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Abstract. The paper presents implementation of PSO (Particle Swarm Optimization) to ANN-based speed controller tuning. Selected learning

parameters are optimized according to the control objective function. A battery electric vehicle is considered as a potential plant for an

adaptive speed controller. The need for adaptivity in the control algorithm is justified by variations of a total weight of the vehicle. A sizable

section of the paper deals with selection of a combined objective function able to effectively evaluate the quality of a solution.
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1. Introduction

The Computational Intelligence (CI) based approach to con-

trol and optimization problems in power electronics and drives

has already proved to provide successful solutions for nonlin-

ear or time-variant systems. We usually tap into CI if LTI

(linear time-invariant) approximation is no longer feasible for

the system under consideration. As far as a speed controller

tuning is considered, in most cases, an electric drive with de-

coupled flux and torque control can be regarded as a first-order

inertia or several first-order inertias connected in series if e.g.

delays introduced by the digital control system or communi-

cation bus (if present in feedback path) should be taken into

account due to their non-negligible contribution to the overall

delay. In some continuous-time domain based approaches to

control system synthesis more accurate approximation of the

delay is used than truncating its Taylor series, namely the Padé

approximant [1]. However, the truncation of a Taylor series af-

ter two initial terms is the most common procedure, because it

produces relatively simple plant representation ready for well-

established PID controller tuning procedures like Kessler’s

criteria or predictive schemes [2, 3]. On the other hand, many

torque-controlled drives cannot be simplified to an LTI sub-

system for the purpose of speed controller design task. One

quite common reason is that they are significantly time-variant

as a consequence of the resultant moment of inertia variations.

This is for example the case if speed control loop has to be

closed for an electric vehicle. The resultant moment of inertia

seen by the control system varies significantly with number

and weight of passengers and their luggage. The difference

between the kerb weight and the gross one can be at the lev-

el of 50% in respect to the kerb one. Such a difference can

be observed for a light A- or B-segment car as well as for

a city bus, e.g. [4]. Moreover, speed control loop has to be

stable for sudden change in inertia by a factor of one order of

magnitude observed when a drive wheel loses traction.

It should be noticed that not all drive systems for elec-

tric vehicles are equipped with speed closed-loop controlled

inverter. Some solutions incorporate only torque control loop

and tend to mimic response of an internal combustion engine

to a throttle pedal. Advantages and disadvantages of both ap-

proaches (i.e. speed plus torque control vs torque control) are

widely discussed in the topical literature and are out of the

scope of this paper.

In the case of this study, a drivetrain with one electric mo-

tor and a mechanical differential is assumed. Such a topology

is quite popular in commercialized electric and hybrid passen-

ger cars and city busses. The paper presents tuning procedure

for an adaptive neural speed controller incorporated into this

scheme. An evolutionary optimization algorithm was chosen

to determine some key parameters of neural adaptive speed

controller.

2. Nonlinear and adaptive speed controllers

Several techniques have been proposed to cope with the prob-

lem of inertia variations present in many commercial appli-

cations of speed-controlled drives. They can be divided into

two main groups. One set of solutions assumes introduction

of an inertia estimator into the system – this enables us to

vary controller gains (e.g. of PI-type) according to the es-

timated moment of inertia (direct method) [5]. The second

set of solutions takes advantage of introducing nonlinearity

into the controller with intention to achieve some degree of

insensitivity to variation of selected parameters. We some-

times refer to these methods as indirect ones, because the

inertia is newer calculated explicitly – no inertia estimator is

present in these schemes. Fuzzy logic (FL), artificial neural

networks (ANN) and their combinations are among common

tools widely used for digital implementation of PI-like nonlin-

ear controllers. This nonlinearity can be static, i.e. determined

during an off-line optimization procedure, or can be tuned

continuously during normal operation of the drive in on-line

mode. Examples of off-line and on-line trained controllers can

be found in [6–11].

The ANN-based controllers offer straightforward capabil-

ity of adaptation. A learning algorithm (a tuning procedure)
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can be kept active during regular operation of the drive [10,

11]. This in turn means that weights of the ANN will be

changed automatically if the dynamics of a drive will change.

Two crucial design decisions have to be made at this point:

type of a learning algorithm and a method of determining pa-

rameters for this algorithm. It was already identified that the

Rprop (resilient back-propagation) algorithm possesses prop-

erties that are of paramount importance as far as real-time

code execution is needed. The algorithm takes into account

only sign of the gradient. As a result, the training process is

less sensitive to noise. Moreover, in many tests Rprop outper-

forms other first-order learning algorithms in terms of speed

of convergence [12]. However, to maintain its high perfor-

mance in a particular control system four training parameters

have to be set, namely minimal and maximal step sizes, de-

crease and increase factors. Although there are some rough

rules that can be followed, fine tuning is usually done by

guessing and checking. Our idea is to eliminate this guess and

check stage and replace it with a particle swarm optimization.

Note that this does not mean that no expert knowledge will

be needed. As it will be shown later on, common candidates

for the objective function that do not require setting of any

parameter (penalty factor), do not produce in this particular

case good results. Nevertheless, a combined objective func-

tion with one or two penalty coefficients turns out to give

satisfactory results.

3. Computational model

The discussed system is sketched schematically in Fig. 1.

A more detailed structure of the adaptive ANN-based con-

troller is shown in Fig. 2.

An Rprop modification known as the Rprop with weight-

backtracking [12] was chosen in this study. For the sake of

clarity its pseudocode is as follows:

if

(

∂E

∂wij

(k − 1) ·
∂E

∂wij

(k) > 0

)

then {

δij(k) = min(δij(k − 1) · η+, δmax)

∆wij(k) = −sgn

(

∂E

∂wij

(k)

)

· δij(k)

wij(k + 1) = wij(k) + ∆wij(k)

}

else if

(

∂E

∂wij

(k − 1) ·
∂E

∂wij

(k) < 0

)

then {

δij(k) = max(δij(k − 1) · η−, δmin)

wij(k + 1) = wij(k) − ∆wij(k)
∂E

∂wij

(k) = 0

}

else if

(

∂E

∂wij

(k − 1) ·
∂E

∂wij

(k) = 0

)

then {

∆wij(k) = −sgn

(

∂E

∂wij

(k)

)

· δij(k)

wij(k + 1) = wij(k) + ∆wij(k)

}

}

where E – objective function (cost function), wij – weight,

δmin, δmax – minimal and maximal allowed change of weight

(absolute values), δij – current weight change (absolute val-

ue), η−, η+ – decrease and increase factors for δij .

The cost function for ANN constitutes control task:

EANN (k) =
1

2

(

ωref
m (k) − ωm (k)

)2
. (1)

Fig. 1. Blok diagram of the control system

Fig. 2. Topology of the adaptive controller – basic realization shown

in black, additional elements shown in blue

It was tested that the most crucial settings are δmax, η−

and η+. Other parameters like number of neurons, length of

tapped delay lines (TDL) or δmin (usually set to 0 or very

small positive) are easy to tune by guessing and checking.

There are some tips on potentially working settings for η−,

η+, e.g. η+ = 1.2, η− = 0.5 and δmax = 50 are reported to

deliver good results in many off-line benchmarks [12]. It was

found out that in the case of an on-line trained controller for

the discussed drive these settings are far from optimal. At the

same time the performance of the drive is highly sensitive to

these parameters and guessing a fairly good set of settings is

usually time consuming. The idea is to turn this problem into

numerical optimization problem.

4. Particle Swarm Optimization (PSO)

PSO is a stochastic optimization algorithm that shares many

similarities with evolutionary computation techniques. The
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system is initialized with a set (here called swarm) of ran-

dom candidate solutions (here called particles). Particles fly

through the problem space. Their current speed vector is a

result of global best solution and particle best solution found

so far. Solutions are rated according to an objective function.

A search path for each particle is not deterministic. There is

a random factor that modifies in each iteration individual and

social behaviour coefficients for each particle. The core of the

basic algorithm is as follows [13]:

vi(k + 1) = c1 · vi(k) + c2 · rand() ·
(

xbest
i − xi(k)

)

+c3 · rand() ·
(

xbest
global − xi(k)

)

,
(2)

xi(k + 1) = xi(k) + vi(k + 1), (3)

where i – particle identification number, vi – speed of the i-th

particle, xi – position of the i-th particle, xbest
i – best solution

proposed so far by i-th particle, xbest
global – best solution found

so far by the swarm, c1 – explorative factor (inertia weight),

c2 – cognitive factor (individual influence), c3 – social factor,

rand() – uniform random number between 0 and 1.

There are numerous mutations of basic PSO [14]. How-

ever, there is no ultimate velocity-update rule. A set of modi-

fications should be carefully chosen to suit the particular op-

timization problem. If rule (2) manifests unsatisfactory con-

vergence speed or limited ability to find the optimum for the

particular problem, some refinements can be added to the

velocity-update rule or significant modification regarding in-

formation flow can be made, e.g.:

• inertia weight (explorative factor) can decrease with the

number of iterations or can be the function of particle per-

formance [15],

• constriction factor can be introduced (canonical PSO) as

constant one or variable one [16],

• xbest
global can be redefined to represent best solution found

so far by particle’s neighbourhood limited by the distance

(the radius of the neighbourhood is infinite in the rule as

presented in (2)) or by the fixed number of neighbours

(particles closest in distance) [17],

• particle can be attracted by every other particles in its

neighbourhood (i.e. knowledge of xbest
i is distributed

among all particles) [18],

• boundary conditions can be introduced with the help of

absorbing, reflecting or invisible walls [19].

In our study the constricted PSO algorithm with equal

cognitive and social coefficients is employed. The radius of

the neighbourhood is assumed to be infinite. Three parame-

ters of the Rprop are taken into account: δmax, η− and η+.

They are positive numbers where η− < 1 and η+ > 1. These

boundary conditions are introduced to the search algorithm

as absorbing walls. This gives the following velocity-update

rule:

vi(k + 1) = χ[vi(k)+
ϕ

2
· rand() ·

(

xbest
i − xi(k)

)

+
ϕ

2
· rand() ·

(

xbest
global − xi(k)

)

]
(4)

where ϕ is chosen to be equal to 4.1 and the constriction

factor is calculated using the formula:

χ =
2

∣

∣

∣
2 − ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣

. (5)

It should be noted that (4) is a special case of (2). The

constricted PSO is not a modification of the original algo-

rithm. It only gives recipe on how to set c1, c2 and c3 in (2).

In our case each particle is a vector

xi =
[

η−, η+, δmax

]

(6)

of candidate settings for the ANN-based adaptive controller.

Absorbing walls are defined according to










0 < η− < 1

η+ > 1

δmax > 0

(7)

Other search directions are left unconstricted. Due to

unknown upper limits for two directions (no clear physical

limits) no maximal particle velocity was assumed in these

directions. It is common practice to set velocity clamping

vmax = xmax if search space is constricted. Such clamping

could be set for the first variable in our case. However, the con-

stricted PSO with a constriction factor defined as constant (5)

in many benchmark optimization problems does not require

velocity clamping to deliver satisfactory speed of convergence.

One can alternatively use modified strategies for the constric-

tion factor, including time-dependent strategies and random

effects [16].

5. Objective function

Choosing the appropriate control objectives for PSO is the

most crucial decision to be made. There is a set of commonly

used objective functions in control problems. Each objective

function puts stress on (favours or penalizes) slightly different

behaviour of the system. Most of them are meant to favour fast

and asymptotic tracking of reference input. It usually takes

expert knowledge supported by trial and error iterations to

determine satisfactory objective function for a given control

task. We have started with well-known integral performance

indices of a general form [20]:

Ip,q =

∞
∫

0

tp |e (t)|
q
dt, (8)

where p and q are fixed numbers, and e(t) denotes the con-

trol error. At first the I0,1, I0,2, I1,1, I1,2 and I2,2 candidates

were tested. They are known as the integral of absolute error

(IAE), the integral of squared error (ISE), the integral of time

multiplied absolute error (ITAE), the integral of time multi-

plied squared error (ITSE) and the integral of squared time

multiplied error (ISTE), respectively. In our system none of

the above indices have produced expected results. These in-

dices favour fast response at the cost of speed overshoot and

underdamped oscillations of a reference torque (Fig. 3).
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Fig. 3. System tuned using the ISE performance index

It should be noticed that these indices are examples of

“non-parametric” ones. Once selected they do not require any

parameter (e.g. penalty factors) tuning. This is important ad-

vantage, because one of our goals is to reduce number of

steps that involve guessing and checking. This does not mean

that experimenting with combined indices that require sub-

jective choice of the weight(s) is unjustified. Even if number

of weights in objective function is higher than original num-

ber of parameters to be found by optimization process (in our

case three parameters shown in (6)), guessing a satisfactory

set of weights could be far easier than direct guessing a good

suboptimal solution. Four more weighted indices were tested

[21]: the generalized integral of squared error

IGISE =

∞
∫

0

[

e2 (t) + αė2 (t)
]

dt, (9)

the integral of squared error and control effort

IISECE =

∞
∫

0

[

e2 (t) + β (u (t) − u∞)
2
]

dt, (10)

the integral of squared error and derivative of control effort

IISEDCE =

∞
∫

0

[

e2 (t) + γu̇2 (t)
]

dt, (11)

and the integral of squared error and squared overshoot

IISEO =

∞
∫

0

[

e2 (t) + λe2
overshoot (t)

]

dt, (12)

where selection of α, β, γ and λ is subjective.

These experiments let us gather some expert knowledge on

building the objective function (OF) for this particular prob-

lem. We have decided to combine (11) with (12), and to switch

to I2,2 (ISTE). The value of the OF is determined by running

the model and gathering necessary data – no analytical eval-

uation of OF is involved, i.e. the plant can be black-boxed.

This gives important flexibility in an OF formulation. Due to

discrete nature of the controller and finite simulation time, in-

tegral is replaced with summation and infinity is replaced with

simulation stop time (tSTOP). Positive scaling factor (sampling

time) is omitted before sum symbol, because it does not affect

optimization problem definition. This gives

IPSO =

kTs=tSTOP
∑

k=0

(

(kTs)
2
e2[k]+γu̇2[k] + λe2

overshoot[k]
)

,

(13)

where Ts stands for sampling time for the ANN-based con-

troller. Further modifications of (13) have been undertaken to

assess ANN learning process more effectively. First of all, the

test reference speed and load torque vary periodically. A time

resetting function is incorporated into IPSO and two logical

functions are introduced to suppress to zero selected (or all)

terms in IPSO for a given time intervals being the function

of reference speed and test load torque. This can be written

as:

IPSO =

kTs=tSTOP
∑

k=0

fSTART [k] ((fRESET (kTs))
2
e2 [k]

+fγ(ωref
m [k] , TLOAD[k], k)γu̇2[k] + λe2

overshoot[k]),

(14)

where fSTART is set to 0 during the first period of test (oth-

ervise 1), fRESET resets time after each period of reference

speed and fγ neglects derivative of control effort (reference

torque) in transient states of the electromagnetic torque initi-

ated by load change or reference speed change. It is assumed

that fγ is set to 0 for a period of time equal to electromagnetic

torque rise time. This cost function may appear complex, but

in fact is very intuitive. We do not rate ANN performance at

the beginning because the controller is initialized with ran-

dom weights. The derivative of control effort is introduced

into IPSO in order to distinguish “good” solutions from so-

lutions with chatter. However, punishing derivative of control

signal during specific time interval after a change in load

or reference speed is undesirable. It should be noticed that

mentioned controller output behaviour cannot be effectively

assessed using only e[k] because of big time constant of the

mechanical part of a vehicle.

6. Numerical results

A numerical verification of the proposed tuning procedure has

been carried out using a hypothetical drive with inputs and

outputs normalized to [-1,1] range. This reflects a common

approach to ANN learning, which assumes normalization of

all signals. Selected parameters related to ANN controller and

its tuning are shown in Table 1.

Table 1

Selected parameters of the model

Parameter Value

Sampling time for outer loop (speed loop) 10ms

Inertia increase for fully loaded vehicle 50%

δmin 0.001

Number of particles 27

Number of iterations 75

Boundary conditions implementation absorbing walls

Functions fSTART, fRESET and fγ used in (14) are shown
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along with reference speed and disturbance torque in Fig. 4.

Initial position of all particles is depicted in Fig. 5. The swarm

after 25 iterations is shown in Fig. 6. The search is arbitrary

stopped after 75 iterations (Fig. 7). In ideal case all particles

should gather in one point. In our case this does not happen

because of process and measurement noise included in the

model. It could also happen that the area around found maxi-

mum of −IPSO is more like plateau than a sharp peak. In such

a case the swarm may stay in constant move. From practical

point of view these movements are unimportant if best solu-

tion found so far is satisfactory. Nevertheless, it is advisable

to monitor variances of parameters being optimized (com-

ponents of (6)). This will clearly indicate sensitivity of the

objective function IPSO to δmax, η− and η+. The evolution

of its variances in this particular case is shown in Figs. 8–10.

Fig. 4. Correlation between auxiliary switching functions and input

signals

Fig. 5. Initial position of the swarm

Fig. 6. The swarm after 25 iterations

Fig. 7. The swarm after 75 iterations

Fig. 8. Evolution of η+ variance
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Fig. 9. Evolution of η− variance

Fig. 10. Evolution of δmax variance

Fig. 11. Performance of the drive tuned according to the IPSO index

It can be concluded that δmax can be set more freely than

η−or η+. Performance of the drive tuned by the PSO with

ranking according to the performance index (14) is illustrated

in Fig. 11. An increase in moment of inertia at the level of

50% is shown in Fig. 12. For comparison purposes the per-

formance of the system if η− and η+ are set according to the

recommendations made for off-line approximation problems

(i.e. η+ = 1.2 and η− = 0.5) is presented in Fig. 13.

Fig. 12. Performance of the drive tuned according to the IPSO index

after 50% increase in moment of inertia

Fig. 13. Performance of the drive tuned according to the general

recommendation for off-line Rprop parameter settings

7. Conclusions

The on-line trained ANN has been used as a speed controller

for an electric vehicle to introduce better insensitivity to varia-

tions in vehicle mass. The Rprop learning algorithm has been

selected by virtue of its speed and good ability to cope with

noise. To fully benefit from this solution at least three learning

parameters have to be properly tuned. There is no universal

direct tuning procedure for this kind of problem. It was de-

cided to rearrange this problem into more intuitive one. The

objective function for the control task has been formulated and

the PSO with absorbing walls has been implemented to solve

the multivariable optimization problem. Due to the nature of

the ANN learning process special measures have been taken

to effectively assess performance of the controller. Obtained

results indicate usefulness of this approach.
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