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Abstract. The governing equations of generalized magneto-thermoelasticity with hydrostatic initial stress are solved for surface wave

solutions. The particular solutions in the half-space are applied to the boundary conditions at the free surface of the half-space to obtain

the frequency equation of Rayleigh wave. The frequency equation is approximated for small thermal coupling and small reduced frequency.

The velocity of propagation and amplitude-attenuation factor of Rayleigh wave are computed numerically for a particular material. Effects

of magnetic field and hydrostatic initial stress on the velocity of the propagation and amplitude-attenuation factor are shown graphically.
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1. Introduction

The classical dynamical coupled theory of thermoelasticity

was extended to generalized thermoelasticity theories by Lord

and Shulman [1] and Green and Lindsay [2]. These theories

consider heat propagation as a wave phenomenon rather than

a diffusion phenomenon and predict a finite speed of heat

propagation. Ignaczak and Ostoja-Starzewski [3] presented the

analysis of above two theories in their book on “Thermoelas-

ticity with Finite Wave Speeds”. The representative theories

in the range of generalized thermoelasticity are reviewed by

Hetnarski and Ignaczak [4].

Surface waves in elastic solids were first studied by Lord

Rayleigh [5] for an isotropic elastic solid. Thermoelastic

Rayleigh waves in semi-infinite isotropic solids are studied

by Lockett [6], Deresiewicz [7], Nayfeh and Nemat-Nasser

[8], Carroll [9], Agarwal [10], Dawn and Chakraborty [11],

and many others with various additional parameters.

Initial stresses in solids have significant influence on the

mechanical response of the material from an initially-stressed

configuration and have applications in geophysics, engineer-

ing structures and in the behaviour of soft biological tissues.

Initial stress arises from processes, such as manufacturing or

growth, and is present in the absence of applied loads. Mon-

tanaro [12] formulated the isotropic thermoelasticity with hy-

drostatic initial stress. Singh et al. [13], Othman et al. [14],

Singh [15], and many others have applied Montanro [12] theo-

ry to study the plane harmonic waves in context of generalized

thermoelasticity.

In the present paper, the governing equations given by

Montanaro [12] are modified in context of Lord and Shul-

man and Green and Lindsay theories with uniform magnetic

field. These equations are solved for the surface wave solu-

tions, which satisfy the required boundary conditions at the

free surface and we obtain the frequency equation for the

Rayleigh wave in the half-space. The frequency equation is

approximated and analyzed numerically to observe the effects

of hydrostatic initial stress and magnetic field on the velocity

of propagation and amplitude-attenuation factor.

2. Basic equations

We consider an isotropic thermoelastic solid with hydrostatic

initial stress under constant primary magnetic field H0 acting

on y-axis. Following Lord and Shulman [1], Green and Lind-

say [2] and Montanaro [12], the governing equations of linear,

isotropic and homogenous magneto-thermoelastic solid with

hydrostatic initial stress are

(i) The stress-strain-temperature relation:

σij = −p(δij + ωij) + λeppδij + 2µeij

− α

κT
(T + aṪ )δij ,

(1)

(ii) The displacement-strain relation:

eij =
1

2
(ui,j + uj,i), (2)

(iii) The small rotation-displacement relation:

ωij =
1

2
(uj,i − ui,j), (3)

(iv) The modified Fourier’s law:

hi + a∗ḣi = K
∂T

∂xi
, (4)

(v) The equation of motion:

ρ0

∂2ui

∂t2
=

(

µ− p

2

) ∂2ui

∂xp∂xp

+
(

λ+ µ+
p

2

) ∂2up

∂xi∂xp
− α

κT

∂T

∂xi
+ σip,p,

(5)
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(vi) The equation of heat conduction:

ρ0cv

(

1 + a∗
∂

∂t

)

∂T

∂t

+T0

α

κT

(

1 + ∆a∗
∂

∂t

)

∂2up

∂t∂xi
= K

∂2T

∂xp∂xp
,

(6)

(vii) Maxwell equations governing the electromagnetic field:

∇× h = j, ∇× E = −µe
∂h

∂t
,

∇.h = 0, ∇.E = 0,
(7)

(viii) Maxwell stresses:

σij = µe[Hihj +Hjhi − (H.h)δij ], (8)

where T = Θ − T0 is small temperature increment, Θ is the

absolute temperature of the medium, T0 is the reference uni-

form temperature of the body chosen such that

∣

∣

∣

∣

T

T0

∣

∣

∣

∣

≪ 1,

ρ0 is the mass density, qi is the heat conduction vector, K
is the thermal conductivity, cv is the specific heat at constant

strain, λ, µ are the counterparts of Lame parameters, α is the

volume coefficient of thermal expansion, κT is the isothermal

compressibility, σij are the components of the stress tensor,

ui are the components of the displacement vector, eij are the

components of the strain tensor, ωij are the components of

the small rotation tensor, δij is the Kronecker delta, a, a∗ ≥ 0
are the thermal relaxation times, p is the initial pressure, h is

the perturbed magnetic field over H0, j is the electric current

density, µe is the magnetic permeability, h = ∇× (u×H0)
and H = H0 + h. The above governing equations reduce

for L-S (Lord-Shulman) theory when a = 0, ∆ = 1 and for

G-L(Green-Lindsay) theory, when ∆ = 0.

3. Formulation of the problem

For Rayleigh type waves in the half space z ≥ 0, using the

representation of displacement components

u1 =
∂φ

∂x
− ∂ψ

∂z
, u2 = 0, u3 =

∂φ

∂z
+
∂ψ

∂x
, (9)

where φ and ψ are functions of x, z and t, Eqs. (5) and (6)

are satisfied if

∂2φ

∂t2
= c1

2

(

∂2φ

∂x2
+
∂2φ

∂z2

)

− γ

ρ0

(T + aṪ ), (10)

∂2ψ

∂t2
= c2

2

(

∂2ψ

∂x2
+
∂2ψ

∂z2

)

, (11)

ρ0cv(Ṫ + a∗T̈ ) + γT0

(

1 + ∆a∗
∂

∂t

)

∂

∂t

[

∂2φ

∂x2
+
∂2φ

∂z2

]

= K

(

∂2T

∂x2
+
∂2T

∂z2

)

,

(12)

where

c1
2 =

λ+ 2µ+ µeH0
2

ρ0

, c2
2 =

µ− p
2

ρ0

, γ =
α

κT
.

Introducing the following non-dimensional quantities,

x′ =
x

(c1/ω∗)
, z′ =

z

(c1/ω∗)
, t′ = tω∗,

u1
′ =

u1

(c1/ω∗)
, u′3 =

u3

(c1/ω∗)
, T ′ =

γT

ρ0c12
,

φ′ =
φ

(c1/ω∗)
2
, ψ′ =

ψ

(c1/ω∗)
2
,

a′ = aω∗, a∗
′

= a∗ω∗, ω∗ =
ρ0cvc1

2

κ
,

in the Eqs. (9)–(12) and suppressing the primes, we obtain

the equations in dimensionless form as

u1 =
∂φ

∂x
− ∂ψ

∂z
, u2 = 0, u3 =

∂φ

∂z
+
∂ψ

∂x
, (13)

∂2φ

∂t2
=

(

∂2φ

∂x2
+
∂2φ

∂z2

)

− (T + aṪ ), (14)

∂2ψ

∂t2
=

1

v2

(

∂2ψ

∂x2
+
∂2ψ

∂z2

)

, (15)

(Ṫ + a∗T̈ ) + ǫ

(

1 + ∆a∗
∂

∂t

)

∂

∂t

[

∂2φ

∂x2
+
∂2φ

∂z2

]

=

(

∂2T

∂x2
+
∂2T

∂z2

)

,

(16)

where, the thermoelastic coupling is given by

ǫ =
γ2T0

ρ0
2cvc12

, v2 =
c21
c2
2

. (17)

The mechanical and thermal conditions at the boundary z = 0
are

σ13 + σ13 = 0, σ33 + σ33 = −p,
∂T

∂z
+ hT = 0,

(18)

where h→ 0 corresponds the thermally insulated surface and

h→ ∞ corresponds the isothermal surface.

4. Solutions and the frequency equation

For thermoelastic surface waves in the half-space propagating

in x-direction, the functions (T, φ, ψ) may be taken in the

form

{T, φ, ψ} = {T̂ (z), φ̂(z), ψ̂(z)} exp {i(ηx− χt)}. (19)

Substituting (19) in equations (14)-(16) and noting that

T̂ , φ̂, ψ̂ → 0 as z → ∞ for surface waves, the solution is

obtained as

φ = [A exp(−ηβ1z) +B exp(−ηβ2z)] exp i(ηx− χt), (20)

ψ = C exp{(−ηβ3z) + i(ηx− χt)}, (21)

T =
1

1 − iaχ
[A{χ2 + η2(β1

2 − 1)} exp(−ηβ1z)

+B{χ2 + η2(β2
2 − 1)} exp(−ηβ2z)] exp{i(ηx− χt)},

(22)

where

β2

3 = (1 − c2v2), c2 =
χ2

η2
,
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and β1, β2 are the roots of the following equation with

Re(β) ≫ 0

β4 + β2[−2 + c2(a+ 1 − iχaa
∆
ǫ)]

+1 − c2(a+ 1 + iχaa
∆
ǫ) + c4a = 0,

(23)

where

a = a+
i

χ
, a = a∗ +

i

χ
, a

∆
= a∗ + ∆

i

χ
.

The solutions (20)–(22) satisfy the boundary conditions

(18), and we obtain the following frequency equation

[2 − c2v2 + p1(1 − c2v2)][β2

1 + β2

2 + β1β2 − 1 + c2]

−[4 + 2p1 + (2p2 + p1p2)v
2]β1β2β3(β1 + β2)

= −h
η
[(β2

1 + β2

2){2 + (p2 − c2)v2}

·{2 − c2v2 + p1(1 − c2v2)}
−{4 + 2p1 + (2p2 + p1p2)v

2}β3(β
2

1β
2

2 + 1 − c2)],

(24)

where

p1 =
p

ρ0c22
, p2 =

p

ρ0c21
, γ =

γ

ρ0

.

5. Limiting cases

(a) Small thermal coupling

For most of the materials, ǫ is small at normal temperature.

Therefore, we approximated the frequency equation by assum-

ing ǫ≪1.

For ǫ ≪ 1, we obtain from equation (23) the approximated

expressions for β1 and β2 as

β1 ≃ (1 − c2)1/2

[

1 +
ǫ

2

c2χaa
∆

(a− 1)(1 − c2)

]

, (25)

β2 ≃ (1 − ac2)1/2

[

1 − ǫ

2

c2χaaa
∆

(a− 1)(1 − ac2)

]

. (26)

These approximated expressions for β1 and β2 are inserted in

equation (24) to obtain the approximated frequency equation.

(b) Small reduced frequency χ≪ 1
For small reduced frequency χ≪ 1, we obtain from equation

(23), the following approximated expressions

β1
2 +β2

2 ≃ 2− i
c2

χ
(1+ ǫ)− c2[1+ a∗ + ǫ(a+∆a∗)], (27)

β1β2 ≃ 1 − i√
2χ

(1 − c2 + ǫ)1/2

+
1 + i

2
√

2

[1 + a∗ + ǫ(a+ ∆aa∗)]

(1 − c2 + ǫ)1/2
χ1/2.

(28)

6. Numerical analysis of the frequency equation

If we put c2 = c∗2 + ǫ(ξ1 + iξ2), where c∗ is the classical

Rayleigh wave velocity and ξ1 and ξ2 are two reals depending

on the reduced frequency χ and a, a∗, then

η =
χ

c∗

(

1 − ǫξ1
2c∗2

− i
ǫξ2
2c∗2

)

. (29)

The velocity of propagation is equal to

(

c∗ +
ǫξ1
2c∗

)

and the

amplitude-attenuation factor is equal to exp

[

ǫχξ2x

2c∗3

]

with

ξ2 < 0. The velocity of propagation and amplitude-attenuation

factor are computed for the following material parameters

E = 6.9 × 1010 N. m−2, σ = 0.33, ρ0 = 2700 Kg.m−3,

cv = 987.9 J. Kg−1. K−1, K = 205.85 J.m−1. s−1. K−1,

α = 0.01, κT = 0.05, ω = 2 s−1, T0 = 293 K,

x = .01 m, a = 0.05 s, a∗ = 0.2 s, ǫ = 0.05,

µe = 1, c∗ = 0.9554, χ = 0.1.

The generalized Lame’s constants λ and µ are related as

λ =
Eσ

ζ(1 + σ)(1 − 2σ)
, µ =

E

2ζ(1 + σ)
(30)

where ζ is initial stress parameter, E is Young’s modulus and

σ is Poisson ratio. ζ = 1 corresponds to the isotropic elastic

medium.

The velocity of propagation and amplitude-attenuation

factor are plotted against magnetic field parameter H in

Figs. 1 and 2, respectively, when p = −2, 0 and 2. For

p = −2, the velocity is 0.4774 × 103 near H = 0 and it

decreases slowly with the increase in the magnetic field. It

attains its value 0.4751× 103 at H = 20× 105 oe. The vari-

ation of the velocity for p = −2 is shown by solid line in

Fig. 1. For p = 2, the velocity is 0.73964× 103 near H = 0
and it decreases sharply with the increase in the magnetic

field. It attains its value 0.48064× 103 at H = 20 × 105 oe.

The variation of the velocity for p = 2 is shown by solid

line with circles as center symbols in Fig. 1. In absence of

initial stress, the variations for p = −2 and 2 reduce to that

shown by solid line with triangles as center symbols in Fig. 1.

The amplitude-attenuation factors (×103) for p = −2, 0 and 2

are shown graphically against magnetic field in Fig. 2. From

Figs. 1 and 2, it is observed that the velocity of propagation

and amplitude-attenuation factors are significantly affected by

initial stress parameter for lower range of the magnetic field

parameter.

Fig. 1. Variations of the velocities of propagation of Rayleigh wave

versus the magnetic field parameter, when p = −2, 0 and 2
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Fig. 2. Variations of the amplitude-attenuation factors of Rayleigh

wave versus the magnetic field parameter, when p = −2, 0 and 2

Fig. 3. Variations of the velocities of propagation of Rayleigh

wave versus the hydrostatic initial stress parameter, when H =

0, 10 × 10
5 oe and 100 × 10

5 oe.

Fig. 4. Variations of the amplitude-attenuation factors of Rayleigh

wave versus the hydrostatic initial stress parameter, when H =

0, 10 × 10
5 oe and 100 × 10

5 oe.

The velocity of propagation and amplitude-attenuation

factor are also plotted against initial stress parameter p in

Figs. 3 and 4, respectively, when H = 0, 10 × 105 oe and

100×105 oe. For H = 10×105 oe, the velocity is 0.4749×103

at p = -2 and it decreases slowly to its minimum value

0.47481× 103 at p = -1.7. Thereafter, it attains its maximum

value 0.48851 × 103 at p = 2. The variation of the velocity

for H = 10 is shown by solid line with triangles as center

symbols in Fig. 3. For H = 100 × 105 oe, the velocity is

0.47775×103 at p = −2 and it increases slowly for the given

range of p and attains its maximum value 0.47783 × 103 at

p = 2. The variation of the velocity for H = 100 is shown

by solid line with circles as center symbols in Fig. 3. In ab-

sence of magnetic field, the variations for H = 10 × 105 oe

and 100 × 105 oe reduce to that shown by solid line without

center symbols in Fig. 3. The amplitude-attenuation factors

(×103)for H = 0, 10 × 105 oe and 100 × 105 oe are shown

graphically against initial stress in Fig. 4. From Figs. 3 and 4,

it is observed that the velocity of propagation and amplitude-

attenuation factors are significantly affected by magnetic field

at each value of initial stress parameter.

7. Conclusions

The frequency equation of Rayleigh wave in a magneto-

thermoelastic half-space with hydrostatic initial stress is ob-

tained. The frequency equation is approximated for small ther-

mal coupling and small reduced frequency and the expressions

for the velocity of propagation and amplitude-attenuation fac-

tors are obtained and computed numerically for a particular

material. The velocity and the amplitude-attenuation factor

are significantly influenced by hydrostatic initial stress and

magnetic field parameters.

REFERENCES

[1] A.E. Green and K.A. Lindsay, 11Thermoelasticity”, J. Elastic-

ity 2, 1–7 (1972).

[2] H. Lord and Y. Shulman, “A generalised dynamical theory of

thermoelasticity”, J. Mech. Phys. Solids 15, 299–309 (1967).

[3] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with

Finite Wave Speeds, Oxford University Press, Oxford, 2009.

[4] R.B. Hetnarski and J. Ignaczak, “Generalized thermoelastici-

ty”, J. Thermal Stresses 22, 451–476 (1999).

[5] L. Rayleigh, “On waves propagated along the plane surface of

an elastic solid”, Proc. Lond. Math. Soc. 17, 4–11 (1885).

[6] F.J. Lockett, “Effect of thermal properties of a solid on the

velocity of Rayleigh waves”, J. Mech. Phys. Solids 7, 71–75

(1958).

[7] H. Deresiewicz, “A note on thermoelastic Rayleigh waves”,

J. Mech. Phys. Solids 9, 191–195 (1961).

[8] A. Nayfeh and S. Nemat-Nasser, “Thermoelastic waves in

solids with thermal relaxation”, Acta Mechanica 12, 53–69

(1971).

[9] M.M. Carroll, “A note on thermoelastic surface waves”, Mech.

Res. Comm. 1, 61–65 (1974).

[10] V.K. Agarwal, “On surface waves in generalized thermoelas-

ticity”, J. Elasticity 8, 171–177 (1978).

[11] N.C. Dawn and S.K. Chakraborty, “On Rayleigh waves in

Green-Lindsay’s model of generalized thermoelastic media”,

Indian J. Pure Appl. Math. 20, 276–283 (1988).

[12] A. Montanaro, “On singular surfaces in isotropic linear ther-

moelasticity with initial stress”, J. Acoust. Soc. Am. 106, 1586–

1588 (1999).

[13] B. Singh, A. Kumar, and J. Singh, “Reflection of generalized

thermoelastic waves from a solid half-space under hydrostatic

initial stress”, Appl. Math. Comput. 177, 170–177 (2006).

[14] M.I.A. Othman and Y. Song, “Reflection of plane waves from

an elastic solid half-space under hydrostatic initial stress with-

out energy dissipation”, Int. J. Solids and Structures 44, 5651–

5664 (2007).

[15] B. Singh, “Effect of hydrostatic initial stresses on waves in

a thermoelastic solid half-space”, Applied Math. Comp. 198,

494–505 (2008).

352 Bull. Pol. Ac.: Tech. 60(2) 2012


