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Abstract. We present results of numerical simulations of acoustic waves with the use of the Graphics Processing Unit (GPU) acceleration

GAMER code which implements a second-order Godunov-type numerical scheme and adaptive mesh refinement (AMR). The AMR imple-

mentation is based on constructing a hierarchy of grid patches with an octree data structure. In this code a hybrid model is adopted, in which

the time-consuming solvers are dealt with GPUs and the complex AMR data structure is manipulated by Central Processing Units (CPUs).

The code is highly parallelized with the Hilbert space-filling curve method. These implementations allow us to resolve well desperate spatial

scales that are associated with acoustic waves. We show that a localized velocity (gas pressure) pulse that is initially launched within a

uniform and still medium triggers acoustic waves simultaneously with a vortex (an entropy mode). In a flowing medium, acoustic waves

experience amplitude growth or decay, a scenario which depends on a location of the flow and relative direction of wave propagation. The

amplitude growth results from instabilities which are associated with negative energy waves.
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1. Introduction

Most of natural phenomena are so complex that they can be

described by mathematical equations, which cannot in gener-

al be solved analytically and require numerical treatment. A

typical way of this treatment is to transform these equations

to a discrete form that can be numerically dealt with. In this

way, the initial state of a system is established and subsequent

events are evaluated. The continuous interaction with experi-

ments, observations and analysis results in numerical simula-

tions attaining a status of an indispensable tool of research. As

a result, the increase in computing power as well as in capac-

ity of numerical algorithms is vital in obtaining good quality

solutions. This increase can be gained with the use of many

cores and accelerator-based programming which recently be-

came promising techniques in high-performance computing.

Among others, Graphics Processing Units (GPUs) for acceler-

ation of numerical calculations acquired a potential attention

in the past few years. However, the original purpose of GPU is

to serve as an accelerator for computer graphics. The modern

GPU, for instance the NVIDIA Tesla C2075, has 448 scalar

processor cores, also called CUDA cores, each working at

1.15 GHz clock rate. It delivers a peak performance of 1,030

GFLOPS (Giga Floating Operations Per Second) in single

precision calculations and 515 GFLOPS in double precision

calculations, which is about an order of magnitude higher than

the modern CPUs. In addition, it has 6 GB of GDDR5 mem-

ory with a bandwidth of 144 GB/s. The 448 scalar processor

cores are grouped into 14 multiprocessors, each of which con-

sists of 32 scalar processor cores and shares a 48 kB on-chip

data cache.

The traditional GPU scheme adopts the high-level shad-

ing languages, which are designed for graphic rendering and

require knowledge of computer graphics. As a result, its use

is cumbersome and it is unsuitable for general-purpose com-

putations. User-friendly programming interfaces of GPU for

general-purpose usage have been developed since 2006. The

most popular interfaces include the Compute Unified Device

Architecture (CUDA) [1], and the Open Computing Language

(OpenCL) [2]. The latter is a cross-platform Application Pro-

gramming Interface (API), which is devoted for heterogeneous

systems, including GPU, CPU, FPGA (Field Programmable

Gate Array), Intel MIC (Many Integrated Core), and IBM’s

Cell processor. Here we concentrate on CUDA which is adopt-

ed in the GAMER code [3, 4] and in which GPU is regarded

as a multi-threaded coprocessor to CPU with a standard C

language interface. To define the computational task for GPU,

programmers should provide a C-like function called kernel,

which can be executed by multiple CUDA threads in parallel.

A goal of this paper is to adopt the graphic accelerat-

ed GAMER code for solving initial-value problem of Euler

equations which describe acoustic waves. These equations are

introduced in Sec. 2. Numerical simulations with the use of

the GAMER code are presented in Sec. 3. Results of these

simulations for acoustic waves are illustrated in Sec. 4. This

paper is completed by summary of main results.
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2. Euler equations

We consider here Euler equations in the conservation form:

∂̺

∂t
+ ∇ · (̺V) = 0, (1)

∂(̺V)

∂t
+ ∇ · (̺VV) = −∇p, (2)

∂E

∂t
+ ∇ · [(E + p)V] = 0. (3)

Here ̺ is the mass density, p is the gas pressure, V =
[Vx, Vy, Vz] is the flow velocity,

E =
1

2
̺V2 +

p

γ − 1
(4)

is total (kinetic plus internal) energy density and γ is the

adiabatic index which we set and hold fixed to γ = 5/3.

3. Numerical simulations with the GAMER code

The numerical simulations in this paper are performed with

the use of the newly developed adaptive mesh refinement

GAMER code [3, 4], which implements a second-order un-

split Godunov solver [5–7].

To initiate a fluid condition we set the simulation box as

0 ≤ x ≤ 20 Mm × 0 ≤ y ≤ 20 Mm × 0 ≤ z ≤ 20 Mm and

adopt periodic boundary conditions at all boundary surfaces

of the simulation box. Here 1 Mm = 106 m. Setting these

periodic conditions is currently the only option in GAMER.

The computational domain is first covered by root patches of

the cuboid shape with the lowest spatial resolution. Then, ac-

cording to the user-defined refinement criteria, each root patch

may be refined into eight child patches with a spatial resolu-

tion twice that of their parent patch. The numerical solutions

in different patches are calculated simultaneously by multiple

processors inside GPUs. In our studies, we use the AMR grid

with a minimum (maximum) level of refinement blocks set to

0 (5). The refinement strategy is based on controlling numer-

ical errors in either a fluid quantity or its gradient. Depending

on the context, we use as this quantity either flow velocity, gas

pressure, mass density or both. These settings lead to excel-

lent resolution of dramatic spatial profiles, which significantly

reduce the numerical diffusion within the simulation region.

The main aim of developing GAMER is to highly improve

the simulation performance with GPU acceleration. In AMR

simulations, generally the most time-consuming part is to

solve the fluid equations patch by patch. A hybrid CPU/GPU

model is adopted in the code, in which the fluid solvers are

implemented into GPU and the complicated AMR data struc-

ture is manipulated by CPU [3]. CPU and GPU are allowed

to work concurrently, which improves the overall performance

further. Additionally, a hybrid OpenMP/MPI/GPU paralleliza-

tion model has been implemented in order to fully optimize

the performance in heterogeneous CPU+GPU clusters [4], and

the Hilbert space-filling curve is adopted to improve load

balance. This code features an extraordinary performance by

taking advantage of the GPU acceleration. GPU is a highly

parallel multi-threaded coprocessor to CPU, which typically

has hundreds of processors working in a single-instruction

multiple-thread fashion. Most importantly, up to two orders

of magnitude performance speed-up has been demonstrated

in comparison with CPU-only computation [4]. The code is

able to solve the Euler equations with self-gravity [3] but in

this paper we limit ourselves to a gravity-free case that cor-

responds to Eqs. (1)–(3).

4. Results of numerical simulations

In this part of the paper we present the results of numerical

simulations we performed with the use of the GAMER code.

We discuss the cases of still and moving equilibria separately

in the following subsections.

4.1. The case of a still equilibrium. We consider first the

fluid at its equilibrium state which is described by uniform

quantities with the subscript 0 as

̺0, V0 = 0, p0 =
1

γ
̺0c

2
s . (5)

Here cs =
√

γp0/̺0 is the sound speed which we set and hold

fixed as cs = 0.2 Mm s−1 as well as ̺0 = 10−12 kg m−3.

Although these values are characteristic to the solar corona

their exact values are not important as they do not influence

the general scenario of fluid evolution.

Excitation of a vortex by a localized velocity pulse. We ex-

cite waves in the aforementioned uniform and still medium of

Eq. (5) by launching initially, at t = 0 s, the impulse in a y
component of velocity Vy, i.e.

Vy(x, y, z, t = 0)

= AV exp

[

−
(x − x0)

2 + (y − y0)
2 + (z − z0)

2

w2

]

.
(6)

Here AV is the amplitude of the initial Gaussian pulse,

(x0, y0, z0) its initial position, and w its width. We set and

hold fixed w = 0.25 Mm, AV = 0.2 cs, and x0 = y0 = z0 =
5 Mm.

Figure 1 illustrates the spatial profiles of the mass den-

sity ̺(x, y, z = z0), and velocity vectors at t = 2 s and

t = 20 s. The initial pulse separates in its usual way in-

to counter-propagating waves, which can be clearly seen at

t = 2 s (top). As the fluid is initially pushed upwards it

becomes compressed (rarefied) at the top (bottom). These

compressed and rarefied regions are located at (x = 5 Mm,

y = 5.5 Mm) and (x = 5 Mm, y = 4.5 Mm) and they corre-

spond respectively to the red and blue patches in Fig. 1. Note

that a velocity pulse breaks a spatial symmetry of the fluid

and as a result the waves propagating along the y-direction

experience higher amplitudes than those propagating along

the perpendicular (x- and z-) directions. This is particularly

well seen at the initial stages of wave evolution (Fig. 1, top).

As a result of the action of the initial perturbation the flu-

id starts rotating in the form of a vortex, which is well seen

at t = 20 s (Fig. 1, bottom). Such scenario results from the
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fact that the hydrodynamic equations include both vortex and

acoustic solutions [8, 9]. This vortex is associated with fluid

depletion at the center of the vortex which exhibits a modi-

fied toroidal shape. Note that as a consequence of the initial

momentum this vortex is slightly pushed upwards along the

y-axis.

Fig. 1. Mass density ̺(x, y, z = z0) (colour maps) and velocity vec-

tors (arrows) profiles at t = 2 s (top) and t = 20 s (bottom) for the

case of AV = 0.2 cs and still medium

Acoustic waves which are triggered by the initial pulse of

Eq. (6) propagate away of the launching place. They can be

well traced on the profiles of Vy(x = x0, y, z = z0). At t = 10
s these waves can be found at y = 3 Mm and y = 7 Mm

(Fig. 2, top) and at t = 20 s these waves are at y = 1 Mm

and y = 9 Mm (Fig. 2, bottom). Note that at t = 10 s the

maximum of Vy(x = x0, y, z = z0) is located at y ≃ 5.1 Mm

(Fig. 2, top), while at t = 20 s it is at y ≃ 5.4 Mm (Fig. 2,

bottom).

Fig. 2. Velocity Vy(x = x0, y, z = z0) profiles at t = 10 s (top)

and t = 20 s (bottom) for the case of Ap = 0.2 cs, uniform and still

medium

Excitation of the entropy mode by a pulse in a gas pres-

sure. In this section we discuss waves which are impulsively

excited in the uniform medium of Eq. (5) by launching ini-

tially, at t = 0 s, the Gaussian pulse in a gas pressure, i.e.

p(x, y, z, t = 0)

= Ap exp

[

−
(x − x0)

2 + (y − y0)
2 + (z − z0)

2

w2

]

.
(7)

Here Ap = 0.2 p0 is the amplitude of the pulse. This initial

pulse pushes the fluid out of the launching place which re-

sults in acoustic waves and fluid evacuation at the center of

the initial pulse. These acoustic waves are well seen at t = 2
s and they are represented by velocity vectors (Fig. 3, top).

The rarefied fluid region is represented by the blue patch that

is located at the launching place. Surprisingly enough, this

rarefied fluid does not evolve any more in time (Fig. 3, bot-

tom) and the fluid attains new equilibrium with all other fluid

quantities remaining flat at this point. This scenario is associ-

ated with the entropy mode which was recently discussed in

the context of magnetized fluid by [10].
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Fig. 3. Mass density ̺(x, y, z = z0) (colour maps) and velocity vec-

tors (arrows) profiles at t = 2 s (top) and t = 10 s (bottom) for the

case of Ap = 0.2 p0 and still medium

Figure 4 illustrates mass density evaluated for x = z =
5 Mm. Acoustic waves propagating away from the launching

place, y = 5 Mm, are well seen; for t = 10 s these waves are

at y = 3 Mm and y = 7 Mm (left) and for t = 20 s these

waves are at y = 1 Mm and y = 9 Mm (right). The depres-

sion in a mass density, ̺(x0, y0, z0) ≃ 0.9̺0, corresponds to

the entropy mode which remains still at y = y0 = 5 Mm.

Note that a case of Ap < 0 results in acoustic waves

propagation and the entropy mode which corresponds to a re-

gion of mass density enhancement rather than rarefaction (not

shown).

Fig. 4. Mass density ̺(x = x0, y, z = z0) profiles at t = 10 s (left)

and t = 20 s (right) for the case of Ap = 0.2 p0 and still medium

4.2. The case of a moving equilibrium. In this part of the

paper we consider a fluid which moves along the y-direction

in otherwise uniform medium, that is

̺0 = 2 · 10−12 kg

m3
, p0 =

1

γ
̺0c

2
s , (8)

V0 =

[

0, Ve + (Vi − Ve)sech
2

√

(x − xl)2 + (z − zl)2

a
, 0

]

. (9)

Here xl and zl are coordinates of the center of the flow region,

a is its width, Vi and Ve are magnitudes of the flow within

the center and in the ambient medium, respectively. We set

and hold fixed xl = zl = 2.5 Mm, a = 0.5 Mm, and discuss

two cases: (a) Vi = 0.4 cs, Ve = 0; (b) Vi = 0, Ve = 0.4 cs.

Acoustic waves and the entropy mode are triggered in these

cases by the initial pulse in a gas pressure. See Eq. (7).
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Fig. 5. Mass density ̺(x = xl, y, z = zl) profiles at t = 20 s for

Ap = 0.2 p0, Vi = 0.4 cs, Ve = 0 (top) and Vi = 0, Ve = 0.4 cs

(bottom)

Figure 5 illustrates the profiles of mass density, ̺(x =
xl, y, z = zl), that results from the initial pulse of Eq. (7)

with Ap = 0.2 p0. In the case of (a) left-propagating (right-

propagating) waves experience amplitude growth (decline),

while in the case of (b) this scenario is reversed as right-

propagating (left-propagating) waves exhibit amplitude en-

hancement (decay). This peculiar behavior of acoustic waves

results from negative energy waves (NEW) instabilities for

which wave amplitude grows when the energy of the flow and

the wave is reduced in a presence of any dissipative effect.

In our case dissipative effects result from numerical diffusion

which is inherently present in any numerical system. For such

NEW the instability condition

ω
∂D

∂ω
< 0, (10)

has to be satisfied [11]. Here ω is a wave cyclic frequency

and D represents the left-hand side of the dispersion relation,

D(ω, k) = 0 with k denoting a wavenumber. In our case we

have [12]

D(ω, k) = Ω2
i me

K ′

0(mea)

K0(mea)
− Ω2

emi

I ′0(mia)

I0(mia)
, (11)

where I0 (K0) is the (modified) Bessel function of order 0, ′

denotes the partial derivative with respect to the argument of

the function, and

m2
i =

k2c2
s − Ω2

i

c2
s

, m2
e =

k2c2
s − Ω2

e

c2
s

, (12)

Ωi = ω + Vik, Ωe = ω + Vek. (13)

In the case of (a) NEW occur for waves propagating towards

negative values of y, while for (b) NEW result for waves

propagating according to the direction of the y-axis [13], in

agreement with our numerical findings.

5. Summary

In this paper we demonstrated a performance of the graph-

ic accelerated GAMER code for acoustic waves which are

described by the Euler equations. We presented a numerical

study of the propagation of the acoustic waves in still and flow-

ing media. The main findings can be summarized as follows.

A localized pulse that is initially launched in a fluid velocity

triggers acoustic waves and a vortex which stagnates the mass

density around the launching place. An initial pressure pulse

results in acoustic wave propagation as well. However, in this

case no vortex is generated. Instead, the entropy mode settles

in at the place the initial pulse was excited. This entropy mode

corresponds to a region of permanent rarefaction or conden-

sation, depending upon positive or negative perturbation in a

gas pressure.

A flowing fluid breaks a symmetry of left- and right-

wardly propagating waves. This asymmetry results from neg-

ative energy waves which occur for back-wardly propagating

waves and which experience amplitude grow by extracting the

corresponding energy from the fluid flow.

The numerical models we build on the bases of the

GAMER code demonstrate the feasibility of fluid simulations

in obtaining quantitative features of complex flows with fine

spatial structures. These structures were finely resolved by the

adaptation of sophisticated numerical methods such as shock-

capturing scheme and adaptive mesh refinement.

These numerical simulations have been performed on

nVidia Quadro FX 880M. A typical time of simulations was

within the range of 15-30 min.
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