0. Since time delays may vary among
virtual connections, the following three sets can be defined

A(t) = { j = 1, 2, . . . , J : t < tN :j(0)},

B(t) = { j = 1, 2, . . . , J : tN :j(0) ≤ t ≤ tN :j(1)},

C(t) = { j = 1, 2, . . . , J : t > tN :j(1)}.

(13)

Taking into account notations introduced above we can cal-
culate the length of the queue and amount of ‘in flight’ data
from the formulas

∀
t≥0

x(t) =
∑

j∈B(t)

aI:j(0, t)

+
∑

j∈C(t)



aj(0) +

kd:j(t)−1
∑

i=1

aj(i) + aI:j(kd:j(t), t)





−

[[t/T ]]
∑

i=1

h(i) −

t
∫

[[t/T ]]T

h(τ)dτ ,

(14)

∀
k≥0

x(k) =
∑

j∈B(k)

aI:j(0, t(k)) +
∑

j∈C(k)

·



aj(0)+

kd:j(k)−1
∑

i=1

aj(i)+aI:j(kd:j(k), t(k))



−

k
∑

i=1

h(i),

(15)

∀
k>0

w(k) =
∑

j∈A(k)

[

aj(0) +

k−1
∑

i=1

aj(i)

]

+
∑

j∈B(k)

[

aO:j(0, t(k)) +

k−1
∑

i=1

aj(i)

]

+
∑

j∈C(k)



aO:j(kd:j(k), t(k)) +

k−1
∑

i=kd:j(k)+1

aj(i)



.

(16)

The control strategy defined by (5) is characterised by a num-
ber of properties, which is presented further in this section in
the form of theorems and remarks.
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Theorem 1. For any positive integer k the control value is
equal to the amount of data sent by bottleneck node within
time period ((k − 1)T ; kT], that is

∀
k>0

a(k) = h(k). (17)

Proof. We apply the principle of mathematical induction.
First, in section (i) we show that Theorem 1 holds for k = 1.
Then in section (ii) we consider arbitrary k > 1 and show that
if only a(i) = h(i) for any 1 ≤ i < k, then such an equality
is also valid for i = k.

(i.a) Consider k0 > 1. From the fact that a(0) = XD

we conclude that w(1) = XD, thus from (5) we obtain
a(1) = −x(1). Since k0 > 1 we know from (12) that
x(1) = h(1) = 0, so we have a(1) = 0 = h(1).

(i.b) On the other hand, if k0 = 1, then the set C(k0) is empty.
In consequence from (15) and (16) we get respectively

x(1) =
∑

j∈B(1)

aI:j(0, t(1)) − h(1), (18)

w(1) =
∑

j∈A(1)

aj(0) +
∑

j∈B(1)

aO:j(0, t(1)). (19)

Taking into account above relations and the equality a(0) =
XD we notice that

a(1) = XD − x(1) − w(1)

= XD −
∑

j∈B(1)

aI:j(0, t(1)) + h(1)

−
∑

j∈A(1)

aj(0) −
∑

j∈B(1)

aO:j(0, t(1))

= XD −
∑

j∈B(1)

[aI:j(0, t(1)) + aO:j(0, t(1))] + h(1)

−
∑

j∈A(1)

aj(0) = XD −
∑

j∈B(1)

aj(0) + h(1)

−
∑

j∈A(1)

aj(0) = XD −

J
∑

j=1

aj(0) + h(1)

= XD − a(0) + h(1) = XD − XD + h(1) = h(1).

(20)

(ii) Now let k > 1. Suppose that for any i = 1, 2, ..., k − 1
we have a(i) = h(i).

(ii.a) Assume that k < k0. Since a(0) = XD and x(1) =
... = x(k) = h(1) = ... = h(k) = 0, we easily notice that
a(1) = ... = a(k − 1) = 0, thus w(k) = XD. Taking into
account above considerations, from (5) we obtain

a(k) = XD − x(k) − w(k)

= XD − 0 − XD = 0 = h(k).
(21)

(ii.b) Consider now k ≥ k0. Applying (15) and (16) to (5) we
get

a(k) = X
D
− x(k) − w(k)

= X
D
−

X
j∈B(k)

aI:j(0, t(k))

−

X
j∈C(k)

24aj(0) +

kd:j(k)−1X
i=1

aj(i)+aI:j(kd:j(k), t(k))

35+
kX

i=1

h(i)

−

X
j∈A(k)

"
aj(0)+

k−1X
i=1

aj(i)

#
−

X
j∈B(k)

"
aO:j(0, t(k)) +

k−1X
i=1

aj(i)

#
−

X
j∈C(k)

24aO:j(kd:j(k), t(k))+

k−1X
i=kd:j(k)+1

aj(i)

35
(22)

what can be rearranged as follows

a(k) = XD −
∑

j∈B(k)

aI:j(0, t(k))

−
∑

j∈C(k)

aj(0) −
∑

j∈C(k)

kd:j(k)−1
∑

i=1

aj(i)

−
∑

j∈C(k)

aI:j(kd:j(k), t(k)) +

k
∑

i=1

h(i)

−
∑

j∈A(k)

aj(0) −
∑

j∈A(k)

k−1
∑

i=1

aj(i)

−
∑

j∈B(k)

aO:j(0, t(k)) −
∑

j∈B(k)

k−1
∑

i=1

aj(i)

−
∑

j∈C(k)

aO:j(kd:j(k), t(k))

−
∑

j∈C(k)

k−1
∑

i=kd:j(k)+1

aj(i) = XD −
∑

j∈A(k)

aj(0)

−
∑

j∈C(k)

aj(0) −
∑

j∈B(k)

aI:j(0, t(k))

−
∑

j∈B(k)

aO:j(0, t(k)) −
∑

j∈C(k)

aI:j(kd:j(k), t(k))

−
∑

j∈C(k)

aO:j(kd:j(k), t(k)) −
∑

j∈A(k)

k−1
∑

i=1

aj(i)

−
∑

j∈B(k)

k−1
∑

i=1

aj(i) −
∑

j∈C(k)

kd:j(k)−1
∑

i=1

aj(i)

−
∑

j∈C(k)

k−1
∑

i=kd:j(k)+1

aj(i) +
k

∑

i=1

h(i).

(23)

Simplifying statement (23), using definitions (13), we ob-
tain
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a(k) = XD +
k

∑

i=1

h(i) −
∑

j∈A(k)

aj(0)

−
∑

j∈C(k)

aj(0) −
∑

j∈B(k)

aj(0) −
∑

j∈A(k)

k−1
∑

i=1

aj(i)

−
∑

j∈B(k)

k−1
∑

i=1

aj(i) −
∑

j∈C(k)

kd:j(k)−1
∑

i=1

aj(i)

−
∑

j∈C(k)

aj(kd:j(k)) −
∑

j∈C(k)

k−1
∑

i=kd:j(k)+1

aj(i)

= XD +

k
∑

i=1

h(i) − a(0) −
∑

j∈A(k)

k−1
∑

i=1

aj(i)

−
∑

j∈B(k)

k−1
∑

i=1

aj(i) −
∑

j∈C(k)

k−1
∑

i=1

aj(i)

= XD +

k−1
∑

i=1

h(i) + h(k) − a(0) −

k−1
∑

i=1

a(i).

(24)

Finally applying a(0) = XD and the assumption that a(i) =
h(i) holds for any i = 1, 2, ..., k − 1, we get

a(k) = XD+

k−1
∑

i=1

h(i)+h(k)−XD−

k−1
∑

i=1

h(i) = h(k). (25)

As k was chosen arbitrarily, this concludes the proof of The-
orem 1.

Remark 1.1. The control values calculated by proposed con-
trol strategy are nonnegative and bounded. It is an obvious
consequence of Theorem 1. Using definition (4) and assump-
tion (2) set the following

∀
k>0

0 ≤ a(k) = h(k) =

kT
∫

(k−1)T

h(τ)dτ

≤

kT
∫

(k−1)T

dmaxdτ = dmaxT.

(26)

This remark is very important from the practical perspective.
Considering a real telecommunication network it is clearly
seen that it is not possible for the data source to execute neg-
ative control values. On the other hand, execution of extremely
large control value is theoretically possible, but it would im-
pose proportionally large delays due to the limited bandwidth
of the network links. In other words, if Remark 1.1 could
not be stated, the proposed control strategy would have no
practical significance.

Theorem 2. The packet queue length in the bottleneck node
buffer never exceeds the reference value XD.

∀
t≥0

x(t) ≤ XD. (27)

Proof. Notice that for t ≤ tN (0) relation (27) is obviously
valid by virtue of equality (12).

Let t > tN (0). From relation (14), taking into account
Theorem 1, we obtain

x(t) =
∑

j∈B(t)

aI:j(0, t)

+
∑

j∈C(t)



aj(0) +

kd:j(t)−1
∑

i=1

aj(i) + aI:j(kd:j(t), t)





−

[[t/T ]]
∑

i=1

h(i) −

t
∫

[[t/T ]]T

h(τ)dτ ≤
∑

j∈B(t)

aj(0) +
∑

j∈C(t)

aj(0)

+
∑

j∈C(t)





kd:j(t)−1
∑

i=1

aj(i) + aI:j(kd:j(t), t)



 −

[[t/T ]]
∑

i=1

h(i)

≤

J
∑

j=1

aj(0) +

J
∑

j=1

kd:j(t)
∑

i=1

aj(i)

−

[[t/T ]]
∑

i=1

h(i) ≤ a(0) +

J
∑

j=1

[[t/T ]]
∑

i=1

aj(i)

−

[[t/T ]]
∑

i=1

h(i) = XD +

[[t/T ]]
∑

i=1

a(i) −

[[t/T ]]
∑

i=1

h(i)

= XD +

[[t/T ]]
∑

i=1

h(i) −

[[t/T ]]
∑

i=1

h(i) = XD

(28)
which ends the proof of Theorem 2.

Remark 2.1. If the reference value XD is smaller than or
equal to the capacity of the buffer, Theorem 2 can be restat-
ed as: “The memory buffer of the bottleneck node never gets
overflown”. As a consequence, the problem of node conges-
tion, packet loss and retransmissions is completely eliminated.

Remark 2.2. It is worth mentioning that there is no minimum
reference value XD required for Theorem 2 to be valid. Nev-
ertheless, since the node works in the store&forward mode,
it is required that the capacity of the buffer and the reference
value are both equal to at least the maximum possible packet
size.

Theorem 3. Assume that reference value XD, and, conse-
quently, the capacity of the buffer, satisfy the following con-
dition

XD ≥





1

J

J
∑

j=1

RTTCj + 2T



 dmax. (29)

Assume also that there exists kS > 0 such that

i) for any t ≥ kST the throughput available for the bot-
tleneck node is limited to hN ≤ dmax;

ii) once control packet kS is sent, every source is able to
send data at least at the rate hS ≥ hN /J .
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Provided that the assumptions mentioned above are met
we have

∃
kU >kS

∀
k>kU

x(k) +

(k+1)T
∫

kT

u(τ)dτ ≥ hNT. (30)

Proof. Consider j-th virtual connection. First notice that for
any t ≥ tR:j(kS), within time period (t; t + T ] exactly one
control packet reaches the source, so the value wQ:j can be
increased by at most hNT . On the other hand, it is assured
by the theorem assumptions that during the same time period
the source is able to send hST > hNT data. Thus the value
wQ:j is consequently decreased, and beginning from a num-
ber denoted as kZ:j there are no queued control values when
another control packet reaches the source

∀
j=1,2,...,J

∃
kZ:j>kS

∀
k>kZ:j

wQ:j(tR:j(k)) = 0. (31)

It allows us to define kU :j as the number of the first control
packet sent by the source after it reaches the state mentioned
above

∀
j=1,2,...,J

kU :j = min{k > kZ:j : t(k) − TF :j ≥ tR:j(kZ:j)},

(32)

kU = max { kU :j , j = 1, 2 , . . . , J}. (33)

Let k > kU . If x(k) ≥ hNT , statement (30) is obviously
valid. Assume that there exists positive R ≤ hNT such that
x(k) = hNT − R.

First notice that

wQ:j(tR:j(k)) = wQ:j(k) + wB:j(k) −

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ

(34)
what implies

J
∑

j=1

wQ:j(tR:j(k))

=

J
∑

j=1






wQ:j(k) + wB:j(k) −

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ







= wQ(k) + wB(k) −

J
∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ .

(35)

Combining this with relation (31) we obtain

0 = wQ(k) + wB(k) −

J
∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ (36)

wQ(k) =

J
∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ − wB(k). (37)

Since a(k) = XD − x(k) − w(k) = XD − x(k) − wB(k) −
wQ(k) − wF (k) we have

wF (k) = XD − x(k) − wB(k) − wQ(k) − a(k)

= XD − x(k) − wB(k) −

J
∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ

+wB(k) − a(k) = XD − x(k)

−
J

∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ − a(k).

(38)

Consider again j-th virtual connection and time period
[t(k); tR:j(k)]. As a consequence of relation (31), value of
wQ cannot exceed the maximum control value that can reach
the source. Particularly

wQ:j(t(k)) ≤
1

J
hNT. (39)

Note that the control values received by the source are also
restricted by above relation. Moreover, during the considered
time period at most [[TB:j/T ]] control packets may reach the
source. Summarising these considerations we get

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ ≤

([[

TB:j

T

]]

+ 1

)

1

J
hNT

≤
1

J
hN (TB:j + T ).

(40)

From relation (38), taking into account above estimation and
assumptions of the theorem, we obtain

wF (k) = XD − x(k) −

J
∑

j=1

tR:j(k)+TF :j
∫

t(k)+TF :j

uj(τ)dτ

−a(k) ≥





1

J

J
∑

j=1

RTTCj + 2T



 dmax

−(hNT − R) − hN

J
∑

j=1

1

J
(TB:j + T ) − hNT

≥





1

J

J
∑

j=1

RTTCj + 2T



hN − 2hNT

+R − hN
1

J

J
∑

j=1

(TB:j + T )

≥ hN
1

J

J
∑

j=1

(RTTCj − TB:j − T ) + 2ThN

−2hNT + R = hN
1

J

J
∑

j=1

(TF :j − T ) + R.

(41)

Note that wF denotes amount of data that is already sent
by the source but not yet received by the node. The data must
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reach the node within time period [t(k); t(k) + TF :j], so we
have

wF (k) =

J
∑

j=1

t(k)+TF :j
∫

t(k)

uj(τ)dτ

=

J
∑

j=1

t(k)+T
∫

t(k)

uj(τ)dτ +

J
∑

j=1

t(k)+TF :j
∫

t(k)+T

uj(τ)dτ

≥ hN
1

J

J
∑

j=1

(TF :j − T ) + R.

(42)

This can be rewritten as follows

J
∑

j=1

t(k)+T
∫

t(k)

uj(τ)dτ ≥ hN
1

J

J
∑

j=1

(TF :j − T )

+R −

J
∑

j=1

t(k)+TF :j
∫

t(k)+T

uj(τ)dτ .

(43)

Now we apply reasoning that led to relation (40) to time pe-
riod [t(k) + T ; t(k) + TF :j] and we obtain the following
inequality

t(k)+TF :j
∫

t(k)+T

uj(τ)dτ ≤
1

J
hN (TF :j − T ). (44)

Combining relations (43) and (44) we get

t(k)+T
∫

t(k)

u(τ)dτ =

J
∑

j=1

t(k)+T
∫

t(k)

uj(τ)dτ

≥ hN
1

J

J
∑

j=1

(TF :j − T ) + R −

J
∑

j=1

t(k)+TF :j
∫

t(k)+T

uj(τ)dτ

≥ hN
1

J

J
∑

j=1

(TF :j−T )+R−

N
∑

j=1

1

J
hN (TF :j−T ) = R.

(45)

Finally, taking into account inequality (45) and assumption
x(k) = hNT − R, we estimate the left-hand side of inequal-
ity (30) as follows

x(k) +

t(k)+T
∫

t(k)

u(τ)dτ = x(k) +

J
∑

j=1

t(k)+T
∫

t(k)

uj(τ)dτ

≥ x(k) + R = hNT − R + R = hNT.

(46)

Therefore inequality (30) is valid for arbitrarily chosen k >
kU . This conclusion ends the proof of Theorem 3.

Remark 3.1. The practical consequence of Theorem 3 is that
if its assumptions are satisfied, full utilisation of the avail-
able throughput at the bottleneck node is guaranteed by the
proposed control strategy. Indeed, since we assumed that the

throughput available for bottleneck node is bounded to hN ,
maximum amount of data that could be sent within time pe-
riod (kT ; (k + 1)T ] is not greater than hNT . On the other
hand, relation (30) ensures that there is at least hNT data to
be sent at the node. Consequently, the available throughput is
the only factor that impacts the rate at which the bottleneck
node is able to send the data.

Remark 3.2. It is worth emphasizing that the validity of The-
orem 3 does not depend on the state of the considered system
before kS control packets are sent by the sources. In other
words, it is not required for the sources to be persistent, that
is, to be able to send data at maximum rate at any time. Again,
this feature is very important from the practical perspective,
because in the case of real network the ability of the source
to send data is limited not only by the state of the network
(i.e. throughput available for the source), but also by the ap-
plication that provides the source with data to be sent.

4. Summary

In this paper a new flow control strategy for connection-
oriented, packet-switching networks has been proposed. It
employs the Smith predictor combined with a dead-beat con-
troller. On the contrary to numerous works in this field, control
values are interpreted by the data sources as the quantity of
data that is to be sent instead of the rate transmission. This is
motivated by the fact that in real packet-switching networks
it is not possible to precisely control the sending rate, partic-
ularly to change the rate at any given time instant. Applying
the quantity-based control scheme we assume that the pack-
ets are sent at maximum possible rate (typically equal to the
physical layer bandwidth), which is coherent with the way the
real packet-switching networks operate. The most significant
properties of proposed control strategy have been introduced
in a form of mathematical theorems, and thoroughly discussed
from the perspective of real network applications. First, it is
ensured that the control values are nonnegative and bounded,
which is necessary for the control strategy to be applicable.
Moreover, it is guaranteed that the problem of node conges-
tion and packet loss is completely eliminated, as the length of
the packet queue in the buffer of the bottleneck node is bound-
ed by reference value XD. Furthermore, the proposed control
strategy achieves full utilisation of the throughput available
to the considered node, provided that the reference queue
length is set according to (29). These favourable properties
are achieved with no a priori knowledge of the throughput
available to considered node, except that it is upper bounded.
Finally, it is worth emphasizing that the control strategy de-
scribed in this paper has been successfully adopted to perform
flow control in IP networks.
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