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On Rayleigh wave in generalized magneto-thermoelastic media
with hydrostatic initial stress
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Abstract. The governing equations of generalized magneto-thermoelasticity with hydrostatic initial stress are solved for surface wave
solutions. The particular solutions in the half-space are applied to the boundary conditions at the free surface of the half-space to obtain
the frequency equation of Rayleigh wave. The frequency equation is approximated for small thermal coupling and small reduced frequency.
The velocity of propagation and amplitude-attenuation factor of Rayleigh wave are computed numerically for a particular material. Effects
of magnetic field and hydrostatic initial stress on the velocity of the propagation and amplitude-attenuation factor are shown graphically.
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1. Introduction

The classical dynamical coupled theory of thermoelasticity
was extended to generalized thermoelasticity theories by Lord
and Shulman [1] and Green and Lindsay [2]. These theories
consider heat propagation as a wave phenomenon rather than
a diffusion phenomenon and predict a finite speed of heat
propagation. Ignaczak and Ostoja-Starzewski [3] presented the
analysis of above two theories in their book on “Thermoelas-
ticity with Finite Wave Speeds”. The representative theories
in the range of generalized thermoelasticity are reviewed by
Hetnarski and Ignaczak [4].

Surface waves in elastic solids were first studied by Lord
Rayleigh [5] for an isotropic elastic solid. Thermoelastic
Rayleigh waves in semi-infinite isotropic solids are studied
by Lockett [6], Deresiewicz [7], Nayfeh and Nemat-Nasser
[8], Carroll [9], Agarwal [10], Dawn and Chakraborty [11],
and many others with various additional parameters.

Initial stresses in solids have significant influence on the
mechanical response of the material from an initially-stressed
configuration and have applications in geophysics, engineer-
ing structures and in the behaviour of soft biological tissues.
Initial stress arises from processes, such as manufacturing or
growth, and is present in the absence of applied loads. Mon-
tanaro [12] formulated the isotropic thermoelasticity with hy-
drostatic initial stress. Singh et al. [13], Othman et al. [14],
Singh [15], and many others have applied Montanro [12] theo-
ry to study the plane harmonic waves in context of generalized
thermoelasticity.

In the present paper, the governing equations given by
Montanaro [12] are modified in context of Lord and Shul-
man and Green and Lindsay theories with uniform magnetic
field. These equations are solved for the surface wave solu-
tions, which satisfy the required boundary conditions at the
free surface and we obtain the frequency equation for the
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Rayleigh wave in the half-space. The frequency equation is
approximated and analyzed numerically to observe the effects
of hydrostatic initial stress and magnetic field on the velocity
of propagation and amplitude-attenuation factor.

2. Basic equations

We consider an isotropic thermoelastic solid with hydrostatic
initial stress under constant primary magnetic field Hg acting
on y-axis. Following Lord and Shulman [1], Green and Lind-
say [2] and Montanaro [12], the governing equations of linear,
isotropic and homogenous magneto-thermoelastic solid with
hydrostatic initial stress are

(i) The stress-strain-temperature relation:

Oij = _p(dij + Wij) + Xeppéij + 2fie;;

(T+ aT)&ij, (1)

«
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(i) The displacement-strain relation:
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cij = 5 (Ui +uji),

(iii) The small rotation-displacement relation:
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wij = 5 (uji — uij),
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(iv) The modified Fourier’s law:
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(v) The equation of motion:
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(vi) The equation of heat conduction:

2 2 (6)
+TO% (1 + Aa*%) i;;i - KajpaTx,,’
(vii) Maxwell equations governing the electromagnetic field:
V xh=j, VxE:—ue%, 7
V.h =0, V.E =0,
(viii) Maxwell stresses:
Tij = pe[Hih; + Hjh; — (H.h)d;5], (®)

where T' = © — Tj is small temperature increment, © is the
absolute temperature of the medium, 7j is the reference uni-

0
po is the mass density, ¢; is the heat conduction vector, K

is the thermal conductivity, ¢, is the specific heat at constant
strain, \, 77 are the counterparts of Lame parameters, « is the
volume coeflicient of thermal expansion, ~7 is the isothermal
compressibility, o;; are the components of the stress tensor,
u; are the components of the displacement vector, e;; are the
components of the strain tensor, w;; are the components of
the small rotation tensor, d;; is the Kronecker delta, a,a* > 0
are the thermal relaxation times, p is the initial pressure, h is
the perturbed magnetic field over Hy, j is the electric current
density, p. is the magnetic permeability, h = V x (u x Hp)
and H = Ho + h. The above governing equations reduce
for L-S (Lord-Shulman) theory when a = 0, A = 1 and for
G-L(Green-Lindsay) theory, when A = 0.

form temperature of the body chosen such that < 1,

3. Formulation of the problem

For Rayleigh type waves in the half space z > 0, using the
representation of displacement components

AL L

T 0 T 92 9 T o

where ¢ and 1 are functions of x, z and ¢, Egs. (5) and (6)
are satisfied if

U2 = 07 (9)

P (0% PP\ v :
o7 = 1 <6w2+6z2> po( +aT), (10)
N 8
Eﬁ—@<ﬁﬁ+aﬁv (i
(T+aT)+~Tp (1 +A 93\ 0 @+@
Poce “ V40 “ ot) ot |0x%2 = 022
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Introducing the following non-dimensional quantities,

/ z / z / *
Tty Ty TR
/ 2! / u3 ’ T

e (c1/w*)’ " (c1/w*)’ = poci?’
/: ¢ ’(Z)/ — /(Z)
(1 /we)?’ (e1/w*)?’
a = aw*, a*/ = a*w", Wt = P00v0127
K

in the Eqgs. (9)—(12) and suppressing the primes, we obtain
the equations in dimensionless form as

_ 99 0y _ _ 99  0Y
U= 5o T 5 ug =0, u3 5"'8—, (13)
0%¢ 92¢  0%¢ .
— ===+ —=— ) - (T +aT 14
o (8w2+822) (T'+aT), a4
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ot) ot |0x? 022 (16)
_(oT ot
o\ 0z2 022 )
where, the thermoelastic coupling is given by
2 2
7T 2_ 4
€= 7p02cv012, Ve = 2 (17)

The mechanical and thermal conditions at the boundary z = 0
are

o013 +013 =0, 033 + 033 = —D,
oT (18)
% T =0,
0z

where h — 0 corresponds the thermally insulated surface and
h — oo corresponds the isothermal surface.

4. Solutions and the frequency equation

For thermoelastic surface waves in the half-space propagating
in x-direction, the functions (T, ¢,) may be taken in the
form

{T,0,9} = {T(2),6(2), (2)} exp {i(nz —xt)}.  (19)
SAubAstiEuting (19) in equations (14)-(16) and noting that

T,¢,9 — 0 as z — oo for surface waves, the solution is
obtained as

¢ = [Aexp(—nf1z) + Bexp(—npaz)] expi(nz — xt), (20)

Y = Cexp{(—nB3z) +i(nx — xt)}, (21)
_ 2 2 2
T=1 —iax [A{X" +77(61" — 1)} exp(—np12) )
+B{x? + (82" — 1)} exp(—nB2z)] exp{i(nz — xt)},
where )
B3 = (1-c*v?), 8:%,
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and [, are the roots of the following equation with

Re(B) >0
B+ B2+ @+ 1 —ixaae)] -
F1— 2@+ 1+ixaa e +c'a =0,

_ = ., 0 =
a=a+ —, a=a + —, a
X X

The solutions (20)—(22) satisfy the boundary conditions
(18), and we obtain the following frequency equation

2 — 0 +pi(1 = o?)][B] + B2 + Bz — 1+ ¢
—[4 4 2p1 + (2p2 + p1p2)v°]B1B253(B1 + B2)
h
= —;[(5% + B){2+ (p2 — )}
42— A +p(1-— 021)2)}
—{4+2p1 + (2p2 + p1p2)v?} B3 (6765 + 1 — c2)],

where

="+ AL
X

(24)

_ b _ b 2
pP1 = 29 .
PoCy

5. Limiting cases

(a) Small thermal coupling
For most of the materials, € is small at normal temperature.
Therefore, we approximated the frequency equation by assum-
ing € 1.
For € < 1, we obtain from equation (23) the approximated
expressions for 8; and (5 as

_=A
€ c*xaa

1+

C2)1/2 _
2G-1)(1— )

512(1—

] ;o (29

9 _=—A
TRVl PR o
P = (1 —ac) 2@ - 1)(1—ac)

] . (26)
These approximated expressions for 3; and (3, are inserted in
equation (24) to obtain the approximated frequency equation.
(b) Small reduced frequency y < 1
For small reduced frequency x < 1, we obtain from equation
(23), the following approximated expressions

2

B2+ By2 ~ 2—i%(1—I—e)—cQ[l—l—a*—i-e(a—l—Aa*)], 27)
1—i
+1+i[1+a*+e(a+Aaa*)] 1/2
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6. Numerical analysis of the frequency equation

(1—c+e)l/?
(28)

If we put ¢2 = ¢*2 + €(&, + i&,), where ¢* is the classical
Rayleigh wave velocity and £; and &2 are two reals depending
on the reduced frequency x and a, a*, then

n_%<1_e§1 .e§2>.
C

2c%2 Z20*2
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(29)

The velocity of propagation is equal to (c* + %) and the
c

exéox
20*3

amplitude-attenuation factor is equal to exp { } with
& < 0. The velocity of propagation and amplitude-attenuation
factor are computed for the following material parameters
E=6.9x10°N.m™2, 0 = 0.33, po = 2700 Kg.m 3,

€y =987.9J. Kg='. K™!, K =205.85 Jm~!. s! K71,
a=0.01, kr =0.05, w=2 s, Tp =293 K,

r=.01m, a=0.05s,a"=02s, e=0.05,

e =1, ¢ =0.9554, x = 0.1.

The generalized Lame’s constants \ and 77 are related as

FEo _ E
(A+o1—-20) """ 32c0+o)

2= (30)

where ( is initial stress parameter, £ is Young’s modulus and
o is Poisson ratio. { = 1 corresponds to the isotropic elastic
medium.

The velocity of propagation and amplitude-attenuation
factor are plotted against magnetic field parameter H in
Figs. 1 and 2, respectively, when p = —2,0 and 2. For
p = —2, the velocity is 0.4774 x 10 near H = 0 and it
decreases slowly with the increase in the magnetic field. It
attains its value 0.4751 x 103 at H = 20 x 10° oe. The vari-
ation of the velocity for p = —2 is shown by solid line in
Fig. 1. For p = 2, the velocity is 0.73964 x 103 near H = 0
and it decreases sharply with the increase in the magnetic
field. It attains its value 0.48064 x 103 at H = 20 x 10° oe.
The variation of the velocity for p = 2 is shown by solid
line with circles as center symbols in Fig. 1. In absence of
initial stress, the variations for p = —2 and 2 reduce to that
shown by solid line with triangles as center symbols in Fig. 1.
The amplitude-attenuation factors (x 10%) for p = —2,0 and 2
are shown graphically against magnetic field in Fig. 2. From
Figs. 1 and 2, it is observed that the velocity of propagation
and amplitude-attenuation factors are significantly affected by
initial stress parameter for lower range of the magnetic field
parameter.
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Fig. 1. Variations of the velocities of propagation of Rayleigh wave
versus the magnetic field parameter, when p = —2,0 and 2
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Fig. 2. Variations of the amplitude-attenuation factors of Rayleigh
wave versus the magnetic field parameter, when p = —2,0 and 2
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Fig. 3. Variations of the velocities of propagation of Rayleigh
wave versus the hydrostatic initial stress parameter, when H =
0,10 x 10° oe and 100 x 10° oe.
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Fig. 4. Variations of the amplitude-attenuation factors of Rayleigh
wave versus the hydrostatic initial stress parameter, when H =
0,10 x 10° oe and 100 x 10° oe.

The velocity of propagation and amplitude-attenuation
factor are also plotted against initial stress parameter p in
Figs. 3 and 4, respectively, when H = 0,10 x 10° oe and
100x 105 oe. For H = 10x 10° oe, the velocity is 0.4749x 103
at p = -2 and it decreases slowly to its minimum value
0.47481 x 103 at p = -1.7. Thereafter, it attains its maximum
value 0.48851 x 102 at p = 2. The variation of the velocity
for H = 10 is shown by solid line with triangles as center
symbols in Fig. 3. For H = 100 x 10° oe, the velocity is
0.47775 x 103 at p = —2 and it increases slowly for the given
range of p and attains its maximum value 0.47783 x 103 at
p = 2. The variation of the velocity for H = 100 is shown
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by solid line with circles as center symbols in Fig. 3. In ab-
sence of magnetic field, the variations for H = 10 x 10° oe
and 100 x 10° oe reduce to that shown by solid line without
center symbols in Fig. 3. The amplitude-attenuation factors
(x10%for H = 0,10 x 10° oe and 100 x 10° oe are shown
graphically against initial stress in Fig. 4. From Figs. 3 and 4,
it is observed that the velocity of propagation and amplitude-
attenuation factors are significantly affected by magnetic field
at each value of initial stress parameter.

7. Conclusions

The frequency equation of Rayleigh wave in a magneto-
thermoelastic half-space with hydrostatic initial stress is ob-
tained. The frequency equation is approximated for small ther-
mal coupling and small reduced frequency and the expressions
for the velocity of propagation and amplitude-attenuation fac-
tors are obtained and computed numerically for a particular
material. The velocity and the amplitude-attenuation factor
are significantly influenced by hydrostatic initial stress and
magnetic field parameters.
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