
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 3, 2012

DOI: 10.2478/v10175-012-0062-1

DATA MINING IN BIOENGINEERING

G-PAS 2.0 – an improved version of protein alignment tool with

an efficient backtracking routine on multiple GPUs

W. FROHMBERG1, M. KIERZYNKA1,3, J. BLAZEWICZ1,2, and P. WOJCIECHOWSKI1∗

1 Institute of Computing Science, Poznań University of Technology, 3 Piotrowo St., 60-965 Poznań, Poland
2 Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowski St., 61-704 Poznań, Poland

3 Poznań Supercomputing and Networking Center, 12/14 Z. Noskowski St., 61-704 Poznań, Poland

Abstract. Several highly efficient alignment tools have been released over the past few years, including those taking advantage of GPUs

(Graphics Processing Units). G-PAS (GPU-based Pairwise Alignment Software) was one of them, however, with a couple of interesting

features that made it unique. Nevertheless, in order to adapt it to a new computational architecture some changes had to be introduced. In

this paper we present G-PAS 2.0 – a new version of the software for performing high-throughput alignment. Results show, that the new

version is faster nearly by a fourth on the same hardware, reaching over 20 GCUPS (Giga Cell Updates Per Second).

Key words: pairwise alignment, GPU computing, alignment with backtracking procedure.

1. Introduction

1.1. Background. Pairwise alignment algorithms are of great

importance in computational biology. Methods based on dy-

namic programming, despite their high computational com-

plexity, have been widely used over a few decades due to

their accuracy. However, in real-life applications constantly in-

creasing number of biological sequences has started to cause

serious difficulties.

In the past few years, modern computing architectures

have not only shown their potential, but also have become

a standard in many branches of science owing to their high

computational power for a reasonable price [1–3]. Although

many GPU-based applications have been released lately in

the area of sequence alignment, e.g. [4–7], most of them ad-

dress the problem of database scan and as such cannot be

applied efficiently to all the problems like MSA, where each

sequence has to be aligned with each other (cf. [8]), or DNA

assembly (see e.g. [9] and [10]). Moreover, these problems

apart from the alignment score require the alignment itself to

be computed as well. Yet, computing the alignment is usual-

ly omitted in the majority of implementations. Therefore, in

response to presented needs, we developed an efficient tool

for pairwise alignment called G-PAS (previously known as

gpu-pairAlign). Its key features included: optimizations for

aligning every sequence with each other, backtracking routine

performed in linear time and utilization of multiple GPUs.

The method was thoroughly described in [11] and proved to

be well adapted to many practical applications. However, with

the advent of a new GPU architecture –Fermi1, we decided

to release a new version of our software – G-PAS 2.0. Com-

putational tests prove its supremacy on new as well as old

GPUs.

1.2. Methods Three basic algorithms for pairwise align-

ment of biological sequences can be found in the litera-

ture: Needleman-Wunsch [12] for computing global alignment

(NWG), its modification for semiglobal alignment (NWS) and

Smith-Waterman [13] for local alignment (SW). All these al-

gorithms use the idea of dynamic programming and to some

degree work similarly. Although G-PAS 2.0 concentrates only

on these original methods, below we provide also a short dis-

cussion of other algorithms outlining their main advantages

and drawbacks.

Chao et al. proposed in [15] to lower the computational

costs by calculating only those cells in the dynamic program-

ming matrix that lie in the relative proximity of its main di-

agonal. However, one obvious disadvantage of the method is

that its results may be not optimal. Moreover, this approach

cannot be applied to the local or semiglobal alignment.

Another improvement introduced to the aligning meth-

ods allows to deal with so called profiles, i.e. sequences that

may have alternative residues at certain positions. In Gribskov

et al. [16, 17], each position of a sequence is described by

a vector of values corresponding to the probability of occur-

rence of a specific residue on that position. However, such

an approach is, in great many cases, not needed, e.g. DNA

sequencing machines specify always only one nucleotide at

a given position within a read. Moreover, storing profiles re-

quires more memory, and that certainly would be an issue in

the GPU environment.

One of the main problems of pairwise alignment is that

the optimal alignment of sequences that maximizes the simi-

larity of residues may not necessarily reflect the biologically

correct alignment. To overcome this limitation the idea of sub-

optimal alignments has been introduced. These are the align-

∗e-mail: Pawel.Wojciechowski@cs.put.poznan.pl
1see http://www.nvidia.com/object/fermi architecture.html

491



W. Frohmberg, M. Kierzynka, J. Blazewicz, and P. Wojciechowski

ments that have nearly the same score as the optimal one.

In [18–20] the results consist of a set of suboptimal align-

ments and the user may choose one based on their biological

knowledge. However, this turned out to be impractical, mainly

due to the great number of alternative results, especially in

the context of massive pairwise alignment computing. In [21,

22] the authors use the information that is common to many

suboptimal alignments to identify significant regions in the

final alignment. The main drawback here is that it increases

already high computational complexity of the problem.

Methods based on Hidden Markov Models (HMM) are yet

another family of alignment algorithms. Viterbi et al. [23], for

example, computes the highest probability of pairwise align-

ment for the most common three-state standard (match, in-

sertion, deletion). Taking into account all the modifications

mentioned above the HMM-based solution is probably the

most interesting. However, current GPU implementations of

Viterbi’s algorithm [24, 25] present rather poor performance.

Nevertheless, we consider the application of HMM in this

area as one of our future work.

2. Implementation

G-PAS 2.0 implements all three methods of pairwise sequence

alignment, namely NWG, NWS and SW. In addition, it uses

the Gotoh’s enhancement [14] to provide affine gap penal-

ties. The software offers the option to compute either only

score values for a given set of input sequences or score val-

ues together with actual alignments. In order to retrieve the

alignment, the idea of so called backtracking matrices was

introduced in G-PAS, cf. [11]. This turned out to be more

efficient than the algorithm of Myers et al. [26] for relative-

ly short sequences that are commonly used for example in

DNA assembly. G-PAS performs an alignment of every giv-

en sequence with each other and thus may be found espe-

cially useful e.g. as a robust solution for the first phase of

progressive multiple sequence alignment algorithms. Obvi-

ously, the algorithm is executed on GPU which makes it very

quick.

The first version of G-PAS, released in 2010, was designed

mainly for G80 and GT200 GPU architectures. However,

as the new architecture of Fermi brought some significant

changes, the algorithm needed to be redesigned to fully uti-

lize hardware resources. In G-PAS 2.0 access to the shared

and the constant memory was optimized to minimize negative

effect of bank conflicts. For instance, the substitution matrix is

now entirely kept in the shared memory. This, together with

some other changes, resulted in a significant performance

boost on the Fermi architecture. Furthermore, improved man-

agement of the global memory, including e.g. reduction of

memory allocation/deallocation calls and memory reusage,

contributed to the overall efficiency as well. As a result the

software is up to 24% faster on the Fermi architecture. Yet,

some noticeable benefits can be also observed on G80 and

GT200 architectures.

The multiple GPUs support works very well thanks to

our load balancer which uses the largest processing time first

(LPT) rule. Although this rule does not guarantee an optimal

schedule, it ensures that the upper bound of execution time is

equal to

(

4

3
−

1

3m

)

· topt, where topt is the optimal execu-

tion time and m is the number of processing units [27, 28]. In

practice, applying the LPT rule leads to nearly linear speedup

in our software.

3. Tests

The main goal of performed tests was to compare the new

version of G-PAS with the old one. For this purpose we used

real biological sequences from the Ensembl Databases – Re-

lease 552. Three subsets containing 2000, 4000 and 6000 se-

quences with the average length of 257 amino acids were

randomly selected from the Homo Sapiens translation predic-

tions. BLOSUM62 was used as a substitution matrix and the

gap penalties were: Gopen = 10, Gext = 2. Tests were per-

formed on the following hardware: CPU: Intel Core 2 Quad

Q8200, 2.33 GHz, GPU: 2 × NVIDIA GeForce GTX 580

(Fermi) with 1.5 GB of RAM, main RAM: 8 GB.

Figure 1 shows that on average the G-PAS 2.0 is faster

than its previous version from 19.6% to 24.1%, depending

on the algorithm. However, if we compute only the alignment

scores, without the backtracking, obtained speedup grows to

29.3–38.6% (see Fig. 2). The results in the figures are present-

ed using a well-known measure of GCUPS which represents

the number of updates in the dynamic programming matrix

per second. To be more precise, in our case it is:

∑

i∈{1,2,...,n−1}

∑

j∈{1,2,...,i} lengthi · lengthj

t · 109
[GCUPS]

(1)

where n is the number of input sequences, lengthi is the length

of the i-th sequence, t represents the time in seconds and the

result is given in giga (109) CUPS. It is worth noting that the

time needed by all side operations, like computation of the

values in auxiliary matrices or performing the backtracking

procedure, counts in. Hence, the measure underestimates the

performance of the algorithms with the backtracking proce-

dure.

Fig. 1. Mean percentage increase of performance between G-PAS 1.0

and 2.0 on the Fermi architecture. The results for three algorithms

are expressed in GCUPS

2Available at ftp://ftp.ensembl.org/pub/release-55

492 Bull. Pol. Ac.: Tech. 60(3) 2012



G-PAS 2.0 – an improved version of protein alignment tool with an efficient backtracking routine...

Fig. 2. Mean percentage increase of performance between G-PAS 1.0

and 2.0 on the Fermi architecture in case the algorithms were run

in their score only version, i.e. without the backtracking procedure.

The results are expressed in GCUPS

We performed also a test on the previous GPU architec-

ture of GT200 to see how the changes influence its speed.

This time, instead of Fermi graphics cards, the computer was

equipped with two Tesla C1060 GPUs. The new software

turned out to be 6.7%, 7.8% and 7.7% faster for SW, NWS

and NWG, respectively.

In this section we do not compare our implementation to

other state-of-the-art solutions, since it was already done for

G-PAS 1.0 in [11].

4. Conclusions

G-PAS is a unique software tool that performs pairwise se-

quence alignment by computing not only the scores but also

the actual alignments using an efficient backtracking routine.

In this article we presented its new version which is especially

optimized to take full advantage of new graphics cards. The

software is freely available and may be run on commodity

hardware which make it a perfect tool for everyday scientific

use.

Availability and requirements

• Project home page: http://gpualign.cs.put.poznan.pl

• Requirements: Linux operating system, CUDA 2.0 or high-

er, CUDA compliant GPU, make, g++

• License: GNU GPLv3

Acknowledgements. This research project was supported by

the grant NO DEC-2011/01/B/ST6/07021 from the National

Science Centre, Poland.

REFERENCES

[1] M. Ciznicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K.

Napierala, and J. Palczynski, “Efficient isosurface extraction

using marching tetrahedra and histogram pyramids on multi-

ple GPUs”, Lecture Notes in Computer Science 7204, 343–352

(2012).

[2] M. Blazewicz, S.R. Brandt, M. Kierzynka, K. Kurowski, B.

Ludwiczak, J. Tao, and J. Weglarz, “CaKernel – a parallel ap-

plication programming framework for heterogenous computing

architectures”, Scientific Programming 19 (4), 185–197 (2011).

[3] W. Jendernalik, J. Jakusz, G. Blakiewicz, R. Piotrowski, and

S. Szczepanski, “CMOS realisation of analogue processor for

early vision processing”, Bull. Pol. Ac.: Tech. 59 (2), 141–147

(2011).

[4] L. Ligowski and W. Rudnicki, “An efficient implementation

of Smith Waterman algorithm on GPU using CUDA, for

massively parallel scanning of sequence databases”, IPDPS

doi:10.1109/IPDPS.2009.5160931 (2009).

[5] Y. Liu, D.L. Maskell and B. Schmidt, “CUDASW++2.0: en-

hanced Smith-Waterman protein database search on CUDA-

enabled GPUs based on SIMT and virtualized SIMD abstrac-

tions”, BMC Research Notes 3, 93 (2010).

[6] S.A. Manavski and G. Valle, “CUDA compatible GPU cards as

efficient hardware accelerators for Smith-Waterman sequence

alignment”, BMC Bioinformatics 9 (2), S10 (2008).

[7] L. Ligowski, W.R. Rudnicki, Y. Liu, and B. Schmidt, “Accurate

scanning of sequence databases with the Smith-Waterman al-

gorithm”, GPU Computing Gems, Emerald Edition 1, 155–157

(2011).

[8] J. Blazewicz, W. Frohmberg, M. Kierzynka, and P. Wo-

jciechowski, “G-MSA – A GPU-based, fast and accurate

algorithm for multiple sequence alignment”, J. Parallel

and Distributed Computing, doi:10.1016/j.jpdc.2012.04.004

(2012).

[9] K. Kwarciak and P. Formanowicz, “A greedy algorithm for the

DNA sequencing by hybridization with positive and negative

errors and information about repetitions” Bull. Pol. Ac.: Tech.

59 (1), 111–115 (2011).

[10] J. Blazewicz, P. Formanowicz, F. Guinand, M. Kasprzak, “A

heuristic managing errors for DNA sequencing”, Bioinformat-

ics 18, 652–660 (2002).

[11] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, and P.

Wojciechowski, “Protein alignment algorithms with an efficient

backtracking routine on multiple GPUs”, BMC Bioinformatics

12, 181 (2011).

[12] S.B. Needleman and C.D. Wunsch, “A general method applica-

ble to the search for similarities in the amino acid sequence of

two proteins”, J. Mol. Biol. 48 (3), 443–53 (1970).

[13] T.F. Smith and M.S. Waterman, “Identification of Common

Molecular Subsequences”, J. Molecular Biology 147, 195–97

(1981).

[14] O. Gotoh, “An improved algorithm for matching biological se-

quences”, J. Molecular Biology 162, 705–708 (1981).

[15] K.-M. Chao, W. R. Pearson, and W. Miller, “Aligning two

sequences within a specified diagonal band”, Comput. Appl.

Biosci. 8 (5), 481–487 (1992).

[16] M. Gribskov, A.D. McLachlan, and D. Eisenberg, “Profile

analysis: detection of distantly related proteins”, PNAS 84,

4355–4358 (1987).

[17] M. Gribskov, R. Luthy, and D. Eisenberg, “Profile analysis”,

Methods in Enzymology 183, 146–159 (1990).

[18] M.S. Waterman, “Sequence alignments in the neighborhood

of the optimum with general application to dynamic program-

ming”, PNAS 80, 3123–3124 (1983).

[19] M.S. Waterman and T.H. Byers, “A dynamic programming

algorithm to find all solutions in a neighborhood of the opti-

mum”, Math. Biosci. 77, 179–188 (1985).

[20] D. Naor and D. Burtlag, “On suboptimal alignment of biologi-

cal sequences”, Proc. 4th Annual Symposium on Combinatorial

Pattern Matching 1, 179–196 (1993).

[21] M. Zuker, “Suboptimal sequence alignment in molecular biol-

ogy, alignment with error analysis”, J. Mol. Biol. 221, 403–420

(1991).

[22] M. Vingron and P. Argos, “Determination of reliable regions

Bull. Pol. Ac.: Tech. 60(3) 2012 493



W. Frohmberg, M. Kierzynka, J. Blazewicz, and P. Wojciechowski

in protein sequence alignments”, Protein Engin. 7, 565–569

(1990).

[23] A.J. Viterbi, “Error bounds for convolutional codes and an

asymptotically optimal decoding algorithm”, IEEE Trans. Inf.

Theory IT-13, 260–269 (1967).

[24] D. Zhang, “An implementation of Viterbi algorithm on GPU”,

First Int. Conf. on Information Science and Engineering 1,

CD-ROM (2009).

[25] Z. Du, Z. Yin and D.A. Bader, “A tile-based parallel Viter-

bi algorithm for biological sequence alignment on GPU with

CUDA”, Ninth IEEE Int. Workshop on High Performance Com-

putational Biology Atlanta, GA 1, CD-ROM (2010).

[26] E.W. Myers and W. Miller, “Optimal alignments in linear

space”, Comput. Appl. Biosci. 4 (1), 11–17 (1988).

[27] R.L. Graham, “Bounds on multiprocessing timing anomalies”,

SIAM J. Appl. Math. 17 (2), 416–429 (1969).

[28] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,

Handbook on Scheduling: From Theory to Applications,

Springer, Berlin, 2007.

494 Bull. Pol. Ac.: Tech. 60(3) 2012


