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A new form of Boussinesq equations for long waves in water

of non-uniform depth
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Abstract. The paper describes the non-linear transformation of long waves in shallow water of variable depth. Governing equations of the

problem are derived under the assumption that the non-viscous fluid is incompressible and the fluid flow is a rotation free. A new form

of Boussinesq-type equations is derived employing a power series expansion of the fluid velocity components with respect to the water

depth. These non-linear partial differential equations correspond to the conservation of mass and momentum. In order to find the dispersion

characteristic of the description, a linear approximation of these equations is derived. A second order approximation of the governing

equations is applied to study a time dependent transformation of waves in a rectangular basin of water of variable depth. Such a case

corresponds to a spatially periodic problem of sea waves approaching a near-shore zone. In order to overcome difficulties in integrating

these equations, the finite difference method is applied to transform them into a set of non-linear ordinary differential equations with respect

to the time variable. This final set of these equations is integrated numerically by employing the fourth order Runge – Kutta method.
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1. Introduction

Water surface waves propagating from a deep water to a shal-

low water undergo changes resulting from variation of the

water depth. Usually, lengths of such waves are large com-

pared to the water depth, and the wave heights are of order

of the shallow water depth. With respect to such conditions,

in description of the phenomenon, we resort to Boussinesq

equations which are basically a shallow water approximation

to fully non-linear dispersive water waves. These equations

enable us to eliminate the vertical dimension in the descrip-

tion of the phenomenon, i.e. a three dimensional problem is

reduced to a two-dimensional one. The standard Boussinesq

equations include the lowest order effects of non-linearity and

frequency dispersion, and therefore, these equations are re-

stricted to long waves propagating in a shallow water (Wei et

al. [1]). In literature on the subject there is a number of ways

of derivation of Boussinesq-type equations. Such equations for

water of variable depth were derived by Peregrine [2], who

introduced a depth averaged velocity as a dependent variable.

He derived a system of equations for water of variable depth

using an expansion procedure with respect to a small parame-

ter. Since that work of Peregine, the depth averaging proce-

dure, applied to the continuity and momentum equations, has

become a standard in the derivation of Boussinesq-like equa-

tions (Nwogu [3]). Another, classical approach to the deriva-

tion of these equations is to follow the Laplace equation for

the velocity potential, combined with boundary conditions at

the bottom and the free surface of a fluid domain (Volcinger

et al. [4], Madsen et al. [5]). In such a formulation the po-

tential function is expressed in the form of a power series

expansion with respect to the water depth (Wei et al. [1]).

A detailed discussion on the description of the long waves

propagating in fluid of variable depth may be found in Dinge-

mans’ monograph [6], which also contains a vast bibliography

on the subject. Boussinesq-type equations are also discussed

in Madsen and Schaffer [7], where a number of formulation

of the problem, known from the literature on the subject, is

reviewed. Like in the book of Volcinger et al. [4], the authors

discussed the velocity potential formulation in terms of an

infinite power series expansion.

As it has been mentioned above, the standard Boussinesq

equations are restricted to a shallow water and long waves

for which the assumption of weak dispersion and weak non-

linearity is justified. In order to extend the range of applicabil-

ity of the equations to deeper water, attempts have been made

to improve the dispersion characteristic of these equations.

Witting [8] used the depth-averaged momentum equation

for one horizontal direction, expressed in terms of the velocity

at the free surface. He improved the dispersion characteristic

of Boussinesq-type equations by retaining terms up to the

fourth order in the Taylor’s series expansion of the veloci-

ty, with coefficients of this expansion determined to give the

best linear dispersion characteristics. That method however,

cannot be easily extended to a more general two-dimensional

case of the variable water depth. Madsen et al. [5] improved

the dispersion characteristic of Boussinesq-type equations by

adding a third order term to the momentum equation writ-

ten for a fluid with a horizontal bottom. This term, derived

from the long wave equations, was chosen to give the best

possible linear dispersion relation. More recently, Nwogu [3]

derived a new set of Boussinesq equations for water of vari-

able depth, in which the velocity at a certain distance from the

still water level has been used as the velocity variable instead
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of the commonly used depth-averaged velocity. The vertical

velocity component was assumed to vary linearly over the wa-

ter depth. In this way, the linear dispersion characteristic of

Boussinesq-type equations has been improved. A modifica-

tion of Boussinesq equations given by Nwogu is presented in

Chen and Liu [9], where the derivation is based on a veloc-

ity potential at an arbitrary elevation and on a displacement

of the free surface. For regular waves, consisting of a finite

number of harmonics, a parabolic approximation of governing

equations of the problem is derived.

In this paper an alternative derivation of Boussinesq-type

equations for long waves propagating in water of variable

depth is considered. In the presented approach, the three com-

ponents of the velocity field are consistently expressed in the

form of a power series expansion with respect to the wa-

ter depth. As compared to the above mentioned papers, the

formulation presented in this paper is unified and thus its ac-

curacy in description of the phenomenon, together with linear

dispersion characteristics, depends solely on the order of ap-

proximation, i.e. on a number of terms taken into account in

the expansion procedure applied. In order to illustrate applica-

bility of the equations derived, some examples of solutions of

these equations for a transformation of waves in the two di-

mensional fluid domain are given.

2. Governing equations of the problem

– preliminary remarks

In order to make the further discussion clear, let us consider

the case shown schematically in Fig. 1.

Fig. 1. A long wave propagating in fluid of variable depth

A time dependent wave of finite amplitude propagates in

fluid over uneven bottom. The three components of the ve-

locity field correspond to the Cartesian system of coordinate

axes. It is assumed the potential motion of an inviscid, incom-

pressible fluid. The governing equations of the fluid motion

are the momentum equations and the equation of continuity.

The latter equation reads

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

where ~U = (u, v, w) is the fluid velocity.

For the assumed potential motion, the following condi-

tions hold:

∂u

∂y
−

∂v

∂x
= 0,

∂u

∂z
−

∂w

∂x
= 0,

∂v

∂z
−

∂w

∂y
= 0.

(2)

With regard to these conditions, the momentum (Euler’s)

equations are written in the form

∂u

∂t
+

1

2

∂

∂x

(

u2 + v2 + w2
)

+
∂P

∂x
= 0,

∂v

∂t
+

1

2

∂

∂y

(

u2 + v2 + w2
)

+
∂P

∂y
= 0,

∂w

∂t
+

1

2

∂

∂z

(

u2 + v2 + w2
)

+
∂P

∂z
+ g∗ = 0,

(3)

where hereinafter P = p/ρ is the pressure function, ρ =
const. is the fluid density and g∗ is the gravitational acceler-

ation.

For convenience, the continuity equation can also be ex-

pressed as

∇ · ~u +
∂w

∂z
= 0, (4)

where ~u = (u, v) denotes the horizontal velocity and ∇ =
(∂/∂x + ∂/∂y) means the nabla operator.

The solution of the momentum equations should satisfy

dynamic and kinematical boundary conditions at the free sur-

face, and a kinematical boundary condition at the bottom of

the fluid domain. The boundary condition at the fluid bottom

at z = −hb(x, y) is

w + ∇hb · ~u|z=−hb
= w + ma · u + mb · v|z=−hb

= 0,

(5)

where hb(x, y) is the still water depth, and

ma =
∂hb

∂x
, mb =

∂hb

∂y
(6)

are slopes of the bottom.

At the free surface of the fluid, we have the kinematical

boundary condition

∂η

∂t
+

∂η

∂x
u +

∂η

∂y
v − w

∣

∣

∣

∣

z=η(x,y,t)

= 0, (7)

where

η(x, y, t) = hw(x, y, t) − hb(x, y) (8)

is the free surface elevation, and hw = h(x, y, t) denotes the

current water depth.

From substitution of (8) into equation (7) the following

relation is obtained:

∂h

∂t
+ ∇(h − hb) · ~u − w

∣

∣

∣

∣

z=η

= 0 (9a)

or

∂h

∂t
+ (h,x − ma)u + (h,y − mb)v − w

∣

∣

∣

∣

z=η

= 0. (9b)

The subscripts x and y in this equation denote the par-

tial derivatives with respect to x- and y coordinates. These
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last conditions are supplemented by the dynamic boundary

condition at the free surface

P = p/ρ|z=η = const. (10)

In this equation p means the atmospheric pressure, taken

here as a constant.

The directional derivative of the pressure function with

respect to arc length on the free surface gives the condition

∇P +
∂P

∂z
∇(h − hb)

∣

∣

∣

∣

z=η

= 0, (11)

which, for convenience, is rewritten in the form of two equa-

tions
∂P

∂x
+ (h,x − ma)

∂P

∂z

∣

∣

∣

∣

z=η

= 0,

∂P

∂y
+ (h,y − mb)

∂P

∂z

∣

∣

∣

∣

z=η

= 0.

(12)

From the third momentum equation the following relation

results

∂P

∂z

∣

∣

∣

∣

z=η

= −

[

∂w

∂t
+

1

2

∂

∂z
(~U)2 + g∗

]∣

∣

∣

∣

z=η

. (13)

Equations (12) and (13) enable to eliminate the pressure

function from equations describing momentum equations at

the free surface. On account of relations (12) and (13) the

momentum equations lead to the following set of equations

∂u

∂t
+ (hx − ma)

(

g∗ +
∂w

∂t

)

+

+
1

2

[

∂

∂x
(~U)2 + (hx − ma)

∂

∂z
(~U)2

]∣

∣

∣

∣

z=η

= 0,

∂v

∂t
+ (hy − mb)

(

g∗ +
∂w

∂t

)

+

+
1

2

[

∂

∂y
(~U)2 + (hy − mb)

∂

∂z
(~U)2

]
∣

∣

∣

∣

z=η

= 0.

(14)

Equations (14) together with equations (5) and ((9b)) form

the basic system of the partial differential equations of the

problem considered. In order to find solutions of these equa-

tions we resort to power series representations of the velocity

components.

3. Power series expansions of the velocity com-

ponents

In what follows we consider the power series expansion of the

velocity components

u =

∞
∑

n=0

(z + hb)
nfn, v =

∞
∑

n=0

(z + hb)
ngn,

w =
∞
∑

n=0

(z + hb)
nϕn,

(15)

where fn = f0, f1, f2, · · ·, gn = g0, g1, g2, · · · and ϕn =
ϕ0, ϕ1, ϕ2, · · · are unknown functions dependent on (x, y, t).
Hereinafter the superscripts of the functions, i.e. fn, gn and

ϕn, denote the subsequent functions (do not denote powers

of these functions).

From substitution of these equations into the boundary

condition at the bottom of the fluid (at z = −hb), the follow-

ing relations result

z = −hb, → u = f0, v = g0, w = ϕ0

and ϕ0 = −

(

∂hb

∂x
f0 +

∂hb

∂y
g0

)

= −(ma · f0 + mb · g0).

(16)

Substitution of the first and third relation (15) into the

second of (2) gives

∞
∑

n=1

(z + hb)
n−1

[

nfn −
(

ϕn−1
,x + nmaϕn

)]

= 0. (17)

From this equation, the following formula is derived:

ϕn−1
,x + nmaϕn − nfn = 0, n = 1, 2, · · · (18)

In a similar way, from the third of Eq. (2) one obtains

ϕn−1
,y + nmbϕn − ngn = 0, n = 1, 2, · · · (19)

Substitution of Eq. (15) into the continuity gives

∞
∑

1

(z+hb)
n−1

(

fn−1
,x +nmafn+gn−1

,y +nmbgn+nϕn
)

=0.

(20)

From this relation the following formula is obtained

ϕn = −
1

n

(

fn−1
,x + gn−1

,y

)

− (mafn + mbgn) ,

n = 1, 2, · · ·
(21)

With the above formulae, the set of the functions

ϕ0, ϕ1, ϕ2, · · · may be expressed in terms of the functions

f0, f1, f2, · · · and g0, g1, g2, · · · in the way as follows

ϕ0 = −∇hb
~f0,

ϕn = −

(

1

n
∇ · ~fn−1 + ∇hb · ~fn

)

, n = 1, 2, 3, · · ·
(22)

where ~fn = (fn, gn).
On the other hand, Eqs. (18) and (19) give

~fn =
1

n
∇ϕn−1 + ∇hbϕ

n, n = 1, 2, · · · (23)

Equations (22) and (23) allow to write the recurrence for-

mulae

ϕ0 = −∇hb
~f0,

ϕn = −
1

n

1

1 + (∇hb)2

(

∇ · ~fn−1 + ∇hb · ∇ϕn−1
)

,

~fn =
1

n
∇ϕn−1 + ∇hbϕ

n.

(24)

Substitution of Eqs. (22) into the third formula (15) gives

the new form of the vertical component of the velocity field

w=−

∞
∑

n=1

[

(z+hb)
n−1

∇hb · ~fn−1+
1

n
(z+hb)

n
∇ · ~fn−1

]

.

(25)
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For z = η, the last relation reads

w = −

∞
∑

n=1

(

hn−1∇hb · ~fn−1 +
1

n
hn∇ · ~fn−1

)

. (26)

All of the above formulae have been derived under the as-

sumption that the series describing the velocity components

are convergent. Moreover it is expected that the subsequent

terms of the series rapidly decrease with increasing number

of terms taken into account. The last feature is especially im-

portant in application of the procedure to a description of a

specific problem, since it enables us to take only a few lowest

order term into account and obtain a solution of acceptable

accuracy. An estimation of convergences of these series and

behaviour of their subsequent terms is given in the appendix.

With the formulae obtained, all the functions considered

may be expressed in terms of the single vector function
~f0(x, y, t) together with its spatial partial derivatives rang-

ing from one to infinity. In practical calculations however, in

order to simplify the description, we usually confine our atten-

tion to a few lowest order term derivatives of the component

functions. In a description of long waves, propagating in a

fluid with small variation of its depth, it is justified to ignore

higher order terms and products of space derivatives. In order

to make the further discussion clear, we attach here only the

first three terms of the velocity series. For instance, following

the recurrence formulae, we have

ϕ0 = −
(

maf0 + mbg0
)

,

ϕ1 = −α
(

f0
,x + g0

,y + maϕ0
,x + mbϕ0

,y

)

= −α
[

f0
,x + g0

,y − ma
(

maf0
,x + mbg0

,x

)

+

−mb
(

maf0
,y + mbg0

,y

))]

∼= −α
(

f0
,x + g0

,y

)

,

f1 = ϕ0
,x + maϕ1 = −

∂

∂x

(

maf0 + mbg0
)

+

−αma
(

f0
,x + g0

,y

)

∼= −
(

maf0
,x + mbg0

,x

)

+

−αma
(

f0
,x + g0

,y

)

= −
[

ma(1 + α)f0
,x + mbg0

,x+

+ αmag0
,y

]

,

g1 = ϕ0
,y + mbϕ1 = −

∂

∂y

(

maf0 + mbg0
)

+

− αmb
(

f0
,x + g0

,y

)

=

∼= −
[

maf0
,y + αmbf0

,x + mb(1 + α)g0
,y

]

,

(27)

where

α =
1

1 + (∇hb)2
=

1

1 + ma2 + mb2
. (28)

For a specific problem considered, these formulae may be

further simplified by assuming α = 1.

Having the first order components, one may derive the

second order approximations

ϕ2 = −
1

2
α

(

f1
,x + g1

,y + maϕ1
,x + mbϕ1

,y

)

∼=
1

2
α

[

ma(1 + 2α)f0
,xx + mbg0

,xx + 2αmbf0
,xy+

+ 2αmag0
,xy + maf0

,yy + mb(1 + 2α)g0
,yy

]

,

f2 =
1

2
ϕ1

,x + maϕ2 ∼= −
1

2
α

(

f0
,xx + g0

,xy

)

,

g2 =
1

2
ϕ1

,y + mbϕ2 ∼= −
1

2
α

(

f0
,xy + g0

,yy

)

.

(29)

In a similar way, the third order functions are derived

ϕ3 = −
1

3
α

(

f2
,x + g2

,y + maϕ2
,x + mbϕ2

,y

)

∼=
1

6
α2

(

f0
,xxx + g0

,xyx + f0
,xyy + g0

,yyy

)

=
1

6
α2

(

∂

∂x
∇2f0 +

∂

∂y
∇2g0

)

,

f3 =
1

3
ϕ2

,x + maϕ3 ∼=
1

6
α

[

ma(1 + 3α)f0
,xxx+ mbg0

,xxx

+2αmbf0
,xxy + +3αmag0

,xxy + ma(1 + α)f0
,xyy

+mb(1 + 2α)g0
,xyy +αmag0

,yyy

]

,

g3 =
1

3
ϕ2

,y + mbϕ3 ∼=
1

6
α

[

ma(1 + 2α)f0
,xxy

+mb(1 + α)g0
,xxy + 3αmbf0

,xyy + 2αmag0
,xyy

+maf0
,yyy +mb(1 + 3α)g0

,yyy + αmbf0
,xxx

]

.
(30)

It may be seen that higher order components of the solution

are described by higher order space derivatives of the fun-

damental functions f0(x, y, t) and g0(x, y, t). With regard to

these functions, one may calculate the approximated vertical

component of the velocity field

w ∼= −
(

maf0 + mbg0
)

− α(z + hb)
(

f0
,x + g0

,y

)

+
1

2
α(z + hb)

2
[

ma(1 + 2α)f0
,xx + mbg0

,xx

+2αmbf0
,xy + 2αmag0

,xy + maf0
,yy

+mb(1 + 2α)g0
,yy

]

+
1

6
α2(z + hb)

3

(

∂

∂x
∇2f0 +

∂

∂y
∇2g0

)

.

(31)

This equation may be further approximated to the follow-

ing form:

w ∼= −
(

maf0 + mbg0
)

− α(z + hb)
(

f0
,x + g0

,y

)

+
1

6
α2(z + hb)

3

(

∂

∂x
∇2f0 +

∂

∂y
∇2g0

)

.
(32)

4. Boussinesq – type equations for long waves

In the preceding section, components of the power series so-

lution have been derived. These components are described by

complicated formulae dependent on the fundamental functions

of the problem considered. With the help of these functions,

the problem description has been reduced to the three inde-

pendent functions: f0(x, y, t), g0(x, y, t) and h(x, y, t). All
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theses functions should satisfy Eqs. (9) and (14). From substi-

tution of the descriptions (25), (27) and (28) into these equa-

tions, final equations of the problem can be derived. For prac-

tical reasons, because of the complicated structure of these

equations, in derivation of the final equations certain approx-

imations into the description are introduced. In principle, we

neglect products of derivatives of the basic functions and the

bottom slope. Such a simplification is justified because these

products are small numbers compared with remaining terms

of the description. In this way, from the first Eq. (14) the

following equation is obtained

∂f0

∂t
−

1

2
αh2 ∂

∂t

(

f0
,xx + g0

,xy

)

+ g (h,x − ma)

+
1

2

∂

∂x

[

(f0)2 + (g0)2
]

−h
{

f0
[

(ma + αh,x)f0
,xx + mbg0

,xx + αh,xg0
,xy

]

+g0
[

(ma + αh,x)f0
,xy + mbg0

,xy + αh,xg0
,yy

]}

−
1

2
αh2

{

∂

∂x

[

f0
(

f0
,xx + g0

,xy

)]

+
∂

∂x

[

g0
(

f0
,xy + g0

,yy

)]

−α
∂

∂x

(

f0
,x + g0

,y

)2
}

= 0.

(33)

In a similar way, the second of relations (14) gives

∂g0

∂t
−

1

2
αh2 ∂

∂t

(

f0
,xy + g0

,yy

)

+ g∗ (h,y − mb)

+
1

2

∂

∂y

[

(f0)2 + (g0)2
]

−h
{

f0
[

maf0
,xy + (mb + αh,y)g0

,xy + αh,yf0
,xx

]

+g0
[

maf0
,yy + (mb + αh,y)g0

,yy + αh,yf
0
,xy

]}

−
1

2
αh2

{

∂

∂y

[

f0
(

f0
,xx + g0

,xy

)]

+
∂

∂y

[

g0
(

f0
,xy + g0

,yy

)]

− α
∂

∂y

(

f0
,x + g0

,y

)2
}

= 0.

(34)

In the last equations, only the second order terms (the

second order power of the water depth) have been retained.

From the substitution of Eqs. (25)–(27) into relation (9), the

following equation is derived

∂h

∂t
+

∂

∂x
(hf0) +

∂

∂y
(hg0)

−
1

6
αh3

[

∂

∂x

(

∇2f0
)

+
∂

∂y

(

∇2g0
)

]

= 0.

(35)

It may be seen, that the equations derived have still com-

plicated structure. In specific cases however, it may be justi-

fied to introduce further approximations into these equations.

For instance, in the momentum equations, one may disregard

terms, corresponding to the first power of the water depth, as

small quantities compared with other terms in the description.

Moreover, it is justified to neglect also the last terms in these

equations. With such an approach, instead of these equations

we consider the following ones

∂f0

∂t
−

1

2
αh2 ∂

∂t

(

f0
,xx + g0

,xy

)

+ g∗ (h,x − ma)

+
1

2

∂

∂x

[

(f0)2 + (g0)2
]

−
1

2
αh2

{

∂

∂x

[

f0
(

f0
,xx + g0

,xy

)]

+
∂

∂x

[

g0
(

f0
,xy + g0

,yy

)]

}

= 0

(36)

and
∂g0

∂t
−

1

2
αh2 ∂

∂t

(

f0
,xy + g0

,yy

)

+g∗ (h,y − mb) +
1

2

∂

∂y

[

(f0)2 + (g0)2
]

−
1

2
αh2

{

∂

∂y

[

f0
(

f0
,xx + g0

,xy

)]

+
∂

∂y

[

g0
(

f0
,xy + g0

,yy

)]

}

= 0.

(37)

In our further discussion, we confine our attention to Eqs.

(35), (36) and (37) which are assumed to be sufficiently ac-

curate in the description of the propagation of long waves in

water of a small, non-uniform depth.

5. Linear dispersion characteristics

In order to assess the dispersion characteristics of the equa-

tions derived in the preceding section, a linearized version of

these equations for the case of the constant water depth is

considered. The linear momentum and continuity equations

are
∂f0

∂t
−

1

2
h2

0

∂

∂t

(

f0
,xx + g0

,xy

)

+ g∗η,x = 0,

∂g0

∂t
−

1

2
h2

0

∂

∂t

(

f0
,xy + g0

,yy

)

+ g∗η,y = 0,

∂η

∂t
+ h0

(

∂f0

∂x
+

∂g0

∂y

)

+

−
1

6
h3

0

[

∂

∂x

(

∇2f0
)

+
∂

∂y

(

∇2g0
)

]

= 0,

(38)

where h0 = const. is still water depth and η(x, t) is the free

surface elevation.

For our purposes it is sufficient to take into account

a monochromatic wave propagating in one direction, say

along x coordinate and, instead of Eq. (38), consider the fol-

lowing ones

∂f0

∂t
−

1

2
h2

0

∂3f0

∂t∂x2
+ g∗η,x = 0,

∂η

∂t
+ h0

∂f0

∂x
−

1

6
h3

0

∂3f0

∂x3
= 0.

(39)

Consider now a small amplitude periodic wave with the

frequency ω and the wave number k:

f0 = u0 exp [i(kx − ωt)] ,

η = a0 exp [i(kx − ωt)] ,
(40)
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where u0 and a0 denote amplitudes of the respective vari-

ables.

From substitution of (40) into Eq. (39) a homogeneous

system of algebraic equations in terms of u0 and a0 is ob-

tained. A nontrivial solution of these equations is obtained by

letting their determinant vanish, which gives the dispersion

relation as

ω2 = g∗k(kh0)
1 + (kh0)

2
/

6

1 + (kh0)2
/

2

∼= g∗k(kh0)

[

1 −
1

3
(kh0)

2 +
1

6
(kh0)

4

]

.

(41)

This formula is close to the standard linear dispersion for-

mula for Stokes first order theory

ω2 = g∗k tanh(kh0)

= g∗k(kh0)

[

1 −
1

3
(kh0)

2 +
2

15
(kh0)

4 − · · ·

]

.
(42)

On account of Eqs. (41) and (42) one may calculate the

associated phase speeds cf = ω/k of a periodic wave. The

phase speed of the Boussinesq model is given by

cfB =
√

gh0

√

1 + (kh0)2
/

6

1 + (kh0)2
/

2
, (43)

while the standard Stokes first-order theory leads to the for-

mula

cfS =
√

gh0

√

tanh(kh0)/(kh0). (44)

The ratio of these speeds reads

Rc =
cfB

cfS

=

√

(kh0)

tanh(kh0)

1 + (kh0)2
/

6

1 + (kh0)2
/

2
. (45)

Fig. 2. Phase speeds of the Boussinesq model and the Stokes theory

(a), and their ratio (b) versus the parameter (kh0)

To illustrate a range of applicability of the description

mentioned, in Fig. 2 the graphs of the phase speeds and their

ratio in terms of the parameter (kh0) are presented. From

the plots in this figure it is possible to evaluate the differ-

ence between the Boussinesq approximation and the standard

Stokes theory. Having the dispersion relation it is a simple task

to calculate the group velocity cg = dω/dk associated with

the Boussinesq approach. The phase velocity characterises the

dispersion feature of the Boussinesq – type equations derived.

Non-linearity effects, associated with these equations depend

of course on the order of approximation in the description of

this phenomenon.

6. Reduction of the partial differential equations

to a system of ordinary differential equations

Equations derived in Sec. (4) form the system of non-linear

partial differential equations with respect to the independent

variables (x, y, t). In order to find a solution to these equa-

tions we resort to a discrete formulation allowing us to replace

the partial differential equations by a system of ordinary dif-

ferential equations. In derivation of the latter equations, the

continuous fluid domain is substituted by a set of nodal points

and, the spatial derivatives in the original equations are sub-

stituted by finite difference quotients written at these points.

Such an approximation may be directly applied to finite flu-

id domains. In the case of an infinite fluid domain however,

such a formal approach to the problem leads to an infinite

set of the ordinary differential equations. In order to over-

come this difficulty we may confine our attention to a finite

fluid domain, obtained from the infinite one by an artificial

boundary, with appropriate boundary conditions assumed at

the boundary between the finite and infinite parts of the do-

main. These boundary conditions should transmit or absorb

waves approaching the boundary. In this way it possible to

construct a solution in the finite domain, having properties of

a solution in the infinite fluid domain.

In order to make the further discussion clear, we confine

our attention to finite fluid domains. Thus, let us consider a

rectangular fluid domain shown schematically in Fig. 3, which

corresponds to a periodic bathymetry of a sea shore zone.

The motion of the fluid is induced by a piston type generator,

placed at the boundary at x = 0. Till the initial moment of

time, the generator – fluid system is at rest. At this initial

moment of time, say at t = 0, the generator starts to move.

At the generator face x = xg(t) we have the boundary con-

dition that the fluid velocity f0(xg, t) equals the generator

velocity ẋg(t). At the boundaries at y = 0 and y = L2, the

normal components of the fluid velocity are equal to zero.

The boundary at x = L1 admits reflection of water waves

from this boundary. The last boundary condition corresponds

to a cliff boundary of a sea shore zone. It is also assumed that

in a range of time considered, the water depth at all points of

the fluid domain is greater than zero i.e.

h(x, y, t) = hb(x, y) + η(x, y, t) > 0.
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Fig. 3. A rectangular fluid domain corresponding to periodic bound-

ary conditions of a sea shore zone

As it has been mentioned above, the rectangular fluid do-

main is substituted by a system of nodal points, and the con-

tinuous functions f0, g0 and h are substituted by their values

at these points. In the procedure applied, the space deriva-

tives of the dependent variables are substituted by their finite

difference quotients. In order to solve boundary conditions

at the fluid domain boundary, additional virtual nodal points

are placed outside this boundary. Such points are also used

in substitution of mixed space derivatives entering momen-

tum equations by their finite difference analogues. In order to

solve the boundary condition at the generator plate, we have

to calculate finite difference quotients for a non-uniform spac-

ing of nodal points in the vicinity of the generator plate. In

calculation of higher order difference quotients at boundary

of the fluid domain, we also make use of the Gregory-Newton

extrapolation formula (Chan & Street, [10])

fj
∼=

11

3
fj+1 − 5fj+2 + 3fj+3 −

2

3
fj+4, (46)

where fj , · · ·, fj+4 denote values of a given function at the

consecutive nodal points.

With respect to the finite difference approximation, in-

stead of the continuous functions f0(x, y, t), g0(x, y, t) and

h(x, y, t) we operate with the time dependent vectors f0(t),
g0(t) and h0(t). It should be stressed that each of these vec-

tors has its own number of components. In deriving the final

system of ordinary differential equations with respect to the

time variable, it is convenient to divide the momentum and

continuity equations into linear and non-linear parts. Follow-

ing the finite difference approach, the respective parts of Eqs.

(35), (36) and (37) are transformed into the following set of

matrices:

Equation (36)

∂f0

∂t
−

1

2
αh2 ∂

∂t
f0

,xx → AU(f0,h, t)
df0

dt
,

−
1

2
αh2 ∂

∂t
g0

,xy → AV(g0,h, t)
dg0

dt
,

g∗(h,x − ma) +
1

2

∂

∂x

[

(f0)2 + (g0)2
]

−
1

2
αh2 ∂

∂x

[

f0(f0
,xx + g0

,xy)

+g0(f0
,xy + g0

,yy)
]

→ NLA(f0,g0,h, t).

(47)

Equation (37)

∂g0

∂t
−

1

2
αh2 ∂

∂t
g0

,yy → BV(g0,h, t)
dg0

dt
,

−
1

2
αh2 ∂

∂t
f0

,xy → BU(f0,h, t)
df0

dt
,

g∗(h,y − mb) +
1

2

∂

∂y

[

(f0)2 + (g0)2
]

−
1

2
αh2 ∂

∂y

[

f0(f0
,xx + g0

,xy)

+g0(f0
,xy + g0

,yy)
]

→ NLB(f0,g0,h, t).

(48)

Equation (35)

∂h

∂t
→

dh

dt
,

∂

∂x
(hf0) +

∂

∂y
(hg0)+

−
1

6
αh3

[

∂

∂x

(

∇2f0
)

+
∂

∂y

(

∇2g0
)

]

→ NB(f0,g0, t).

(49)

With the above descriptions, the final system of ordinary

differential equations reads

AU(f0,h, t)
df0

dt
+ AV(g0,h, t)

dg0

dt

+ NLA(f0,g0,h, t) = 0,

BU(f0,h, t)
df0

dt
+ BV(g0,h, t)

dg0

dt

+ NLB(f0,g0,h, t) = 0,

dh

dt
+ NB(f0,g0,h, t) = 0.

(50)

In these equations: AU and BV are square matrices, AV and

BU are rectangular matrices and h, NLA, NLB and NB

are vector matrices. The dimensions of these matrices corre-

spond to number of components of the dependent variables.

For numerical reasons, this system of the ordinary differential

equations is transformed into another form. Left multiplica-

tion of the first equation of (50) by transpose of the matrix

AU and the second – by transpose of BV, leads to the final

form of these equations

AM
dw

dt
+ NA = 0,

dh

dt
+ NB = 0,

(51)

where

AM =

[

AUT · AU AUT · AV

BVT ·BU BVT ·BV

]

, (52)

w =

{

f0

g0

}

, (53)

NA =

{

AUT ·NLA

BVT · NLB

}

. (54)

The matrices of the non-linear coupled system of Eq. (51)

depend on the unknown vectors w, h. Therefore, in order to
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find a solution of the equations we resort to a numerical in-

tegration of them in the time domain by means of the fourth

order Runge-Kutta method (Björck, Dahlquist, [11]).

7. Examples of numerical solutions

In order to learn more about the applicability of the equations

derived, in this section, Eq. (51) are integrated for chosen

cases of generation of the waves in rectangular fluid domains

of variable depth. The initial - value problem considered is

shown schematically in Fig.3. The water wave, generated by a

piston type generator, placed at the left boundary of the fluid

domain, propagates through the area of variable water depth.

Two cases of bottom bathymetry are considered. The first one

is described by a continuous ‘bell-shaped surface’, and the

second one forms a rigid underwater obstacle of a trapezoidal

shape, placed at a certain distance from the generator plate.

The generator starts to move at the initial moment of time

and its motion is assumed in the following form (Wilde &

Wilde, [12]):

xg(t) = Ag [A(τ) cos(ωt) + D(τ) sin(ωt)] , (55)

where Ag is the generator amplitude, ω is the angular fre-

quency, τ = ηt is the non-dimensional time factor, η is a

parameter responsible for a growth in time of the generator

displacement, and the terms in the square brackets are de-

fined as

A(τ) =
1

3!
τ3 exp(−τ),

D(τ) = 1 −

(

1 + τ +
1

2!
τ2 +

1

3!
τ3

)

exp(−τ).

(56)

Equations (55) and (56) allow to calculate the generator ve-

locity ẋg(t) and its acceleration ẍg(t). One can check, that

for η = 2, assumed in our calculations, the generator motion

approaches the case of a steady state harmonic generation

within a few first periods of time. In addition, the displace-

ment, velocity and acceleration of the generator face are equal

to zero at the initial moment of time at t = 0+. For an as-

sumed length of the generated wave, the associated frequency

may be obtained from equation (42).

Numerical calculations have been carried out for rectangu-

lar fluid domains of dimensions L1×L2 = (66.9 m× 5.7 m)
with 4237 nodal points and (42.3 m×5.7 m) with 2679 nodal

points, and the maximum still water depth h0 = 0.60 m.

The smallest still water depth in the area of variable bottom

bathymetry was equal to 0.20 m. In the discrete approach, a

constant spacing of nodal points ∆x×∆y = 0.30 m×0.30 m

has been used. At the same time, the horizontal spacing at

the generator face depended on time i.e. ∆x∗ = ∆x− xg(t).
In the Runge-Kutta numerical integration, the assumed time

step was chosen to be ∆t = 0.05 s. This time step satis-

fies the Courant condition, which requires that the ratio of

the wave celerity to the ‘net velocity’ be less than one, i.e.

cf∆t
/

√

(∆x)2 + (∆y)2 < 1.

Integration of the problem equations gives the velocity

field as well as the free surface elevation dependent on the

time coordinate. Some of the results obtained in computations

are shown in the subsequent Fig. 4 and Fig. 5, where the plots

illustrate transformation of surface waves propagating through

the area of constant and variable water depth. From the plots

in may be seen that for a small range of time, measured from

the starting point, one may assume the condition that at the

right hand boundary (segment DE in Fig. 3) the fluid is at

rest.

The equations of the problem, derived in the preceding

sections, correspond to a mechanical system without any dis-

sipation of energy. Therefore, for the harmonic generation of

the fluid motion in the rectangular domain it may happen,

that the generation frequency is equal, or close, to a frequen-

cy inherent for standing water waves in the domain. In such a

case one may expect a radical growth of the dependent vari-

ables with passing time. In order to answer the question about

such a possibility, it is reasonable to consider a classical linear

problem of standing water waves in a rectangular fluid domain

with reflecting boundary conditions assumed at its boundaries.

Thus, let us consider the steady state harmonic motion of the

fluid in the rectangular fluid domain (L1 × L2 × h0), where

L1 and L2 are horizontal dimensions and h0 = const. is the

still water depth. In order to calculate the eigenfrequencies of

the fluid domain, associated with Eq. (38), let us consider the

following steady state solution of these equations

f0 = F exp [i(k1x + k2y − ωt)] ,

g0 = G exp [i(k1x + k2y − ωt)] ,

η = H exp [i(k1x + k2y − ωt)] ,

(57)

where F , G and H are complex amplitudes of the dependent

variables and k1, k2 and ω are real numbers. From substitu-

tion of these equations into Eq. (38) the dispersion relation

(42) can be derived.

The wave numbers k1 and k2 are not arbitrary. From the

assumed conditions at boundaries of the fluid domain it fol-

lows that

k2
1+k2

2 = k2 =

(

mπ

L1

)2

+

(

nπ

L2

)2

, m, n = 0, 1, 2, ··· (58)

If the ratio of the two sides of the domain is a rational

number, that is, L1 = pL and L2 = qL, where p and q are

integers, the following is obtained:

(k)2mn =
(π

L

)2
[

(

m

p

)2

+

(

n

q

)2
]

, m, n = 0, 1, 2, · · ·

(59)

Equations (58) and (59) show that, in a general case, there

is more than one set of (m, n) which correspond to the same

wave number k (to the same angular frequency ω). The as-

sociated eigenmodes are described by Eq. (57). If L1 > L2,

the lowest mode (m = 1, n = 0) corresponds to the low-

est frequency. The other modes corresponding to this one-

dimensional motion (m, n = 0) follow the condition

L1 = m
λ

2
= (1, 2, 3, · · ·)

λ

2
, (60)

where λ is the wave length.
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Fig. 4. Transformation of a surface wave propagating through the area of a continuous ‘bell-shaped’ variation of the bottom bathymetry
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Fig. 5. Transformation of a surface wave propagating over an underwater obstacle of a trapezoidal shape
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Fig. 6. Evolution in time of the free surface in a rectangular fluid domain. Generation frequency corresponds to the resonance range as

described by equation (60)

It should be stressed that in the discussed non-linear cases

of propagation of long waves in water of variable depth, the

results obtained may only serve as a certain indicators of the

resonance ranges of the time-dependent problem considered.

In order to illustrate the phenomenon, numerical solutions

were carried out for cases corresponding to ranges as defined

by the last formula. Some results of these computations are

presented in Fig. 6, where the plots show evolution in time of
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the free surface elevation. From the plots it may be seen how

the generation with frequency close to the resonance range

influences the numerical solution.

8. Conclusions

The Boussinesq equations developed in this paper allows to

describe main features of long waves propagating in water of

small variable depth. Because of their complicated structure,

the analysis has been confined to lowest order terms in the

power series expansion of the variables with respect to the

water depth. In a rather formal way it is possible to take into

account higher order terms, but this comes at a cost. Moreover,

with the higher order terms, one can face more difficulties in

preparing approximate description of the derivatives entering

the equations derived. As compared with formulations pre-

sented in literature on the subject, the theory presented above

is, in a sense, unified, but its application to a more compli-

cated geometry encountered in practice may face difficulties,

resulting from a solution to boundary and initial conditions.

The dispersion properties of the description may be consid-

ered as being sufficiently accurate for long waves, for which

k0h < 1. With this condition ensured, the relative error of the

wave celerity of the theory presented above compared to the

phase velocity of Stokes solution is less than 1%.

Appendix

The discussed problem of long waves, propagating in a fluid

of non-uniform depth, may be characterised by two important

parameters: µ = h0/λ, i.e. the ratio of a typical still water

depth to a typical wave length, and ε = a0/h0, i.e. the ratio

of the wave amplitude to the reference water depth. For the

waves considered, the first of these parameters is assumed to

be a small quantity (typically µ < 1/10), whereas the sec-

ond parameter is a quantity of order one (Dingemans, [6]). In

addition, the bottom slope |dhb/dx| = |dhb/dy| = O(µ) is

assumed to be also a small quantity.

In order to estimate convergence of the series in Eq. (15),

let us consider the first of these series for the case of a con-

stant bottom slope (ma = const., mb = const.). For points

of the free surface, the x- component of the velocity field

reads

u =
∞
∑

n=0

hnfn(x, y, t) (A1)

where h = hb + η is the water depth.

From the recurrence formulae (Eq. 24) one obtains

ϕ0 = −maf0 − mbg0,

ϕn = −
1

n

(

µ1f
n−1
,x + µ1g

n−1
,y + µ2ϕ

n−1
,x + µ3ϕ

n−1
,y

)

,

fn =
1

n

[

µ4ϕ
n−1
,x − µ5ϕ

n−1
,y − µ2f

n−1
,x − µ2g

n−1
,y

]

,

gn =
1

n

[

−µ6ϕ
n−1
,x + µ5ϕ

n−1
,y − µ3f

n−1
,x − µ3g

n−1
,y

]

,

n = 1, 2, · · ·,

(A2)

where

µ1 = α =
1

1 + ma2 + mb2
,

µ2 = αma,

µ3 = αmb,

µ4 = 1 − ma2,

µ5 = αmamb,

µ6 = 1 − mb2.

(A3)

It is important to note that all these multipliers are less

than one, i.e. |µk| < 1, k = 1, 2, · · ·, 6. Moreover, from the

recurrence formulae it follows that the higher order compo-

nents fn, gn and ϕn of the velocity depend on higher order

derivatives of the fundamental functions f0, g0 and ϕ0. At

the same time, an examination of these formulae shows that,

when starting from the lowest components, the multiplier 1/n
in Eq. (A2) leads to the multiplier 1/(1 · 2 · · · ·n) = 1/n! for

the n-th term. Therefore, this term, entering equation (A1),

may be expressed in the following form

hnfn =
hn

n!

(

βn
1

∂n

∂xr1∂yr2
ϕ0

+βn
2

∂n

∂xr3∂yr4
f0 + βn

3

∂n

∂xr5∂yr6
g0

)

,

n = 1, 2, · · ·,

(A4)

where r1 + r2 = r3 + r4 = r5 + r6 = n, (n = 1, 2, · · ·) and

βn
1 , βn

2 and βn
3 are products of the multipliers µ1, µ2, · · ·, µ6.

It may be seen that all the multipliers βn
k , (k = 1, 2, 3)

rapidly decrease (|βn
k | < 1) with increasing number n =

1, 2, · · ·. For the long waves considered, appreciate changes

of the water depth as well as the fluid velocity, may occur

only in a region of the wave length. Therefore, it is justified

to assume that the subsequent partial derivatives of ϕ0, f0

and g0, with respect to the space coordinates, rapidly decrease

with the number n = 1, 2, · · · in such a way, that the following

inequality holds
∣

∣

∣

∣

βn
1

∂n

∂xr1∂yr2
ϕ0 + βn

2

∂n

∂xr3∂yr4
f0

+βn
3

∂n

∂xr5∂yr6
g0

∣

∣

∣

∣

< D,

(A5)

where D > 0 is a bounded number.

Following this assumption one obtains

|u| =

∞
∑

n=0

hn |fn(x, y, t)| < D

n=∞
∑

n=0

hn

n!
= D exp(h). (A6)

Thus, under the assumption (A5), the series in this equa-

tion is absolutely convergent. In a similar way, one may show

that the remainder series in Eq. (15) are also convergent.
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