
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 4, 2012

DOI: 10.2478/v10175-012-0097-3

VARIA

Positive realizations with reduced numbers of delays

for 2D continuous-discrete linear systems
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Abstract. A new method is proposed for determination of positive realizations with reduced numbers of delays of linear 2D continuous-

discrete systems. Sufficient conditions for the existence of the positive realizations of a given proper transfer function are established. It is

shown that there exists a positive realization with reduced numbers of delays if there exists a positive realization without delays but with a

greater dimension. The proposed method is demonstrated on a numerical example.
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1. Introduction

Determination of the state space equations for a given transfer

matrix is a classical problem, called the realization problem,

which has been addressed in many papers and books [1–12].

It is well-known that to find a realization for a given transfer

function [1, 11, 13, 14] firstly we have to find a state matrix

for a given denominator of the transfer function. An overview

on the positive realization problem is given in [1, 11, 13,

15]. The realization problem for positive continuous-time and

discrete-time linear systems has been considered in [5, 16–19]

and the positive realization problem for discrete-time systems

with delays in [9, 10, 20]. The fractional positive linear sys-

tems have been addressed in [11, 21, 22]. The realization

problem for fractional linear systems has been analyzed in [7]

and for positive 2D hybrid systems in [8]. A method based

on similarity transformation of the standard realization to the

discrete positive system has been proposed in [5]. Conditions

for the existence of positive stable realization with system

Metzler matrix for transfer function has been established in

[17]. The problem of determination of the set of Metzler ma-

trices for given stable polynomials has been formulated and

partly solved in [18]. A new modified state variable diagram

method for determination of positive realizations with the re-

duced number of delays for given proper transfer matrices

of continuous-time linear systems has been proposed in [23].

An extension of this method for discrete-time linear systems

is given in [24].

In this paper a new method for determination of positive

realizations with reduced number of delays for given proper

transfer matrices of 2D linear continuous-discrete systems is

proposed.

The paper is organized as follows. In Sec. 2 some pre-

liminaries concerning 2D positive continuous-discrete linear

systems with delays are given and the realization problem

is formulated. Basic lemmas and the proposed method for

single-input single-output systems are presented in Sec. 3. An

extension of the proposed method for multi-input multi-output

is given in Sec. 4. Concluding remarks are given in Sec. 5.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set of

n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ , Mn

– the set of n × n Metzler matrices (real matrices with non-

negative off-diagonal entries), ℜn×m(s, z, w, z−1) – the set of

n×m rational matrices in s, z, w and z−1, ℜn×m[s, z, w, z−1]
– the set of n × m polynomial matrices in s, z, w and z−1,

In – the n × n identity matrix.

2. Preliminaries and the problem formulation

Consider the 2D continuous-discrete linear system with q1

delays in a continuous variable t (time) and q2 delays in the

discrete variable i of the form

ẋ(t, i + 1) = A0x(t, i) + A1ẋ(t, i)

+A2x(t, i + 1) + B0u(t, i)

+

q
1

∑

j=1

(Aj,0x(t − jd, i) + Bj,0u(t − jd, i))

+

q
2

∑

k=1

(A0,kx(t, i − k) + B0,ku(t, i − k)),

(1a)

y(t, i) = Cx(t, i) + Du(t, i), t ∈ ℜ+ = [0, +∞],

i ∈ Z+ = {0, 1, ...},
(1b)

where ẋ(t, i) = ∂x(t,i)
∂t

, x(t, i) ∈ ℜn, u(t, i) ∈ ℜm,

y(t, i) ∈ ℜp are the state, input and output vectors and

A0, A1, A2 ∈ ℜn×n, B0 ∈ ℜn×m, Aj,0 ∈ ℜn×n, Bj,0 ∈
ℜn×m, j = 0, 1, ..., q1; A0,k ∈ ℜn×n, B0,k ∈ ℜn×m,

k = 0, 1, ..., q2; C ∈ ℜp×n, D ∈ ℜp×m, d > 0 is a delay.

In a special case some matrices Aj,0, Bj,0 and A0,k, B0,k

in (1) can be zero matrices. Boundary conditions for (1) are

given by
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x(0, i) = x0(i), i ∈ [−q2, 0]

and x(t, 0) = x0(t), ẋ(t, 0) = ẋ0(t),

t ∈ [−q1d, 0].

(2)

Definition 1. The system (1) is called (internally) positive if

for every x0(t), ẋ0(t) ∈ ℜn
+, t ∈ [−q1d, 0], x0(i) ∈ ℜn

+,

i ∈ [−q2, 0] and all inputs u(t, i) ∈ ℜm
+ , t ≥ −q1d, i ≥ −q2

we have x(t, i) ∈ ℜn
+ and y(t, i) ∈ ℜp

+ for t ≥ 0i ∈ Z+.

Theorem 1. The system (1) is positive if and only if

A2 ∈ Mn, A0, A1, Aj,0, A0,k ∈ ℜn×n
+ ,

A0 + A1A2 ∈ ℜn×n
+

B0, Bj,0, B0,k ∈ ℜn×m
+ , C ∈ ℜp×n

+ , D ∈ ℜp×m
+

j = 0, 1, ..., q1; k = 0, 1, ..., q2.

(3)

Proof is the simple combination of the proof for positive 2D

continuous-discrete linear systems without delays [6] and stan-

dard positive systems with delays [11, 13].

Using the Laplace transform and the Z transform to (1) it

is easy to obtain the transfer matrix of the system (1) in the

form

T (s, z, w, z−1) = C

[

Insz − A0 − A1s − A2z

−

q
1

∑

j=1

Aj,0w
j −

q
2

∑

k=1

A0,kz−k

]

−1

×[B0 +

q
1

∑

j=1

Bj,0w
j +

q
2

∑

k=1

B0,kz−k] + D.

(4)

where w = e−sd.

The transfer matrix T (s, z, w, z−1) is called proper if

lim
s,z→∞

T (s, z, w, z−1) = K ∈ ℜp×m (5)

and strictly proper if K = 0.

Definition 2. Matrices (3) are called a positive realization of

a given transfer matrix T (s, z, w, z−1) ∈ ℜp×m(s, z, w, z−1)
if they satisfy the equality (4).

The positive realization problem under consideration

can be stated as follows. Given a proper transfer matrix

T (s, z, w, z−1) ∈ ℜp×m(s, z, w, z−1), find a positive realiza-

tion with reduced numbers of delays, this is, with numbers of

delays in continuous variable less than q1 and with numbers

of delays in discrete variable less than q2.

In this paper sufficient conditions for the existence of pos-

itive realization with reduced numbers of delays will be estab-

lished and a method for determination of a positive realization

with a reduced number of delays of a given transfer matrix

T (s, z, w, z−1) is proposed.

3. Problem solution

The solution of the positive realization problem is based on

the following two lemmas.

Lemma 1. Let pk = pk(s, z, w, z−1) for k = 1, 2, . . ., 2n− 1
be some polynomials in s, z, w, z−1 with nonnegative coef-

ficients and

P = P (s, z, w, z−1)=

















0 0 ... 0 pn

p1 0 ... 0 pn+1

0 p2 ... 0 pn+2

...
... ...

...
...

0 0 ... pn−1 p2n−1

















. (6)

Then

det[Insz − P ] = (sz)n − p2n−1(sz)n−1

−pn−1p2n−2(sz)n−2 − ... − p2p3...pn−1pn+1(sz)

−p1p2...pn.

(7)

Proof. The expansion of the determinant with respect to the

n-th column yields

det[Insz − P ]=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sz 0 ... 0 −pn

−p1 sz ... 0 −pn+1

0 −p2 ... 0 −pn+2

...
... ...

...
...

0 0 ... −pn−1 sz − p2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (sz)n − p2n−1(sz)n−1 − pn−1p2n−2(sz)n−2 − ...

−p2p3...pn−1pn+1(sz) − p1p2...pn.

Lemma 2. Let Rn = Rn(s, z, w, z−1) be the n-th row of the

adjoint matrix [Inz − P ]ad. Then

Rn = [p1p2...pn−1 p2p3...pn−1sz p3p4

...pn−1(sz)2 ... pn−1(sz)n−2 (sz)n−1].
(8)

Proof. Using the well-known equality

[Insz − P ]ad[Insz − P ] = In det[Insz − P ]

and (7) it is easy to verify that

Rn[Insz − P ] = [ 0 ... 0 1 ] det[Insz − P ].

In a particular case if the matrix (6) has the form

P =

















0 0 ... 0 p2

p1 0 ... 0 p3

0 p1 ... 0 p4

...
... ...

...
...

0 0 ... p1 pn+1

















(9)

then

det[Insz − P ] = (sz)n − pn+1(sz)n−1 − ...

−p2p
n−2
1 (sz) − p2p

n−1
1

(10)

and

Rn = [ pn−1
1 pn−2

1 sz ... p1(sz)n−2 (sz)n−1 ]. (11)

The given proper transfer matrix T = T (s, z, w, z−1) ∈
ℜp×m(s, z, w, z−1) can be always written in the form

T =
N

d
+ D, (12)
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where N = N(s, z, w, z−1) ∈ ℜp×m[s, z, w, z−1] and d =
d(s, z, w, z−1) is a polynomial. From (12) we have

D = lim
s,z→∞

T (13)

since lim
s,z→∞

N
d

= 0. The strictly proper transfer matrix is

given by

Tsp = Tsp(s, z, s, z−1) = T − D =
N

d
. (14)

Therefore, the positive realization problem can be reduced to

finding the matrices

A2 ∈ Mn, A0, A1, Aj,0, A0,k ∈ ℜn×n
+ ,

A0 + A1A2 ∈ ℜn×n
+

B0, Bj,0, B0,k ∈ ℜn×m
+ , C ∈ ℜp×n

+ ,

j = 0, 1, ..., q1; k = 0, 1, ..., q2.

(15)

Firstly we consider a single-input single-output (m = p = 1,

SISO) system with the strictly proper transfer function

Tsp = Tsp(s, z, w, z−1) =
n

d
, (16a)

where

n = n(s, z, w, z−1) = bn−1(sz)n−1+...+b1(sz)+b0, (16b)

d = d(s, z, w, z−1) = (sz)n−an−1(sz)n−1−...−a1(sz)−a0

(16c)

ak and bk, k = 0, 1, . . ., n− 1 are polynomials with nonneg-

ative coefficients in s, z, w, z−1.

It is assumed that for the given denominator (18) there

exist polynomials

pk(s, z, w, z−1) = pk + p0
ks + p1

kz + pw
k,q

1

wq
1 + ...

+pw
k,1w + pw

k,1 + pz−1

k,q
2

z−q
2 + ...

+pz−1

k,1 z−1 + pz−1

k,0 , (q1 ≤ q1, q2 ≤ q2)

(17)

with nonnegative coefficients pk, p0
k, ..., pz−1

k,0 such that

an−1 = p2n−1,

an−2 = pn−1p2n−2, ..., a1 = p2p3...pn−1pn+1,

a0 = p1p2...pn.

(18)

In particular case if the matrix P has the form (9) then (18)

takes the form

ak = pn−k−1
1 pk+2, k = 0, 1, ..., n − 1. (19)

Note that if (18) holds then for the given denominator d

of (16a) we may find the matrix (6) and next the corre-

sponding matrices A0, A1, A2, Aj,0, A0,k, j = 0, 1, ..., q1,

k = 0, 1, ..., q2 since

[Insz − P ] = Insz − A0 − A1s − A2z

−

q
1

∑

j=0

Aj,0w
j −

q
2

∑

k=0

A0,kz−k.
(20)

The matrix C is chosen in the form

C = [ 0 ... 0 1 ] ∈ ℜ1×n. (21)

Taking into account (8), (20), (21) and (4) we obtain

C[Insz − P ]ad



B0 +

q
1

∑

j=0

Bj,0w
j +

q
2

∑

k=0

B0,kz−k





= Rn



B0 +

q
1

∑

j=0

Bj,0w
j +

q
2

∑

k=0

B0,kz−k





= [p1p2...pn−1 p2p3...pn−1sz p3p4...pn−1(sz)2 ...

pn−1(sz)n−2 (sz)n−1]

×



B0 +

q
1

∑

j=0

Bj,0w
j +

q
2

∑

k=0

B0,kz−k





= n(s, z, w, z−1).

(22)

From (22) it follows that it is possible to find the desired

matrices B0, Bj,0, B0,k, j = 0, 1, ..., q1; k = 0, 1, ..., q2 if

there exists the matrix

B = B(w, z−1) =









b0

...

bn−1









=









b0(w, z−1)
...

bn−1(w, z−1)









=



B0 +

q
1

∑

j=0

Bj,0w
j +

q
2

∑

k=0

B0,kz−k





(23)

such that

RnB = bn−1(sz)n−1 + pn−1bn−2(sz)n−2 + ...

+p2p3...pn−1b1(sz) + p1p2...pn−1b0

= bn−1(sz)n−1 + ... + b1(sz) + b0

= n(s, z, w, z−1).

(24)

Therefore, the following theorem has been proved.

Theorem 2. There exists the positive realization (15) of the

transfer function (14) if it is possible to find the polynomials

p1, p2, ..., p2n−1 (25)

and

bn−1, ..., b1, b0 (26)

with nonnegative coefficients (except the last coefficient of

p2n−1) such that (20) and (24) are satisfied.

Remark 1. There exists a positive realization (3) of the trans-

fer function (12) if the conditions of Theorem 2 are met and

additionally

lim
s,z→∞

T (s, z, w, z−1) ∈ ℜp×m
+ . (27)

If the conditions of Theorem 2 and (27) are met then the

positive realization (3) of the transfer function (12) can be

computed by the use of the following procedure.

Procedure 1.

Step 1. Using (13) compute the matrix D ∈ ℜ+ and the

strictly proper transfer function (14).

Step 2. For given coefficients ak, k = 0, 1, . . ., n−1 of the

polynomial d using (18) choose polynomials p1, p2, ..., p2n−1

Bull. Pol. Ac.: Tech. 60(4) 2012 837
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with nonnegative coefficients and find the matrix P and non-

negative matrices A0, A1, Aj,0, A0,k, j = 0, 1, ..., q1, k =
0, 1, ..., q2, A2 ∈ Mn satisfying (20) and A0+A1A2 ∈ ℜn×n

+ .

Step 3. Chose the polynomials bkk = 0, 1, . . ., n − 1 sat-

isfying (24) and find nonnegative matrices B0, Bj,0, B0,k,

j = 0, 1, ..., q1, k = 0, 1, ..., q2 and the matrix C defined by

(21).

Example 1. Compute the positive realization (3) of the trans-

fer function

T (s, z, w, z−1) =
X

Y
(28)

where

X = sz(1 + z−1) + s(w + 1) + z(w + 1) + w(w + 1)

+z−1(z−1 + 1) + z−1 + 1,

Y = (sz)2 − (s − 2z + w + z−1 + 2)sz−

(s + z + w + z−1 + 1)(2s + z + w2 + z−2 + 4).

Using Procedure 1 we obtain the following.

Step 1. In this case D = [0] since the transfer function

(28) is strictly proper.

Step 2. From denominator of (28) we have

a1 = s − 2z + w + z−1 + 2,

a0 = (s + z + w + z−1 + 1)(2s + z + w2 + z−2 + 4)
(29)

and we chose

p1 = s + z + w + z−1 + 1,

p2 = 2s + z + w2 + z−2 + 4,

p3 = s − 2z + w + z−1 + 2.

(30)

The matrix P has the form

P =

[

0 p2

p1 p3

]

=

[

0 2s + z + w2 + z−2 + 4

s + z + w + z−1 + 1 s − 2z + w + z−1 + 2

] (31)

and using (20) we obtain

P = A0 + A1s + A2z + A10w + A20w
2

+A01z
−1 + A02z

−2,
(32a)

where

A0 =

[

0 4

1 2

]

, A1 =

[

0 2

1 1

]

,

A2 =

[

0 1

1 −2

]

, A10 =

[

0 0

1 1

]

,

A20 =

[

0 1

0 0

]

, A01 =

[

0 0

1 1

]

,

A02 =

[

0 1

0 0

]

.

(32b)

The matrices A0, A1, A10, A20, A01, A02 have nonnegative

entries, the matrix A2 is a Metzler matrix and they satisfy the

condition

A0 + A1A2 =

[

0 4

1 2

]

+

[

0 2

1 1

] [

0 1

1 −2

]

=

[

2 0

2 1

]

, ∈ ℜ2×2
+ .

(33)

Step 3. From numerator of the transfer function (28) and (24)

we have

sz(1 + z−1) + s(w + 1) + z(w + 1) + w(w + 1)

+z−1(w + 1) + w + 1 = (s + z + w + z−1 + 1)(w + 1)

+sz(z−1 + 1) = p1b0 + szb1
(34a)

and

B =

[

b0

b1

]

=

[

w + 1

z−1 + 1

]

. (34b)

Hence from (23) we obtain

B = B0 + B10w + B01z
−1 (35a)

and

B0 =

[

1

1

]

, B10 =

[

1

0

]

, B01 =

[

0

1

]

. (35b)

The matrix c has the form

C = [ 0 1 ]. (36)

The desired positive realization of the transfer function (28)

is given by (32b), (35b), (36) and D = [0].

4. Extension for multi-input multi-output

systems

The proposed method can be extended to multi-input multi-

output 2D continuous-discrete linear (MIMO) systems. It is

well-known that the proper transfer matrix of the MIMO lin-

ear systems with delays can be written in the form

T = T (s, z, w, z−1) =













N11

d1
...

N1,m

d1
... ...

...
Np,1

dp

...
Np,m

dp













+D ∈ Rp×m(s, z, w, z−1),

(37a)

where

Ni,j = Ni,j(s, z, w, z−1) = b
i,j
ni,j−1(sz)ni,j−1 + ...

+b
i,j
1 (sz) + b

i,j
0 ,

i = 1, 2, ..., p; j = 1, 2, ..., m,

(37b)

dk = dk(s, z, w, z−1)

= (sz)nk − ak
nk−1(sz)nk−1 − ... − ak

1(sz) − ak
0 ,

k = 1, 2, ..., p

(37c)

and ak
j , b

i,j
k are polynomials in s, z, w, z−1.
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Theorem 3. There exists the positive realization

A0 = blockdiag [ A0,1 ... A0,p ] ∈ ℜn×n
+ ,

A1 = blockdiag [ A1,1 ... A1,p ] ∈ ℜn×n
+ ,

A2 = blockdiag [ A2,1 ... A2,p ] ∈ Mn,

n = n1 + ... + np,

Aj,0 = blockdiag [ Aj,1 ... Aj,p ] ∈ ℜn×n
+ ,

j = 1, 2, ..., q1,

A0,k = blockdiag [ A1,k ... Ap,k ] ∈ ℜn×n
+ ,

k = 1, 2, ..., q2,

B0 =









B0
11 ... B0

1,m

... ...
...

B0
p,1 ... B0

p,m









∈ ℜn×m
+ ,

Bj,0 =









B
j,0
11 ... B

j,0
1,m

... ...
...

B
j,0
p,1 ... Bj,0

p,m









∈ ℜn×m
+ , j = 1, 2, ..., q1,

B0,k =









B
0,k
11 ... B

0,k
1,m

... ...
...

B
0,k
p,1 ... B0,k

p,m









∈ ℜn×m
+ , k = 1, 2, ..., q2,

C = blockdiag [ C1 ... Cp ] ∈ ℜp×n
+ ,

Ci = [ 0 ... 0 1 ] ∈ ℜ1×n
+ ,

i = 1, 2, ..., p

(38)

of the strictly proper transfer matrix (37) if it is possible to

find the polynomials in (s, z, w, z−1)

pi
1, p

i
2, ..., p

i
2ni−1, i = 1, 2, ..., p (39a)

and

b
i,j
ni,j−1, ..., b

i,j
1 , b

i,j
0 ,

i = 1, 2, ..., p; j = 1, 2, ..., m
(39b)

with nonnegative coefficients (expect the last coefficients of

pi
2ni−1) such that the conditions

det[Insz − Pi]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sz 0 ... 0 −pi
ni

−pi
1 sz ... 0 −pi

ni+1

0 −pi
2 ... 0 −pi

ni+2

...
... ...

...
...

0 0 ... −pi
ni−1 sz − pi

2ni−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= di,

i = 1, 2, ..., p

(40)

b
i,j

ni−1(sz)ni−1 + pi
ni−1b

i,j

ni−2(sz)ni−2 + ...

+pi
2p

i
3...p

i
ni−1b

i,j

1 (sz) + pi
1p

i
2...p

i
ni−1b

i,j

0

= b
i,j
ni−1(sz)ni−1 + ... + b

i,j
1 (sz) + b

i,j
0 = Ni,j ,

i = 1, 2, ..., p; j = 1, 2, ..., m

(41)

are satisfied.

Proof. If the polynomials (39) have nonnegative coefficients

(expect the last coefficients of pi
ni−1) then

[Insz − P ] = blockdiag
i=1,2,...,p

·

[

Ini
sz − A0,i − A1,is − A2,iz

−

q
1

∑

j=0

Ai,1w
j −

q
2

∑

k=0

Ai,kz−k

]

(42)

and (39a) and (39b) hold. If the coefficients of the polyno-

mials (39) are nonnegative and (41) holds then the matrices

(38) satisfy the equality








N11 ... N1,m

... ...
...

Np,1 ... Np,m









= C[Insz − P ]ad



B0 +

q
1

∑

j=0

Bj,0w
j +

q
2

∑

k=0

B0,kz−k



 .

(43)

If the conditions of Theorem 3 are satisfied then the posi-

tive realization of (37) can be found by the use of procedure

similar to the Procedure 1.

Remark 2. The state variable diagram method presented in

[23] for continuous-time systems with delays can be also ex-

tended to 2D continuous-discrete linear systems.

5. Concluding remarks

A new method for determination of positive realizations with

reduced numbers of delays of 2D continuous-discrete linear

systems has been proposed. Using the proposed method it is

possible to find a positive realization with reduced numbers of

delays in state and input variable. Sufficient conditions for the

existence of positive realizations have been established and the

procedure for finding the positive realizations has been pro-

posed. The procedure has been illustrated by the numerical

example. The proposed method can be extended to fractional

continuous and discrete linear systems.
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