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Abstract. The paper is focused on application of sensitivity methods to analysis of signaling pathway models. Two basic methods are
compared: local, based on standard sensitivity functions, and global, based on Sobol indices. Firstly, a general outline of modeling of
signaling pathways by means of ordinary differential equations is briefly described. Afterwards, the methods of sensitivity analysis, known
from literature, are introduced and illustrated with a simple example of a dynamical system of the second order. Subsequently, the analysis
of the p53/Mdm2 regulatory module, which is a key element of any pathway involving p53 protein, is presented. The results of this analysis
suggest that no single method should be chosen for investigation of any signaling pathway model but several of them should be applied to
answer important questions about sources of heterogeneity in cells behavior, robustness of signaling pathways and possible molecular drug
targets.
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1. Introduction

The terms signaling pathways or regulatory pathways relate to
the cascade of processes, initiated by an external event (e.g.,
ligand binding to its specific receptor on a cell surface), or
by an internal event (e.g., DNA damage). These processes
involve creation or degradation of protein complexes, activa-
tion of enzymes and usually lead to activation or repression
of transcription of genes specific for a given pathway. This
results in production of new proteins (or their disappearance,
if the genes are repressed) which may affect earlier stages of
the cascade, thus creating positive or negative feedback loops.
From a control theory perspective, the cell can be presented
as a closed-loop system, as in Fig. 1.

Fig. 1. A general block diagram representation of a signaling path-
way. The diagram is simplified, since it does not include posttrans-

lational modification of proteins, siRNA, etc.

Following rapid developments in new experimental tech-
niques, mathematical modeling of regulatory pathways that
control intracellular biological and chemical processes is
gaining increasing interest in the biomedical research [1–3].
Analysis of biological data has led to much better understand-
ing of the nature of intracellular processes. Though our knowl-
edge of these processes has been rapidly expanded, still much
more remains to be uncovered. Research efforts are hampered
by at least several factors, high costs of experiments being

not the least of them. So far, much more knowledge has been
gained concerning the pathways structure than their dynam-
ics. Despite a lot of efforts, relatively small number of models
has been hitherto tested against experimental data, and, there-
fore, a lot of their parameters remain unknown. Moreover, due
to their complexity, intertwining and lack of detailed knowl-
edge of the mechanisms regulating each step of the signaling
cascades, it is impossible to build precise mathematical de-
scription of entire pathways and take into account all factors
playing a role in a realistic system. Therefore, analysis is al-
ways constrained to several most important processes. Nev-
ertheless, the resulting models provide valuable insights into
complex behavior on the cellular level [4], into kinetics of the
involved proteins and their complexes and gives the predic-
tions of the possible responses of whole system to the change
in the level of a given activator or inhibitor. Thus, even sim-
plified models can significantly contribute to the biological
field.

There are many different methods that can be used to
describe signaling pathways and their choice is subject to a
particular question that the analysis should answer. In this
paper deterministic models are considered, given by ordinary
differential equations that describe concentration of molecules
involved in the pathway are used. This gives a rise to a high
dimensional model with a large number of parameters, that
are unknown and difficult to estimate. Therefore, each model
should be checked with respect to its sensitivity to parameter
changes. Most of the pathways should exhibit robustness to
parameter changes in a relatively wide range, as this corre-
sponds to proper pathway dynamics in various cells that are
not homogeneous and, as a result, characterized by different
parameter values. Moreover, sensitivity analysis, as described
in the following sections, provides a valuable insight into the
importance of particular processes.
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In this paper, the sensitivity analysis is focused on creat-
ing parameter rankings, that can be subsequently used either
to reduce the model complexity or indicate prospective mole-
cular targets for new drugs. While the methods to obtain such
rankings have been known for a long time, their implications,
when applied to signaling pathway models, are not very well
understood. This work is meant to explain the differences of
these methods and their applicability in analysis of signaling
pathways.

2. Models of signaling pathways

The models under consideration are based on two crucial as-
sumptions:

• The concentrations are constant with respect to space (the
system described by ODEs is an ideal (well-stirred) chemi-
cal reactor). This condition is usually satisfied unless mole-
cular crowding [5, 6] takes place, as the average time to
cross a cell by diffusion is approximately 1 minute for
macromolecules and much less for small molecules; the
time scale for analyzing signaling pathways is hours or
even days [7].

• The number of molecules taking part in chemical reactions
is large enough to apply the law of mass action to describe
dynamics of these reactions. In most cases, this is satisfied,
as in most reactions the number of molecules of any type
reach tens of thousands or even hundred of thousands [8].

The basic processes taken into account in the models in-
clude production of new molecules (through gene transcrip-
tion, mRNA translation and dimerization of molecules) and
their degradation, dissociation of complexes and conforma-
tional changes in the form of molecules (most often caused by
their phosphorylation or dephosphorylation) leading to their
activation or inactivation. In addition, nuclear shuttling (i.e.
transport of molecules between cytoplasm and nucleus) is
incorporated into the model. However, this is done not by
means of transport equations. Instead, a compartmental ap-
proach is applied, with cytoplasm and nucleus constituting
separate compartments and flow between these compartments
proportional to respective concentrations.

As mentioned earlier in the text, the variables in the mod-
els represent (molar) concentrations of molecules of a given
type. They can be either concentrations in a whole cell (usu-
ally, when modeling prokaryotic cells or in simplified models
built for eukaryotic cells) or separate nuclear and cytoplasmic
concentrations (for eukaryotic cells).

The model represents a reaction network, described by a
nonlinear state equation

dX

dt
= f(X,u,p), (1)

where X = [x1 x2 . . . xn]T is a state vector with xi

denoting molar concentration of molecules of type i (in case
of two-compartmental model, molecules in nucleus and cyto-
plasm are separate species) and u is an input variable and p

are model parameters. An important property of these systems
is that for any time t all variables are nonnegative.

Usually, the models take into account only a single (scalar)
input, which corresponds to extracellular ligand concentration
(or, e.g., the dose of irradiation). Moreover, in most cases, it is
assumed that the intracellular response is either proportional
to the input, or it is a simple on/off (or binary) switch.

3. Sensitivity analysis

The sensitivity analysis is an important tool used to determine
how the change of parameters influence system behavior. It
helps to identify those parameters that have the greatest im-
pact on the system output both in steady and transient states,
at the same time providing information about robustness of
these systems [9], a property that should characterize most of
the signaling pathways. Though it was developed over half a
century ago, its application into system biology is a relatively
new concept (though it is a required step in development of
the models).

Interpretation of the results of application of sensitivity
methods to signaling pathway models goes far beyond stan-
dard sensitivity/robustness conclusions. Among others, they
also provide means to simplify high dimensional models that
arise in systems biology [10] and can be used to indicate
prospective ”hit points”, or molecular targets for the drugs
against diseases associated with particular signaling pathways,
if the ultimate research goal is to affect the pathway dynamics
in a most effective way [11]. A good overview of the methods
and their applicability can be found in [12].

Two main categories of sensitivity analysis methods can
be distinguished: local and global. The local sensitivity analy-
sis provides information on the effect of a small deviation a
single parameter from its nominal value on the system output.
Global sensitivities, in turn, describe how the system output
changes when multiple parameters change within a relatively
wide range.

3.1. Local sensitivity analysis. Let us first discuss the con-
cept of local sensitivities. The approach described in this sec-
tion is used to help in the analysis of the dynamic behavior
of the whole system and is not related to the experimental
measurements. Therefore, the state is considered to be the
output.

Let the model be described by the state Eq. (1), whose
solution is

X(pn, t), (2)

where pn denotes the nominal parameter vector. The first-
order sensitivity coefficients sij , describing the influence of
the i-th parameter on the j-th state variable are defined as
[13, 14]:

sij =
∂xi

∂pj

(3)

and the absolute sensitivity matrix as

S =
∂X

∂p
=













s11 s12 · · · s1m

s21 s22 · · · s2n

...
...

...
. . .

sn1 sn2 · · · snm













. (4)
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More precisely, sij are sensitivity functions, as they
change in time.

Since an analytical solution of (2) is usually not available,
sensitivity coefficients must be calculated in some other way.
One of the approaches that can be applied is the direct differ-
ential method [15]. Calculating partial derivative of (1) with
respect to pj yields

d

dt

∂X

∂pj

=
∂f

∂X

∂X

∂pj

+
∂f

∂pj

= J · Sj + Fj , (5)

where

J =
∂f

∂X
=





























∂f1

∂x1

∂f1

∂x2
· · ·

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · ·

∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · ·

∂fn

∂xn





























(6)

is the Jacobi matrix,

Fj =
∂f

∂pj

=



























∂f1

∂pj

∂f2

∂pj

...

∂fn

∂pj



























(7)

is the parametric Jacobi matrix, and

Sj =
∂X

∂pj

=













s1j

s2j

...

snj













(8)

is the column sensitivity vector with respect to the j-th para-
meter.

Finally, Eqs. (1) and (5) can be combined and solved si-
multaneously to find sensitivity coefficients:

Ẋ = f(X,p, u, t)

Ṡj = J · Sj + Fj

(9)

The initial conditions for sensitivity functions are given by

Sj(0) =
∂x(0)

∂pj

. (10)

These initial conditions are often put to be equal to 0
(e.g. [16]), which is true in all cases when arbitrary initial
conditions xi(0) are assumed. It is also the case in this pa-
per, as both examples considered here represent only forced
component of dynamical models responses (initial conditions
for all variables are assumed to be zero). However, if the task
was to analyze a response of a system whose initial state is its

equilibrium, reached for another input value, initial conditions
would depend on model parameters and (10) would have to
be applied to find initial values of sensitivity functions.

In many systems different parameters may take values that
are distributed over several orders of magnitude. The same
holds true also for model state variables. Therefore, instead
of the absolute sensitivities, the relative sensitivities are de-
fined:

sij =
∂xi

∂pj

·
pj

xi

. (11)

Such normalization makes it possible to compare relative
influence of any parameter change on system behavior, regard-
less of the scale of either the parameter or the state variable.

Having calculated relative sensitivities, the analysis can
be focused on either of the following goals:

• checking which parameters are relevant for steady state and
which for transient dynamics – the whole time course of
sensitivity coefficients are taken into account then;

• creating the ranking of parameters that subsequently indi-
cates which processes are the most important for the sig-
naling pathway; consequently, this provides valuable infor-
mation for experimental research about possible molecular
targets in the pathway under consideration;

• finding correlation among parameters, important if the ex-
periments are designed to estimate model parameters.

As far as ranking of parameters is concerned, it is based
on cumulative indices. They can be calculated either for each
state variable separately, or for the whole system. The impor-
tance of the j-th parameter for the i-th state variable can be
measured as

S∗

ij =
1

T

T
∫

0

|sij(τ)|dτ, (12)

where T denotes the time horizon of the simulation, or [17]:

S∗

ij =
1

N

√

√

√

√

N
∑

k=1

|sij(k)|2, (13)

where N denotes the number of integration steps in the sim-
ulation and the sum is calculated taking consecutive values of
sij computed in simulation. Similarly, the overall effect of a
j-th parameter change on the whole system can be measured
as

Stot
j =

n
∑

i=1

S∗

ij . (14)

4. Global sensitivity analysis

It should be noted that the local sensitivity analysis, while
useful, has a significant drawback in the sense that it does not
allow to capture general sensitivity of the system. In fact, mul-
tiple parameters can be changed in a given system. Depending
on system structure, some of these changes can increase and
some decrease the effect comparing to the change of a sin-
gle parameter. Therefore, as mentioned at the beginning of
this section, methods for global sensitivity analysis have been
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developed. Most of them consist in simulation of the model
for a large number of parameter sets and subsequent transfor-
mations of the results. What is important, their applicability
is not constrained to deterministic models; stochastic models
can also be analyzed this way. The key issue in successful
application of these methods is in appropriate sampling of
parameter space. Many works devoted to this subject can be
found in the literature, dealing with both theoretical aspects
of Latin hypercube sampling or factorial sampling plans (e.g.
[18–20]) and their application to signaling pathways analysis
(e.g. [17, 21]).

Usually, for signaling pathways models parameter values
are randomly generated from one of two possible distribu-
tions:

• normal or Gamma distribution, if the nominal value of the
parameter has already been determined and known from
literature;

• uniform distribution, defined on a wide range of biological-
ly acceptable parameters, if the parameters are not known.

Afterwards, one of the two families of methods is applied:

• calculating local sensitivities for each simulation and sub-
sequently averaging them over all simulations [10, 22];

• variance-based sensitivity methods, where

• the ratio of variance of a model output to the average
value is calculated, serving as a sensitivity index [23],
or

• variance of a model output is decomposed into par-
tial variances contributed by changes in individual
parameters, the sensitivity indices are subsequently
derived from the ratio of the partial variance to the
total variance of model output. [10].

In the latter case, the most popular approach seems to be
the so called Sobol’s method [24]. Two kinds of sensitivity
indices are calculated there. One is a first-order sensitivity
that measures the fractional contribution of a change of a sin-
gle parameter to the variance of output. The other is the total
effect sensitivity, or the sum of all the sensitivities involving
the model input of interest over the full range of parameters
values explored. The general idea of this method is rewritten
below, basing on [24].

Once again, let us suppose that the model be described
by the state equation (1), whose solution is (2). Let us also
divide the set of all M parameters arbitrarily into two subsets
y and z such that:

y = (pk1
, . . . , pkm

) , (15)

where 1 ≤ m ≤ M−1, 1 ≤ k1 ≤ . . . ≤ km ≤ M , and z con-
tains the remaining M −m parameters. Then, two sensitivity
indices for each subset y can be defined:

Sy =
Dy

D
,

Stot
y =

Dtot
y

D
,

(16)

where D is a total variance caused by any feasible changes in
parameter values, Dy is the variance of the model response
in the case when only parameters from the subset y change.
Dtot

y is the variance in the case when at least one of the
changed parameters belongs to y. Actually, the total variance
D is obtained by summing all possible Dy .

These indices represent the influence of change of the pa-
rameters on the defined model response. A higher index value
for a specific parameters set means that simulation results are
more dependent on the changes of the parameters that belong
to this set. In particular, if Sobol indices for a single parameter
are equal to 1, then the response depends only on this para-
meter. When Sobol indices are equal 0 for single parameter
changes, then reactions associated with these parameters can
be omitted without any consequences on models response.

Analytical determination of the Dy , Dtot
y and D values

is in most cases impossible. Therefore, a numerical approach
based on Monte Carlo simulations is required. The Monte Car-
lo based algorithm developed to determine their values [24]
requires that we should divide the set of the parameters into
two subsets (y, z), where y is the subset of the parameters for
which we want to calculate Sobol indices and z is the subset
containing the remaining parameters. Next step is to sample
two points from the parameters space from the uniform dis-
tribution of the range < 0, 1 > (this assumption, needed for
convergence of the method, requires appropriate rescaling of
the parameters in the analyzed models) to receive P = (y, z)
and P ′ = (y′, z′). Then three simulations of the model should
be made, for parameters sets P = (y, z), P1 = (y, z′) and
P2 = (y′, z). If we assume that x(P ) is model simulation
results for parameters set P (e.g. signal level in time T ), then
after N simulations we receive:

1

N

N
∑

i=1

x(P ) → x0, (17)

1

N

N
∑

i=1

x2(P ) → D + x2
0, (18)

1

N

N
∑

i=1

(x(P ) ∗ x(P1)) → Dy + x2
0, (19)

1

N

N
∑

i=1

(x(P ) ∗ x(P2)) → Dz + x2
0, (20)

which allows for determination od D, Dy and Dz . After that
by using the formula:

Dtot
y = D − Dz (21)

and Eqs. (16) we can calculate Sobol indices for a chosen
subset y of the parameters set.

It should be noted that because of the convergence proper-
ties in the formulas (17)–(20) the value of N should be large
enough.

The Sobol indices calculated as described above can be
used for determining the parameter ranking. As mentioned
above the Sobol indices gives us the influence of the selected
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subset of the parameters on the simulation results. However,
any single parameter can be chosen for different subsets of
parameters. Therefore, to estimate the total influence of the
specific parameter on the model response, we have to consider
all the subsets in which this parameter can be included. Sim-
ilarly, if we want to construct the ranking of all parameters,
we have to calculate Sobol indices for all possible subsets y

of the parameter set, except for two cases. The first one is an
empty y subset, in which case Sobol indices are always equal
to 0 and the second case is when all parameters are included
in y and the set z is empty. Then, the Sobol indices are always
equal to 1.

When applied to analysis of time responses of a dynam-
ical system, the Sobols indices are not the single values but
actually functions of time. As a result, a single value of the in-
dex cannot constitute a measure of the influence of parameter
changes on the system response. Therefore, the average values
of the indices in time are chosen to be the partial scores Lk for
all parameters that belong to a given subset yk. Additionally
we decide to distinguish the influence of the partial score for
a given parameter depending on the size k of the subset yk,
for which the partial score was received. That way, smaller
subsets have higher influence on the final score. According to
this the final score for a single parameter r is calculated from
the formula:

Jr =
M−1
∑

k=1

1

k
∗ L

(r∈y)
k , (22)

where M is the size of the parameters set and r ∈ y means
that above sum is calculated for all Lks received from yk that
contain the parameter r.

After calculation of the all Jr values, the ranking of the
parameter is built. A higher Jr means that the model response
is more dependent to the parameter r and this parameter re-
ceives higher position in the ranking.

5. A simple example – sensitivity analysis

of an oscillating system

In order to illustrate differences between different parameter
rankings introduced in the preceding sections, a simple second
order system will by analyzed.

Let us consider a step response of a standard 2nd order
oscillatory system, given by its transfer function

K(s) =
X(s)

U(s)
=

kω2
n

s2 + 2ξωns + ω2
n

, (23)

where X(s) and U(s) are Laplace transforms of the out-
put and input signals, respectively. Its state variables model
can be chosen in a standard way in a phase space, so that
X∗ = [x1 x2]

T = [x ẋ]. Then






ẋ1 = x2

ẋ2 = −2ξωnx2 − ω2
nx1 + kω2

nu
(24)

Let us assume k = 1, ξ = 0.5 and ωn = 1 as the mod-
el nominal parameters and focus the sensitivity analysis on

the output y = x1 (Figs. 2a–c). The normalized sensitivity
functions, calculated from (11) are shown in Fig. 2d. As ex-
pected, the influence of the parameter k is constant in time,
and it is the only parameter whose change results in changing
steady state value of the output. Sensitivity functions calcu-
lated with respect to parameters ωn and ξ imply that changing
this parameters affects oscillatory behavior. Having calculated
these sensitivity functions, it is easy to determine parameter
rankings.

a)

b)

c)

d)

Fig. 2. a)–c) Output of the model (23) calculated for nominal para-
meter values (solid line) and (a) k, (b) ξ, (c) ωn increased by 20%.

d) Normalized sensitivity functions for this system
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For global sensitivity analysis two numerical experiments
were performed, one basing on sampling parameter values
from uniform distribution (over the interval [pn−0.5pn, pn +
0.5pn] where pn denote nominal values of parameters, pn ∈
k, ξ, ωn) and another from normal distribution (with mean
equal to the nominal value and standard deviation equal to
0.33 ∗ 0.5pn for each parameter).

a)

b)

c)

d)

Fig. 3. Comparison of parameter rankings obtained with (a) local
sensitivity analysis and the integral index (12); b) local sensitivity
analysis and the L2 index (13); c) Sobol method, parameters sam-
pled from normal distribution; d) Sobol method, parameters sampled

from uniform distribution

In each case 2000 samples were generated. If the sample
value obtained from the normal distribution was not from the
interval [pn−0.5pn, pn +0.5pn], it was rejected as an outlier.

To allow comparison of different ranking indices, all of
them have been normalized to a maximum value and shown in
Fig. 3. Even in such simplified model, the parameter rankings
obtained from different methods are clearly different. Though
the ranking order is the same for all methods (k is the most
and ξ the least important), the relative strength of their in-
fluence varies with the method applied. The local sensitivity
methods assign much higher importance to the parameter ωn

than to ξ, whereas in the global sensitivity indices they are
closer to each other. This is understandable, as both parame-
ters affect, among others, the frequency of the output oscil-
lations and global methods, contrary to the local ones, allow
to evaluate the impact of two or more parameter changing.
Another interesting property exposed by the global rankings
is that as long as the range within which parameters change
is not to large, it makes no difference if their values are sam-
pled from normal or uniform distribution. This implies that
knowing precise nominal values is not necessary to describe
system behavior. Of course, this latter conclusion holds on-
ly for a particular range of parameter changes. Nevertheless,
such property is important in analysis of signaling pathways,
in which nominal parameter values are virtually unknown.

As the next, biological example show, in more complex
systems even the order of parameters, implied by the rankings
can depend on the particular method.

6. Sensitivity analysis of the p53-Mdm2

regulatory module

In this section a simple regulatory module, that is at core
of any signaling pathway involving p53 protein (Fig. 4), is
analyzed.

Fig. 4. The simplest p53-Mdm2 regulatory module

Its dynamics is described by the following equations [25]:

d(p53)

dt
= ms1 − kd1 · (p53) · (Mdm2nuc)

2, (25)
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d(Mdm2cyt)

dt
= n ·

(

s2 +
s3 · (p53)3

s3
4 + (p53)3

)

−k1k2 ·
(Mdm2cyt)

k2 + (p53)
,

(26)

d(Mdm2nuc)

dt
=

k1k2 · (Mdm2cyt)

k2 + (p53)

−kd2 · (Mdm2nuc),

(27)

where the variables (p53), (Mdm2cyt), (Mdm2nuc) denote
concentrations of total p53 protein, cytoplasmic and nuclear
Mdm2, respectively. The parameters m and n are the num-
bers of p53 and Mdm2 gene copies, respectively, s1, s2 and
s3 are the production rates per gene copy, kd1 and kd2 are p53
and Mdm2 degradation rates, respectively, and k1 is Mdm2–
mediated nuclear import rate. The model properties have been
thoroughly discussed in [25] but its sensitivity analysis has not
been performed yet.

Dynamics of this system is illustrated in Fig. 5. Nomi-
nal parameter values were taken from [25] and are given in
Table 1.

a)

b)

c)

Fig. 5. Time responses for each state variable in p53/Mdm2 model:
a) p53; b) Mdm2cyt; c) Mdm2nuc. Output is scaled in number of
molecules, calculated from molar concentrations for an average cell

volume

Table 1
Simple p53-Mdm2 model parameters

Parameter Value

s1 16 s−1

s2 8 s−1

s3 80 s−1

s4 105

kd1 10213 s−1

kd2 2.2 · 10
−4 s−1

k1 3.5 · 10
−3 s−1

k2 2300

m 2

n 2

Figure 6 shows parameter rankings obtained with local
sensitivity analysis. In this particular system, all of them are
similar, which implies that any of the two commonly used
sensitivity indices can be used. They show that the most im-
portant parameter in the system is kd2, which is a degradation
rate of Mdm2 protein. This implies that the work of the reg-
ulatory module can be most effectively affected by targeting
the process of Mdm2 degradation. Such conclusion can be
very important with respect to search for new molecular drug
targets.

It seems reasonable to assume that if the goal is to analyze
how change of parameters corresponds to different dynamics
in a heterogenic cell population, the sensitivity index (12)
is more appropriate. On the other hand, if the model is built
mainly to reflect particular experimental results, (13) is prefer-
able, especially if the sum is calculated not for all simulation
points, but only for the time points in which measurements
were made.

For global sensitivity analysis parameter values were
sampled from uniform distribution (over the interval
[0.01pn, 100pn] where pn denote nominal values for each pa-
rameter).

Not surprisingly, since the rankings calculated for each of
the three state variables are similar, analysis of the effect of
parameter changes on the whole system (see Fig. 7) leads to
the same conclusion. However, the ranking provided by the
Sobol indices is quite different and so are its implications. It
should be noted that type of analysis allows to evaluate ef-
fects of changing not only a single parameter, but their various
combinations as well.

Therefore, while the local sensitivity analysis may indicate
how to change system behavior by targeting just one element
of the pathway, analysis of possible different behavior of cells
due to their heterogeneity (reflected by different parameters)
should be performed with Sobol indices. Then, even more im-
portant than the particular order of parameters, implied by the
ranking is the fact that their weights indicated by the index
value fit into much narrower range, when compared with the
results of local sensitivity analysis. This means that in this
particular pathway, a deviation from what could be a nominal
value of one parameter, can be compensated by an appropri-
ate change (within a similar range) of another, thus allowing
evolution of heterogenic, yet robust cell population.
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a) b)

c) d)

e) f)

Fig. 6. Comparison of parameter rankings for single variables obtained with local sensitivity analysis and a), c), e) the integral index (12);
b), d), f) the L2 index (13). Parameters m and n were not changed, as they are integer numbers representing gene copies and they appear

in the model in the product with another parameters

a) b)

c)

Fig. 7. Comparison of cumulative parameter rankings, describing influence of parameter changes on dynamics of the system as a whole:
a) local sensitivity analysis and the integral index (12); b) local sensitivity analysis and the L2 index (13); c) Sobol method
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7. Conclusions

The sensitivity analysis is one of the necessary tools in in

silico investigation of signaling pathways. However, a partic-
ular method that can be chosen should depend on which of
two aims are reached for. At a preliminary stage of model
building, local sensitivity analysis is more convenient as it is
less demanding from computational point of view. Moreover,
if model parameters are relatively well known, this method
can be used to indicate prospective ”hit points”, or molecular
targets, if the ultimate research goal is to affect the pathway
dynamics in a most effective way.

On the other hand, if the research is focused on finding
relation between changes of parameters (corresponding to het-
erogeneity of cells) and the dynamics of a complex system that
is the signaling pathway, Sobol indices are more appropriate.
If their absolute values are low, it implies a relative robust-
ness of the pathway, which should be its important property
in most cases.

It should be also noted that heterogeneity in cellular re-
sponses to external stimuli, often attributed to stochasticity of
intracellular processes, can be reflected also in deterministic
models through change of parameters. Then, though the mod-
els remain deterministic in their nature, their parameters can
be treated as random variables and global sensitivity analysis
is once again a convenient tool in their investigation.
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