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Abstract. Functional magnetic resonance imaging (fMRI) data are acquired as a natively complex data set, however for various reasons

the phase data is typically discarded. Over the past few years, interest in incorporating the phase information into the analyses has been

growing and new methods for modeling and processing the data have been developed. In this paper, we provide an overview of approaches

to understand the complex nature of fMRI data and to work with the utilizing the full information, both the magnitude and the phase. We

discuss the challenges inherent in trying to utilize the phase data, and provide a selective review with emphasis on work in our group for

developing biophysical models, preprocessing methods, and statistical analysis of the fully-complex data. Of special emphasis are the use of

data-driven approaches, which are particularly useful as they enable us to identify interesting patterns in the complex-valued data without

making strong assumptions about how these changes evolve over time, something which is challenging for magnitude data and even more

so for the complex data. Finally, we provide our view of the current state of the art in this area and make suggestions for what is needed to

make efficient use of the fully-complex fMRI data.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a nonin-

vasive, powerful tool that has been utilized in both research

and clinical arenas since the early 1990s [1] and has provid-

ed valuable insights to the understanding of the human brain

function. FMRI has enabled researchers to directly study the

temporal and spatial changes in the brain as a function of var-

ious stimuli. Because it relies on the detection of small inten-

sity changes over time, fMRI poses significant challenges for

data analysis techniques. FMRI data is natively complex, and

thus there is both magnitude and phase information available.

To date, most fMRI analysis techniques to date have discarded

the phase of the fMRI data. However, the phase information

may be quite valuable for the analysis of the natively com-

plex fMRI data. A number of direct benefits have been noted

in the use of phase fMRI data as (i). In assessing functional

connectivity, phase is more informative than magnitude da-

ta [2]; (ii) phase enables better detection of artifacts in both

the magnitude and phase data which can then be effectively

excluded from further analysis [3, 4]; (iii) the sensitivity and

specificity of estimations increase as we have shown with a

number of examples as part of our NSF-funded work [5–10].

That is our goal in this paper, to provide a review of various

approaches for using the phase information along with the

magnitude in fMRI data and to demonstrate the advantages.

We first present some preliminaries on the fMRI signal and

statistical properties. Next we discuss approaches to under-

stand the underlying biophysics of the phase signal as well as

approaches to preprocess and de-noise the data. The remain-

der of this article is devoted to model-based and data-driven

analysis approaches to analyze the complex-valued fMRI data.

Traditional model-based analysis approaches – such as linear

regression – are robust, yet often too rigid to capture the rich-

ness of the human brain activation, in addition their limitation

is more evident for incorporating phase into the analyses as

still little is known about the nature of fMRI phase data. In-

dependent component analysis (ICA), on the other hand, is a

data-driven approach that provides a more flexible framework

for the analysis of fMRI data. ICA facilitates the analysis of

fMRI data in its complex form by eliminating the need to

explicitly model the phase behavior. In addition, ICA is able

to separate artifacts from signal more readily as well as cap-

ture signal from the phase which may be less predictable that

that of the magnitude data. There are also a number of is-

sues that require special consideration in the preprocessing

and visualization of the complex fMRI data and we address

those issues as well before discussing the two main analysis

approaches.

1.1. FMRI data acquisition and the complex nature of

FMRI data. Most fMRI studies involve a neurobehavioral

paradigm in which a participant is exposed to sensory stim-

uli and asked to perform a set of mental and/or motor tasks.

A given volume is then collected through slices within a given

repetition time, which is usually on the order of a few sec-

onds. The acquired data set includes a brain volume movie

with a temporal resolution specified by the time of repetition.

The MRI signal is acquired as a quadrature signal using two
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Fig. 1. Diagram of MRI acquisition where M(r, t) represents the magnetization at spatial position r and time t, and ω represents the net

phase

or more orthogonal detectors as shown in Fig. 1. The signal

that is acquired in the complex frequency space (k-space) is

inverse Fourier transformed into the complex image space.

This complex-valued fMRI signal change has been shown to

contain physiologic in formation [11]. In spite of the presence

of useful information in phase, it is usually discarded. Previ-

ous studies have reported task-related phase changes [11–14].

Several approaches for modeling the phase have been pro-

posed [15–17]. Processing complex-valued fMRI data using

independent component analysis was also proposed in [8].

Previous work has focused on filtering voxels with large phase

changes [13, 18–20] based upon models that show that phase

changes arise only from large non-randomly-oriented blood

vessels. More recent studies from our group and others pro-

vide evidence that the randomly oriented microvasculature can

also produce a non-zero BOLD-related phase change [20, 21]

and we and others have also showed empirical evidence of

changes in the phase which correspond to regions expected to

be involved in the task [6]. These and much other work provid-

ing compelling evidence that the phase information contains

useful physiologic information.

2. Preliminaries

Besides medical domain such as magnetic resonance imag-

ing, complex-valued data are an integral part of many sci-

ence and engineering problems, including those in commu-

nications, radar, geophysics, oceanography, electromagnetics,

and optics, among others. The complex domain provides both

a convenient representation for these signals and a natural way

to capture the physical characteristics of these signals. Hence,

working completely in the complex domain leads to the most

efficient processing of these signals. The complex domain,

however, also presents a number of challenges in derivation

and analysis of the methods, and as a result, traditionally,

the vast majority of algorithms developed for their processing

have taken “engineering” shortcuts, thus failing to fully ex-

ploit the potential of complex-domain processing. The most

common one among those shortcuts has been assuming the

circularity of the signal, an assumption that discards the in-

formation conveyed by the relationship of real and imaginary

parts of the signal, or equivalently by the phase, which is, one

of the main reasons one would want to work in the complex

domain, i.e., take into account such information in a compact

and effective way while using the power of complex calculus.

There have been important advances in this area within

the last decade that clearly demonstrate that noncircularity is

an intrinsic characteristic of many signals of practical interest,

and when taken into account, the methods developed for their

processing may provide significant performance gains [22–

26]. The two key fundamental advances in this context have

first been the development of methods that allow the use of

complete statistical information without assuming circularity.

What has greatly helped in this development is the develop-

ment of a complete framework for optimization [22, 27] that

is based on Wirtinger calculus [28].

2.1. Statistics. In almost all methods developed prior to 2000

for the complex domain, the circularity assumption has been

invoked either explicitly, or implicitly, by simply using only

partial statistical information in the development. For exam-

ple when using second-order statistics, only the correlation

information, E{xxH}, is used ignoring the pseudo (comple-

mentary) correlation given by E{xxT }, written for a random

vector x. A second-order circular (or improper) random vec-

tor is one for which E{xxT } = 0. When taking full statis-

tical information into account, circularity is defined in terms

of the probability density function (pdf) such that a random

variable x is circular if x and xejθ have the same pdf, i.e., the
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pdf is rotation invariant [29]. In this case, the phase is non-

informative and the pdf is a function of only the magnitude,

p(x) = g(|x|) where g : R 7→ R. Data in many applications

such as biomedical data analysis, array processing, and com-

munications are however noncircular in nature, see e.g., [22,

26, 30, 31], hence taking their potential noncircularity into

account is important for achieving the best performance.

In Fig. 2(a), we show the scatter plot of a motor com-

ponent estimated using ICA of functional MRI data [3]. The

paradigm used in the collection of the data is a simple motor

task with a box-car type time-course, i.e., the stimulus has

periodic on and off periods. As can be observed in the figure,

the distribution of the given fMRI motor component has a

highly noncircular distribution. In Fig. 2(b) and (c), we show

the spatial map for the same component using a Mahalanobis

Z-score threshold, which we define in Section 0. This distri-

bution is typical as most often the signal power is optimized

to be mainly in one channel [32, 33] but as we noted, the

signal component of the BOLD measurement appears in both

the real and imaginary channels resulting in complex-valued

fMRI data.

Hence, in the processing and analysis of fMRI data in its

native complex form, it is important to account for noncircu-

larity of the distribution. Wirtinger calculus, which we explain

next allows derivation of algorithms that can fully take this

property into account by making optimization much easier so

that the common simplifying assumptions of circularity does

not need to be invoked.

2.2. Optimization. The most important step in the deriva-

tion of algorithms, one has to compute gradient and Hessians

of cost functions, such as a quadratic form or a likelihood

function. Since cost functions are real valued, i.e., are scalar

quantities in the complex vector space, they are not analytic,

and hence not differentiable in a given open set. To overcome

this basic limitation, a number of approaches have been tra-

ditionally adopted in the signal processing literature the most

common of which is the evaluation of separate derivatives

with respect to the real and complex parts of a given func-

tion.

The framework based on Wirtinger calculus [22, 28] – also

called the CR calculus [27] – provides a simple and straight-

forward approach to performing derivatives in the complex

plane, in particular for the important case we mention above,

for non-analytic functions. More importantly, it allows one to

perform all the derivations and the analyses in the complex

domain without having to consider the real and imaginary

parts separately. Hence, all computations can be carried out

in a manner very similar to the real-valued case, and hence the

derivations that use Wirtinger calculus can be directly adapted

to the real case.

The main idea behind Wirtinger calculus is based on the

definition of a more relaxed condition of differentiability for

the complex domain as opposed to the classical definition

whose main objective is to make sure that the derivative cal-

culations parallel those in the real domain. Wirtinger calcu-

lus [28] relaxes the traditional definition of differentiability

and only requires that f(z) be differentiable when expressed

as a function f : R2 → R2. Such a function is called real-

differentiable. Hence, if u(zr, zi) and v(zr, zi) have contin-

uous partial derivatives with respect zr to and zi, f is real-

differentiable. For such a function, we can write

∂f

∂z
=

1

2

(
∂f

∂zr

− j
∂f

∂zi

)
and

∂f

∂z∗
=

1

2

(
∂f

∂zr

+ j
∂f

∂zi

)

(1)

which can be formally implemented by regarding f as a bi-

variate function f(z, z∗) and treating z and z∗ as indepen-

dent variables. That is, when applying ∂f/∂z, we take the

derivative with respect to z, while formally treating z∗ as a

constant. Similarly, ∂f/∂z∗ yields the derivative with respect

to z∗, formally regarding z as a constant. Thus, there is no

need to develop new differentiation rules. This was shown

in [34] in 1983 without a specific reference to Wirtinger’s

earlier work [28]. If f is analytic, then the usual complex

derivative ∂f/∂z and in (2) coincide. Hence, Wirtinger cal-

culus contains standard complex calculus as a special case.

Fig. 2. a) Scatter plot of the average voxel values of the motor component estimated using ICA from 16 subjects. (b) Magnitude and (c) phase

spatial maps using Mahalanobis Z-score thresholding; only voxels with are shown
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The same approach, i.e., treating the variable and its com-

plex conjugate as independent variables, can be used when

taking derivatives of functions of matrix variables as well

so that expressions given for real-valued matrix derivatives

can be directly used. A good reference for real-valued matrix

derivatives is [35] and a number of complex-valued matrix

derivatives are discussed in detail in [11]. In [22, 27, 36], the

complete framework for vector and matrix optimization us-

ing Wirtinger calculus is presented by using the gradient and

Hessian relationships given in [37] but by keeping the whole

development in the complex plane and in the original problem

dimension CN rather than doubling the dimension as in [37].

Hence, using Wirtinger calculus, all calculations can be

carried out in a manner similar to real-valued calculus while

keeping all the computations in the complex domain. It is also

shown that the simplifying and unrealistic assumption of non-

circularity can be avoided in both the algorithm development

and in the analyses of the algorithms when one uses Wirtinger

calculus, see e.g., [5, 36, 38–44].

3. Biophysical models

One powerful approach for understanding the underlying fM-

RI signal is to use biophysical modeling. To highlight the

scope of what is possible, we present two models for calcu-

lating the complex BOLD signal. The first is a microscopic

model that calculates the BOLD signal based on the detailed

geometry of the micro-vessels, spatial distribution of suscep-

tibility, and diffusion. The second is a macroscopic model that

is defined at a resolution of the fMRI experiment and can be

used in the inverse problem of combining magnitude/phase

BOLD data to improve activation localization and detection.

3.1. Microscopic model. The microscopic model, we present

now, follows the description presented in works [45–47]. A

two-compartment model, consisting of the extravascular and

the intravascular contribution to the BOLD signal is typically

considered. Briefly it consists of a) defining a spatial sus-

ceptibility distribution χ(r) = χm(r)V (r), as a product of

the assumed network geometry V (r) and the macroscopically

varying susceptibility χm(r), b) calculating the magnetic field

distribution Bz(r) from χ(r) using a 3D fast Fourier trans-

form (3DFFT) method, and c) calculating the BOLD signal

from Bz(r) by appropriate averaging over the voxel and tak-

ing into account diffusion. Bz(k) = B0(1/3− k2
z/k2)χ(k) is

the 3DFFT of the magnetic field.

Figure 3a shows the geometry which consists of a ran-

dom distribution of microvessels (infinite cylinders) with a

radius = 2.5 um with blood volume fraction = 0.04. Figure 3b

is a slice from the corresponding ∆B0(r) calculated from

the algorithm proposed in [48]) for a Hct = 0.4, Y = 0.5,

∆χdo = 0.27 ppm x4π (units in milliTesla). Assuming a dif-

fusion coefficient = 1 × 10−9 m2/s we compute the signal

attenuation profile shown in Fig. 3c.

Fig. 3. Example simulation including diffusion: (a) geometry, (b) slice through simulation showing field changes, (c/d) signal decay at

different field strengths
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3.2. Macroscopic model. We can also use a macroscopic

model which summarizes the results of the microscopic mod-

el at the level of fMRI voxel resolution. It reflects the exper-

imentally observed patterns of magnitude and phase BOLD

signals. We follow the methods developed by Yablonskiy and

Haacke [49] and Marques and Bowtell [46], and a model for

predicting phase change previously discussed by us [21].

Macroscopic models can be defined for a) random distri-

bution of microvessels (capillaries), b) Oriented distribution

of larger vessels (venules), and c) a single large vessel. As

discussed before, the extravascular and the intravascular sig-

nal can be considered as separate compartments. Although

both magnitude and phase effects depend on the underlying

vascular geometry and the susceptibility change, they primar-

ily depend on different magnetic field characteristics. To first

order, the magnitude attenuation depends on the intra-voxel

magnetic field inhomogeneity and the phase depends on the

mean magnetic field at the voxel. The magnitude and phase

changes have different models as described below.

Extravascular signal. SE = S0e
−R∗

2,ETE e−iφ, where

R∗

2,E = R2,GM + aV bχc
m. V is the voxel volume and χm(r)

is the macroscopic susceptibility distribution. The parame-

ters a, b, c are parameters obtained from numerical simula-

tions with the microscopic model for different vessel dimen-

sions, blood volume fraction, and vessel radius. The simula-

tion work of Marques and Bowtell [46] has shown that a real-

istic model and the infinite cylinder model give similar values

for a, b, c. The values for the realistic model were a = 2.73,

b = 1.13, and c = 1.29. The phase φ = γBmTE is calculated

from macroscopic magnetic field Bm, where Bm is calculated

from the macroscopic susceptibility distribution χm(r) by the

3DFFT method described earlier. This method was described

earlier in Feng [21] and Fig. 4 shows an example.

Intravascular signal (case 1). Randomly distributed

cylinders with blood volume fraction = f1. SI =
S1I(t)e−R∗

2,ITE , where R∗

2,I = a1V
b1χm

c1 + a2V
b2χm

c2 ,

I(t) = (1/2)
π∫

0

sin θeik(2 cos2 θ−1)tdθ, and k = (2/3)πγB)χ.

Marques and Bowtell [46] estimate a1 = 3.5, b1 = 1.0,

c1 = 1.2, a2 = 40.0, b2 = −0.4, and c2 = 1.2.

Intravascular signal (case 2). A single cylinder with

blood volume fraction = f2. The field inside the cylin-

der is orientation dependent but is spatially constant. SL =
S0e

−R2,BTEe−iφL , where φL = γB0(χ/6)(3 cos2 θ − 1)TE .

The total signal is given by ST = (1 − f1 − f2)SE +
f1SI + f2SL. The magnitude signal in each compartment

has the form S = S0e
−R∗

2
TE , and for small changes in R∗

2,

∆S/S = −TE∆R∗

2. ∆R∗

2 can be related to changes in χm by

models presented earlier. The magnitude of the blood/tissue

susceptibility difference is modeled by χ = Hct(1−Y )χdHb,

where Hct = 0.4, χdHb = 2.2 ppm (MKS units). This gives

χ = 0.36 ppm in the resting state with an oxygenation frac-

tion Y = 0.6 and χ = 0.18 ppm in the active state with

Y = 0.8. These numbers imply that the change in χ between

the resting state and the activated state is estimated to be

∆χ = 0.18 ppm.

3.3. Intravascular effect. Here we estimate the maximum

phase change expected in a single large vessel to the phase

change calculated in a capillary bed under some reasonable

parameter assumptions. If the cylinder is parallel to the main

field φL = γB0χTE/3 = 15.4πTE, for B0 = 3T and

χ = 0.18 ppm. The phase in the total signal will depend

of the blood volume fraction f , but as can be seen it can

become as large as π. Menon et al. have suggested that large

phase changes can be used to detect and exclude large vessel

artifacts [13]. When an analysis is done in combination with

a physical model we can use the phase information to either

enhance an activated region or suppress a false activation.

3.4. Phase changes also occur in parenchymal regions con-

taining only small vessels. We assume that the macroscopic

susceptibility change is 3D Gaussian.

∆χm(r) = Ck exp

(
−

1

2

[
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

])
, (2)

where Ck is a scaling constant. We choose the value of

Ck based on parameter values from the literature. We de-

fine ∆χ′ as the susceptibility difference between complete-

ly deoxygenated and completely oxygenated red blood cells

(0.264×4π ppm in MKS units [50] with a hematocrit level of

0.4 [51], and oxygenation level Y is the fractional oxygena-

tion in the red cells with ∆Ycap = 0.08 [11, 12]. Then for

a blood volume fraction f of 0.05 and ignoring the cerebral

blood volume change, Ck = −f ·∆Ycap · 4π ·∆χ′ ·Hct, Ck

is approximately −5.3e−9.

Figure 4 shows the simulation results of magnetic

field/phase change corresponding to 3D Gaussian volume-

averaged susceptibility/magnetization change for the cases of

σx : σy : σz = 1 : 1 : 1, 1:1:2, 2:2:1 and 2:2:1, Eq. (1),

rotated counter-clockwise around the x-axis by π/3, respec-

tively. For the value of Ck selected above, the resulting max-

imum simulated phase change for all of these configurations

is in the order of 1◦. Depending on the spatial distribution of

the susceptibility changes and the angle of the cut plane of

the magnetic field change, the resulting phase shows patterns

of dominantly positive, dominantly negative, or combinations

of positive and negative phase changes due to the volume-

averaged magnetization and demagnetization effects.
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Fig. 4. Simulation of phase change corresponding to 3D Gaussian volume-averaged susceptibility change for the cases of σx : σy : σz =

1 : 1 : 1, 1:1:2, 2:2:1 and 2:2:1 rotated counter-clockwise around the x-axis by π/3

3.5. Robustness to noise by using phase. A second simulat-

ed example is shown on how to fit the magnitude signal change

or determine how much to smooth. The problem can be ap-

proached by finding an optimal smoothing of the magnitude

response constrained by phase. The optimization cannot be

performed without the phase information. Given a magnitude

change we can calculate a signal proportional to phase change.

Let fm(r) and fφ(r) be the magnitude and phase change im-

ages. The error functions for magnitude and phase are written

as E1 = ||χ(r)−fm(r)||2, and E2 = S2||αF (χ(r)−fφ(r)||2.

We now seek a function χ(r) and α, such that E1is approxi-

mately equal to E2 while E1 + E2 is a minimum. The addi-

tional phase information enables us to find a smooth solution

for χ(r). The results of the proposed fitting are shown in

Fig. 5 where we transform a noisy image magnitude/phase

image pair (middle) to a pair which has error relative to the

ground truth (left) reduced by a factor of 20 (right). The joint

constraint allows us to determine the optimal smoothing and

fit the magnitude data without ground truth knowledge.

Fig. 5. Joint magnitude/phase fit to reduce noise
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Fig. 6. Simultaneous fit for one subject

3.6. Fitting the model to real fMRI data. The macroscopic

model suggests that both magnitude and phase of the BOLD

signal depend on the macroscopic susceptibility distribution

χm(r). The magnitude change depends χm(r) on through

models for R∗

2 and the phase through the 3DFFT model or the

separate case of large vessels. We propose to estimate χm(r)
by minimizing the goodness-of-fit function χ2 used for fitting

the magnitude and phase change models as defined by:

χ2 =

∫

r

((
∆S(r)

S(r)
−

∆Ŝ(r)

Ŝ(r)

)
/σds(r)

)2

dr

+

∫

r

(
∆φ(r) − ∆φ̂(r)

σdφ(r)

)2

dr,

where ∆Ŝ(r)/Ŝ(r), ∆φ̂(r) are theoretical scaled magnitude

change and phase change, respectively, and ∆S(r)/S(r),
∆φ(r) are the observed magnitude change data and phase

change data; σds(r) and σdφ(r) are the standard deviation of

magnitude and phase change at each voxel. The integration

is over the volume of activation (VOA). Figure 6 shows the

simultaneous fitting results for one subject showing data as

well as the fits for magnitude and phase.

Experiments were performed on a 3T Siemens TRIO TIM

system using a standard Siemens gradient-echo EPI sequence.

We used a Field-of-View (FOV) = 240 mm, Slice thickness =

3.5 mm, Slice Gap = 1 mm, 32 slices, Matrix size = 64×64,

TE = 29 ms, and TR = 2 s. The fMRI experiment used a

block design with alternating 30s finger tapping. The total

experiment time was 5.5 minutes.

Data were preprocessed using the SPM software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm/5/). Complex

images were corrected by dividing each time point by the first

time point, and then recalculating the phase images. Further

phase unwrapping was not required. Data were motion cor-

rected [51], spatially smoothed with a 10 mm3 full width at

half-maximum Gaussian kernel, and spatially normalized in-

to the Montreal Neurological Institute space. Activation maps

were computed using the multiple regression framework with-

in SPM5 in which regressors are created from the stimulus

onset times and convolved with a standard hemodynamic re-

sponse function. A contrast was created for each individu-

al subject for finger tapping versus rest. A group analysis

was performed using the activation maps from each individ-

ual subjects and entering them into voxelwise one-sample t-

tests.

Fig. 7. Magnitude (M) and phase (P) changes (t-values) for representative subject (left) and simulated results (right). The color bars for the

subjects show the t-value ranges. The colorbar for the simulated results indicate the relative strength of susceptibility and phase change
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Fig. 8. Phase and magnitude change time courses

In Fig. 7, the left panel show the magnitude and phase

change of the results (thresholded at t = 8 (p < 1 × 10−13))

for subject A (for a complete reporting of results see [21]. The

panel on the right shows the susceptibility change and phase

change of simulated results. Here, we assume the magnitude

change is approximately linear to the volume-averaged suscep-

tibility change. The highest magnitude change was observed

in the motor cortex. Further observation of Fig. 7 indicates

the peak of the magnitude change is not located where the

phase change peaks; instead, it is closer to the sign change

of the phase change (the minimum absolute phase value).

The simulations to match the observed fMRI phase/magnitude

changes began by approximating the observed phase change

pattern to that obtained by Gaussian distributions, and cal-

culating the susceptibility distribution by an inverse calcu-

lation [53]. Then a matched phase distribution was calcu-

lated by a forward model calculation. The results show that

our model can closely match patterns observed experimen-

tally.

Figure 8 shows the phase and magnitude change time

courses from a single voxel (the one showing maximal phase

change) for a representative subject. The time evolutions of

the phase and magnitude change are similar to each oth-

er, suggesting that both changes originate from the same

source, the deoxyhemoglobin-induced susceptibility change.

The measured voxel phase change (unsmoothed) is around 1◦,

on the same order of the simulation results as shown in Fig. 4.

They are both on the same order of a measured voxel phase

change (no large vessel present) 0.028 radians or 1.6◦ in [13].

4. Preprocessing and visualization

4.1. Motion correction. Existing methods for motion cor-

rection and spatial normalization can be modified to work for

an analysis including the phase. A straightforward approach

is to simply use the magnitude image to compute the parame-

ters for both motion correction and for spatial normalization

and then to apply the computed transformation to the phase

images. This appears to work quite well although a poten-

tial down side is it does not consider the possibility that the

phase data may contain useful information about movement

or structure in general. As a simple extension one can try

to incorporate a cost function which uses both the magnitude

and the phase. A typical least-squares cost function for motion

correction is given below, CF =
∑

i=2:N [Mi − M1]
2 where

Mi is the i-th time point image. It is possible to implement a

complex motion correction approach by realigning the images

using the information present in the complex image (obtained

by combining the magnitude and phase data). A proposed cost

function for the complex algorithm is given below,

Cost =
∑

(

i = 2 : N)

[
(Ri − R1)

2

1/(Norm(R1))
+

(Ii − I1)
2

1/(Norm(I1))

]
,

where is the real part of the time point and is the imaginary

part of the time point. We applied this approach to fMRI data

from several subjects performing a motor tapping task. The re-

sults using the magnitude only cost function and the complex-

valued cost function are similar but not identical. The resulting

T-maps for both magnitude and phase show less activity at the
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edges of the brain (40% smaller T-values on average) when

performing motion correction using the complex-valued data

suggesting that the complex motion correction algorithm does

a better job in handling the motion. Overall the patterns ob-

served pre and post motion correction are highly similar with

pre/post motion corrected maps spatially correlated at 0.97

for phase and 0.98 for magnitude. The significance is slight-

ly higher for the unified approach compared to an approach

in which we used only the magnitude data and applied the

parameter estimates to the phase data. The phase for the uni-

fied approach shows increases from T = 18.8 to T = 18.9 and

magnitude changed from T = 21.3 to T = 21.4. The T-value

improvements are encouraging, but relatively modest.

4.2. Spatial normalization. Just as in motion correction we

can use two approaches, one using the magnitude information

and pulling the phase information along, and the other us-

ing both magnitude and phase to computed the normalization

parameters. For the latter the images can be spatially normal-

ized to the Montreal Neurological Institute (MNI) template

and we use the cost function in [2] to derive the nonlinear pa-

rameter estimates. A study specific template (including both

real and imaginary images) was created using an initial reg-

istration based upon the magnitude data and then applying

the parameters to the real and imaginary data and averaging

across subjects to create a template that has real and imagi-

nary images. The data can then be renormalized to this group

template using the cost function in [2] to provide a more

accurate estimate. We tested this approach on a group of 17

subjects. We converted the data to magnitude and phase and a

statistical analysis was performed on the magnitude and phase

data independently. Results were overall quite similar to the

magnitude-only approach, but again the T-maps were slightly

higher for the unified approach. Results are thus encouraging,

but more work is needed.

4.3. Preprocessing and visualization.

Spatial smoothing. Data are typically spatially smoothed

with e.g., a Gaussian kernel to improve the contrast-to-noise

ratio [6, 8]. Smoothing is useful for group data as it both

reduces the amount of high-frequency spatial noise as well

as desensitizes the images to variability of functional acti-

vation and anatomy among subjects. We analyze both un-

smoothed and smoothed data with different kernels to evalu-

ate the impact of smoothing upon the analysis. There is likely

room for improvement in smoothing schemes to move beyond

Gaussian, e.g. wavelet smoothing [54]. In the complex-domain

there is also the possibility of performing natively complex

smoothing, for example one could use a modified complex

anisotropic diffusion filtering [55]. However, this is an appli-

cation area which has not yet been fully evaluated.

Phase denoising. A physiologically motivated denoising

method is given in [4] and uses the phase to identify noisy

voxels and eliminates them or introduces a weighting scheme

depending on their noise level. The quality map phase de-

noising (QMPD) uses gradient information to determine the

noisy voxels and eliminates them from further analysis [4]. It

is shown that the voxels identified as noisy are in areas that

are known to suffer from susceptibility artifacts, such as the

area from the orbitofrontal cortex due to air in the sinuses.

The final component of this method includes an important

smoothing step that if done before eliminating noisy voxels

can spread their detrimental effects to their surroundings. It

is also noted that the ICA results obtained with the QMPD

method provides higher Z-scores (11.87 versus 10.83) and a

larger number of active voxels (1589 versus 1238) as com-

pared to those obtained with the MTEE method [4].

Phase correction for ICA group studies. We note the

importance of phase correction for the analysis results for

groups of subjects as a simple rotation of the estimated dis-

tribution of the activation map can have serious detrimental

effects in the group results when we compute averages. There

have been two approaches proposed to address this problem.

If information on the distribution of the original fMRI data is

available, then this prior information can be used for selecting

the appropriate nonlinearity in the ICA algorithm as shown

in Fig. 9 (right) [38, 40, 43]. As shown in [38], a number of

trigonometric functions and their hyperbolic counterparts can

be effectively used for achieving ICA, and for the fMRI data

we use where the signal is maximized in the real part, the

function shown in Fig. 9 (right) provides a perfect match and

eliminates the phase rotation in the estimated components as

we show in [56].

Fig. 9. Complex scatter plot of an estimated motor task related source before (left) and after (middle) applying the PCA-based phase

correction scheme. (right) form of pdf implied by the score function
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A second approach uses direct manipulation of the data to

correct for phase rotation in the estimated fMRI components:

1) Find rotation angle θ that maximizes: argmazθE[(Mŝ)2],
2) Resolve 180◦ phase ambiguity: argmaxθE[(Mŝ)3] where

and M = [cos θ sin θ; − ∈ θ cos θ] and ŝk = [ŝk.re, ŝk,im]T .

Figure 9 shows the scatter plot of the real and imaginary data

of an estimated source before and after the PCA based phase

correction. In Fig. 13, we show group ICA results for 20 sub-

jects performing a motor tapping task.

5. Model-based analysis of complex fMRI data

5.1. fMRI data analysis. We now discuss statistical analysis

using a model-based approach. Typically, the acquired fMRI

data are first preprocessed, for example by the 1) correction of

slices for the slight time shift within each volume, 2) registra-

tion to correct for subject motion during the scan, and 3) spa-

tial normalization to enable comparisons among subjects and

neuro-anatomical labeling, and 4) smoothing. Following the

preprocessing step, the data are analyzed to determine the

voxels with significant temporal signal change, which are then

super-thresholded and overlaid on an anatomical image. The

volume data is then organized into a matrix X such that each

row is formed by concatenation of the slices at a given time

instant resulting in the T × V matrix shown in Fig. 10.

5.2. General linear model. The most widely used method

for the analysis of fMRI data is linear regression using the

general linear model (GLM) [83]. As shown in Fig. 10 along

with an example time course (regressor) for a simple on-off

paradigm, X is the matrix of input data, R is a design matrix,

and M is the matrix of activation maps. The time course is

correlated with the fMRI data to determine the voxels that

show activity related to the chosen time course. The goal is

find the matrix M , i.e., compute the regression coefficients

(entries of matrix M ) that are deemed to be active. An im-

portant limitation of this method is that the regressors rk that

form the matrix R need to be specified a priori.

Several methods for approaching the analysis of the phase

information within the GLM framework were proposed by

Rowe et al. [14–17, 57]. The general complex fMRI model

proposed by Rowe is given in [15]:

yt = (ρt cos θt + ηRt) + i(ρt sin θt + ηIt),

ρt = x′

tβ = β0 + β1x1t + · · · + βq1xq1t,

θt = u′γ = γ0 + γ1u1t + · · · + γq2tuq2t,

t = 1, . . . , n

where (ηRt, ηIt)
′ ∼ N(0, σ2I), x′

t is the t-th row of an

n × (q1 + 1) design matrix X for the magnitude, u′

t is the

t-th row of an n × (q1 + 1) design matrix U for the phase,

while β and γ are the regression coefficients for the magnitude

and phase.

Fig. 10. Application of GLM and ICA to fMRI data
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Rowe considers a number of cases for modeling the phase,

in [15] and [14], a task-related phase is considered, in [17] the

phase is modeled as an arbitrary value (and under this model,

i.e., uninformative phase, the model is shown to be equiva-

lent to magnitude only case), and finally in [16], a constant

value (identical at all time-points) has been used for model-

ing the phase. With the given linear model, the hypotheses

regarding task related magnitude and phase changes can be

evaluated on an individual complex-valued voxel-wise basis,

using maximum likelihood estimators.

5.3. GLM group analysis. Few studies have examined phase

data in a larger group of subjects for multiple types of fMRI

tasks, nor have studies examined phase changes due to event-

related stimuli. In recent work from our group, we evaluate

the correspondence between the magnitude and phase changes

at a group level in a block-design motor tapping task and in

an event-related auditory oddball task [6]. The results for both

block-design and event-related tasks indicate the presence of

task related information in the phase data with phase-only

and magnitude-only approaches showing signal changes in

the expected brain regions. Although there is more overall

activity detected with magnitude data, the phase-only analy-

sis also reveals activity in regions expected to be involved

in the task, some of which were not significantly activat-

ed in the magnitude-only analysis, suggesting that the phase

might provide some unique information. In addition, the phase

can potentially increase sensitivity within regions also show-

ing magnitude changes. The identification of regions which

1) show signal changes for magnitude data only, 2) show sig-

nal changes for phase data only, or 3) show signal changes for

both magnitude and phase data were of particular interest.

Figure 11 shows the magnitude change and phase change

of the results for motor tapping and auditory oddball. As ex-

pected the highest magnitude change for motor tapping was

observed in the left motor cortex and for the auditory odd-

ball highest change was in bilateral temporal lobe. Similarly,

maximal phase changes were also observed in motor cortex

for MT and in temporal lobe for AOD. The images in the

top-right and bottom-right panels of Fig. 1 are the RGB (R-

red, G-greed, B-blue) color maps for MT and AOD similar

to the display provided in [15]. The areas in red are where

only significant magnitude signal changes were observed, the

ones in green are for significant phase-only signal changes

and the areas in blue are where both significant magnitude

and significant phase signal changes were observed. The re-

sulting signal change changes for phase and magnitude data

for both motor tapping and AOD were cluster thresholded to

correct for multiple comparisons at family wise error (FWE).

The color activation maps in Fig. 11 show the correspon-

dence between the magnitude and phase responses. The re-

gions of interest in each of these maps are labeled such that

red shows magnitude only areas, green shows phase only, and

the areas for magnitude and phase are shown by blue. Tapping

movement mainly activates regions in the motor cortex, hence

for the motor tapping paradigm it is expected to see peaks in

precentral gyrus. The results are encouraging and corroborate

with patterns observed in the ROI analysis. The presence of

these areas in phase only activation maps (without any mag-

nitude signal change) suggests that using the phase date in

fMRI may provide useful information beyond the magnitude

data.

Fig. 11. Whole brain analysis results
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Separate analyses of phase and magnitude fMRI data at

a group level for two different paradigms were analyzed. The

group statistical results show significant phase changes in both

block design and event related design. The presence of phase

activation in the regions expected to be activated by the task,

suggests that the information in the phase might help increase

the ability to isolate the task-related functional changes.

6. Data-driven analysis of complex fMRi data

6.1. Blind Source Separation (BSS) and Independent

Component Analysis (ICA). Data-driven methods are based

on a simple generative model and hence can minimize the

assumptions on the nature of the data. They have emerged

as promising alternatives to the traditional model-based ap-

proaches in many applications where the underlying dynamics

are hard to characterize. Blind source separation, in particu-

lar, has been a popular data-driven approach and an active

area of research. Most BSS formulations start with the linear

mixing model x = As with the possibility of an additive

noise term), where x is the mixture that is factorized into

latent variables through two matrices (a mixing matrix A and

a component (source) vector s where each entry correspond

to a source in random variable notation) and replaced by the

observation matrix X and component matrix Sin an imple-

mentation. For uniqueness of the decomposition (subject to

certain ambiguities), constraints are applied to the two matri-

ces such as sparsity, uncorrelatedness, or independence of the

components. ICA is a popular blind source separation tech-

nique that imposes the constraint of statistical independence

on the components, i.e., source distributions and hence can re-

cover the original sources by estimating a demixing matrix W

such that u = Wx subject to only a scaling and permutation

ambiguity. It has been successfully applied to numerous data

analysis problems in areas as diverse as biomedicine, commu-

nications, finance, geophysics, and remote sensing [22, 61].

To solve the source separation problem, different prop-

erties of source signals have been exploited including non-

Gaussianity, non-stationarity, and sample correlation – see

e.g. [58–63]. The most commonly used property among those

has been non-Gaussianity. The natural cost in this context

that leads to ICA is the mutual information among separated

components, which can be shown to be equivalent to maxi-

mum likelihood estimation, and to negentropy maximization

[40, 59, 61, 64] when we constrain the demixing matrix to be

orthogonal. In these approaches, one either estimates a para-

metric density model [61, 63, 65, 85] along with the demixing

matrix, or maximizes the information transferred in a network

of non-linear units [58, 67], or estimates the entropy using a

parametric or nonparametric approach [58, 63, 68, 69]. A

recent semi-parametric approach uses the maximum entropy

bound to estimate the entropy given the observations, and us-

es a numerical procedure thus resulting in accurate estimates

for the entropy [42]. We have showed that the method can

successfully approximate a wide class of source distributions

by selecting few measuring functions, and when incorporated

into ICA, the flexible density matching in this approach, ICA

by entropy bound minimization (ICA-EBM) provides a very

attractive trade-off between performance and computational

cost [42, 70]. As presented in [71, 72], one way to incor-

porate prior information to an ICA algorithm is by working

in a constrained optimization framework and directly adding

the constraints through Lagrange multipliers. ICA-EBM, on

the other hand, besides the use of such a direct constrained

approach allows easy incorporation of prior information in a

number of ways, in particular by selecting the best nonlinear-

ities to model the underlying source densities.

We have made considerable progress in the development

of data-driven algorithms for processing complex-valued fM-

RI data. Many of the approaches discussed in this paper are

available in two Matlab software tools, the Group ICA of

fMRI Toolbox (GIFT; http://mialab.mrn.org/software) and the

LibrarY of Complex Independent component analysis Algo-

rithms (LYCIA; http://mlsp.umbc.edu/lycis/lycia.html).

6.2. Complex ICA. When performing ICA in the complex

domain, all quantities are assumed to be complex and an im-

portant result in the complex case is that one can make use

of noncircularity to achieve source separation. Specifically,

when all the sources in the mixture are improper with distinct

circularity coefficients, we can achieve ICA through joint di-

agonalization of covariance and complementary covariance

matrices to achieve source separation as in the strongly un-

correlating transform (SUT) [73, 74]. For the real-valued case,

separation using second-order statistics can be achieved only

when the sources have sample-to-sample correlations.

Algorithms such as joint approximate diagonalization of

eigenmatrices (JADE) [75] explicitly calculate the higher-

order statistics, the cumulants in the case of JADE, and can be

directly used for ICA of complex-valued data. A recent exten-

sion for these algorithms [76] enables joint diagonalization of

matrices that can be Hermitian and/or complex symmetric and

hence can be used for more efficient ICA solutions using both

the commonly used statistics and the complementary statistics

that have been traditionally neglected. The algorithms that re-

ly on joint diagonalization of cumulant matrices are robust.

However, their performance suffers as the number of sources

increases, and the cost of computing and diagonalizing cumu-

lant matrices might become prohibitive for separating a large

number of sources. On the other hand, ICA techniques that ex-

ploit non-Gaussianity are the more attractive solutions for the

complex case as well. As in other areas for complex-valued

processing, circularity assumption was a common one for the

extension of popular ICA algorithms to the complex case as

in complex Infomax [77, 78] and complex FastICA [78]. As

expected, in the presence of noncircular sources, the perfor-

mance of those algorithms suffer. There are now a number of

powerful solutions available for complex ICA for the general

case where sources can be either circular or noncircular, e.g.,

[36, 38, 41, 43, 44, 80] as well as those that adapt to different

source distributions using general models such as complex

generalized Gaussian distributions [43, 81], or more flexible

models through efficient entropy estimation techniques as in

ICA by entropy bound minimization (ICA-EBM) [70].
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6.3. An application example: importance of accounting for

noncircularity. Two most commonly used ICA techniques

are based on maximum likelihood (ML) or maximization of

negentropy (MN), and the two are equivalent when the demix-

ing matrix is constrained to be unitary [40]. Infomax [58] has

been the most widely used algorithm for analysis of fMRI da-

ta following its first application to the problem [82] and can

be shown to be equivalent to maximum likelihood when the

score function is matched to the source density, and in the

case of orginal infomax [58] the super-Gaussian source that

corresponds to the sigmoid nonlinearity (score function). Its

first extension to the complex domain, circular infomax [77],

assumes again a fixed nonlinearity, again of sigmoid form that

matches most fMRI sources well as they tend to be mostly

super-Gaussian. However, it also assumes a circular distri-

bution, which might be quite limiting as discussed in Sub-

sec. 2.2. Circular infomax uses the nonlinear score function

that is a good match to typical super-Gaussian pdf given as

ϕ(u) = − log
∂p(u)

∂u
= sign(u)

1 − exp(−|u|)

1 + exp(−|u|)
,

where only the magnitude of the data has been considered and

all the phase information has been discarded. In this example,

we compare its performance with that of the complex version

of ICA-EBM [69] as discussed in detail in [10], which is a

powerful ICA approach using an adaptive density model.

Complex ICA-EBM algorithm. The complex ICA-EBM

algorithm uses the minimization of the mutual information

principle, which is equivalent to ML, to perform source sep-

aration. The cost function can be written as [42] I(y) =
n∑

k=1

H(uk) − 2 log | det(W )| − H(x) here H(uk) is the en-

tropy of the k-th spatial map. Instead of estimating H(uk)
directly, complex ICA-EBM estimates the tightest bound of

the entropy by assuming that the density of the sources

is either weighted linear combinations or elliptical distribu-

tion. Complex ICA-EBM can obtain a reliable estimate of

the bound of entropy by solving for the maximum entropy

distribution that maximizes the entropy under certain con-

straints. The associated maximum entropy distribution in-

cludes many bivariate distributions, such as Gaussian, uni-

form, (double) exponential, Student t, and GGD. Let us define

two density forms as p(u) = A exp[−au2 − bu − cGm(u)],
q(|u|) = A exp[−a|u|2 − cG(|u|)] where Gm is one of a set

of pre-determined measure functions and the parameters k,

a, b, and c are solved by using a normalization constraint,

the associated maximum entropy distribution of s could be

kp(sr)p(si) or kq(|u|) for two different entropy bounds. Four

function forms of G, including the unbounded fourth order

symmetric and bounded second-order asymmetric, are consid-

ered for the first entropy bound where the density is weight-

ed linear combinations. Two function forms of G, including

fourth order symmetric and first order asymmetric, are con-

sidered for the second entropy bound where the sources are

elliptical distributions. Among all the entropy estimates, only

the minimum one is used as the final estimate of the en-

tropy.

Dataset. The dataset used in the experiment is from 16

subjects performing a finger-tapping motor task while receiv-

ing auditory instructions [10]. The data are first preprocessed

using the quality map phase de-noising (QPMD) [4] discussed

in Subsec. 4.3. The fMRI data were multiplied by the mask

generated using QMPD and smoothed for the real and imag-

inary parts separately. Then components are estimated using

both the complex versions of Infomax and ICA-EBM.

6.4. Results of bivariate t-maps and difference t-maps. To

study the statistics across subjects, we can define a bivariate

t-map using the Hotelling T 2-test defined as [81]

T 2 = N < s >T C−1

S
< s >, (3)

where N is the number of realizations of random vector s. For

Hotelling T 2-test, < s > in (3) represents the sample mean

vector of a set of realizations from a multivariate Gaussian

distributed s. For a group of subjects, we can calculate the

mean image < s > of 16 subjects, where < s > represents

the sample mean vector of 16 2 × 1 vectors for each vox-

el. The covariance matrix CS is also defined with respect to

the 16 2 × 1 vectors, where each 2 × 1 vector is treated as

a realization of a 2 × 1 Gaussian random vector. Therefore

we can construct an image of size v using (3) and the val-

ue of each pixel represents a Hotelling T 2 value, where we

have assumed that the 16 2 × 1 vectors for each voxel are

the realizations of a multivariate Gaussian distribution. Such

an image might be called a group bivariate t-map. It should

be noted that 16 may be too small as a sample size and the

multivariate Gaussian distribution across different subjects is

also assumed for simplicity.

Using the Hotelling T 2 statistic defined in (3), we con-

struct a bivariate t-map for the two algorithms to check for

voxels that are significant active across the 16 subjects. How-

ever, the fMRI images estimated by the ICA algorithms have

phase rotation ambiguity and we cannot simply apply the T 2-

test. The phase ambiguity, is due to the ICA model x = As.

As we can observe, x = As = A′s′ where A′ = AD−1,

s′ = Ds and D represents a diagonal matrix whose entries

are complex, and hence include a magnitude and phase part.

Therefore there are infinitely many solutions of A and s since

D is an arbitrary diagonal phase rotation matrix. That is, for

the general ICA problem, it is impossible to recover the orig-

inal scale of the sources, which in the complex case includes

a magnitude and a phase term.

Hence, we perform the phase rotation on each estimate

to ensure that the largest magnitude of the estimate is on the

real axis since that is how the data we are using is acquired.

The value for each voxel in the bivariate t-map tells us how

the voxel values are distributed across different subjects. High

T 2-values in such figures might be regarded as an index in-

dicating that the voxel values are probably high for all the

subjects at that specific pixel and with probably lower vari-

ations across different subjects. We observed that the bivari-

ate t-maps looked visually similar for all the four algorithms.

However, in terms of hypothesis testing, the results were not

the same. For hypothesis testing, we are testing H0 : µs = 0
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versus H1 : µs 6= 0 where µs is the mean spatial map of

16 subjects. We accept H0 if T 2 < T 2
α,d,N−1 where α is the

probability of Type I error (accept H1 when H0 is in fact true),

d−2 is the dimension of random vector, and N−1 = 15 is the

degrees of freedom. For instance, T 2
0.05,2,15 = 8.01. We then

evaluate the number of voxels for the right motor component

when thresholded T 2 > T 2
0.05,2,15 at as 2761 for Infomax and

as 2951 for ICA-EBM, hence resulting in significantly greater

number of voxels for the flexible ICA-EBM that also accounts

for noncircularity of the sources.

We can also compute difference t-maps such that given

any two sets of estimated spatial maps with voxels Xijk and

Yijk , where Xijk denotes the k-th voxel in the j-th compo-

nent of the i-th subject, each voxel of 16 difference images

are calculated as Dijk = Xijk − Yijk . The difference images

of 16 subjects were calculated first, then a T 2-test was per-

formed. Results of difference bivariate t-maps show that the

adaptive ICA algorithms have significantly higher activation

within the motor area for each class as shown in Fig. 12.

Thresholding of complex analysis results. Estimated

sources for complex-valued data require a method which

takes into account both phase and magnitude. The thresh-

olding method introduced in [4] takes into account the

phase by using a Mahalanobis distance metric in the re-

al and imaginary data of the estimated sources given

by dk,i =
√

[̂sk,i − µk]T C−1
k [̂sk,i − µk] where ŝk,i =

[ŝk,i,r,e, ŝk,i,im]T ; and µk and CZk are the corresponding

mean and covariance of the estimated sources. Figure 13

shows results with this new Z-score that takes the complex

nature of data fully into account. An additional challenge

for fMRI group studies using complex-valued ICA is the

well-known inherent scaling ambiguity of ICA algorithms,

which in the complex case includes a phase term. Hence, for

complex-valued ICA, the phase term in the scaling ambiguity

presents an additional problem, since the estimated distribu-

tion of matching components across subjects then will have

different unknown rotations (in the complex plane), without

phase ambiguity correction, they can add destructively, hence

creating group average component images with lower magni-

tude and noisy phase images. In [4], two effective approaches

are introduced to correct for the phase ambiguity such that

successful group results can be obtained and presented using

complex fMRI data. In Fig. 12, we show the estimation re-

sults for a motor component where a total of 30 components

were estimated using circular Infomax [76] using data from

16 subjects performing a finger-tapping task, and using the

Mahalanobis z-score.

Fig. 12. Difference bivariate t-map for the motor component with ICA-EBM and circular Infomax
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Fig. 13. Mean magnitude (left) and phase (right) maps for the motor component (Mahalanobis z-score of 4)

7. Summary

In summary, we believe there is great potential in using the

phase information in an fMRI analysis. The convergence of

biophysical models and simulation approaches, high-field and

high-resolution data acquisition, preprocessing and denoising

approaches, and statistical modeling approaches which utilize

the fully complex data are pushing the field forward. However

significant challenges still remain and need to be addressed

before complex-valued fMRI data will become a mainstream

approach.
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