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Abstract. The procedure of the formulation of constitutive equations for asphalt-aggregate mixes is based very often on rheological schemes

composed of classical elastic, plastic and viscous elements. The parameters of these schemes can be obtained based on laboratory experiments.

In order to obtain better curve fitting results one can use non-classical viscoelastic elements described by fractional derivatives. In this paper

we present the characteristics of the fractional viscoelastic Huet-Sayegh model as well as the characteristics of an original simplified fractional

model. The results have been obtained using algorithms of numerical calculation of inverse Laplace transforms. Then the proposal of an

original rheological model including plasticity has been given. The non-linear differential constitutive relationships of such a model are

presented in the paper. The results of computer simulations are also visualized. Finally, 3D viscoelasticplastic models of asphalt aggregate-

mixes are proposed. The models are based on a generalized macroscopic theory taking into account the effect of pressure-dependency on

yielding.
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1. Introduction

Nowadays, road constructions are subjected to extremely high

traffic loads. Such factors as traffic densities, axle loads and

tire pressures have been increasing in most countries in the

last decades. Thus, the optimization of pavement materials is

very important in order to avoid damages and subsequently

minimize costs for the road construction and maintenance. On

the other hand, a pavement failure is not only caused by traf-

fic loads, but is influenced by many other factors like climatic

influences and inadequate planning or construction, as well.

These factors are able to increase significantly the effects of

traffic on the pavement.

In Poland one of the largest infrastructure components

are asphalt concrete pavements. Designing such structures

needs realistic constitutive models to be taken into consider-

ation. Developing a realistic mathematical model of asphalt-

aggregate mixture is a complicated problem. The complexity

is attributed to the time-dependency of the binder, the com-

plex nature of temperature effects, plastic flow of the binder,

friction among aggregate particles and coupling the above

mentioned effects.

The mechanistic design procedures of flexible and semi-

rigid pavements are based on the analysis of stresses and

strains in critical points of the structure [1]. Having calculated

these values one can evaluate the fatigue resistance based on

empirical formulas. The fundamental problem in the proce-

dure of pavement design is to elaborate the appropriate con-

stitutive model suited for the structural behaviour modelling

within a wide range of mechanical and environmental load-

ings. The elastic behaviour of asphalt-aggregate mixes com-

bines with its viscous, plastic and fracturing response. Thus,

determining the parameters of this material is extremely com-

plicated. Even in such a case when plasticity and fracture

are not considered, material viscosity causes temperature and

strain rate dependence of the stiffness. For that reason, temper-

ature and strain rates are sometimes integrated in the elastic

parameters of the models.

Constitutive equations for asphalt-aggregate mixes are for-

mulated very often using classical rheological models consist-

ing of springs and dashpots [2–4]. The simplest models are

the Kelvin-Voigt and Maxwell models consisting of spring

and dashpot in parallel and in series, respectively. A more ac-

curate model of viscoelastic behaviour for asphaltic materials

is the Burgers model, which consists of the Maxwell model

combined in series with the Kelvin-Voigt model. It is possible

to express the constitutive equation of viscoelastic materials

in terms of fractional order derivatives of stress and strain [5,

6]. Such formulation leads to so called fractional rheologi-

cal models. Applying this formulation it is possible to obtain

better curve fitting results in the procedure of parameters’

evaluation based on experimental data.

In this paper we present the characteristics of the fraction-

al Huet-Sayegh (1965) model as well as the characteristics of

an original simplified fractional model. We show the results

of calculations in the form of creep and relaxation curves as

well as hysteretic loops. The characteristics of the fractional

models are compared with the characteristics of the classi-

cal viscoelastic Burgers model. A special attention is put in

the paper on modelling of permanent deformations caused

by creep and plasticity. The resulting non-linear models are

mathematically described by the systems of explicit differen-
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tial equations. An original viscoelastoplastic model based on

generalization of the classical Burgers scheme is presented

in details. Finally 3D viscoelastic-plastic models of asphalt

aggregate-mixes are proposed. The models are based on a

generalized macroscopic theory taking into account the effect

of pressure-dependency on yielding.

2. Linear rheological elements

Rheological properties of viscoelastic materials can be mod-

elled applying the stress relaxation function G, which deter-

mines the time history of the stress excited by a unit step

change in strain [2, 3]. Thus, the relaxation function is a step

characteristic of rheological scheme. Applying the relaxation

function one can define an integral operator assigning the

stress function σ to the differentiable strain function ε what

leads to the following equation

σ (t) = G (t) ε (0) +

t
∫

0

G (t − τ ) ε̇ (τ) dτ . (1)

The above equation represents the integral form of the

constitutive equation for a viscoelastic solid. The equation is

also referred to as a hereditary or convolution integral.

Let us assume the following stress relaxation function

defining so called fractional rheological element [6]

G (t) := η
1

Γ (1 − α) tα
; α ∈ (0, 1) , (2)

where η denotes a material parameter and Γ denotes Gamma

function

Γ (1 − α) :=

∞
∫

0

t−αe−tdt. (3)

Constitutive relationships of the fractional rheological el-

ement may be expressed in the differential form

σ (t) := ηDαε (t) ; α ∈ (0, 1) , (4)

where Dα ≡ dα

dtα
denotes the α-th derivative operator.

Applying the Remann-Liouville formula of the fractional

order derivative leads to the following definition [6, 7]

Dαε (t) :=
ε (0)

Γ (1 − α) tα
+

1

Γ (1 − α)

t
∫

0

ε̇ (τ)

(t − τ)α dτ. (5)

The creep compliance function of the fractional element

is defined as follows

J (t) :=
tα

ηΓ (1 + α)
; α ∈ (0, 1) . (6)

Comparative visualization of elastic, fractional and vis-

cous elements is shown in Fig. 1. Along to the graphical

symbols the operator descriptions are given based on Eq. (4).

The constitutive description of the fractional element

shows that this element exhibits both elastic and viscous prop-

erties depending on the value of α ∈ (0, 1). For α → 0 the

elastic properties are dominant while in case of α → 1 the

element behaves like a viscous dashpot.

Fig. 1. Comparative visualization of elastic (a), fractional (b) and

viscous (c) elements

Figure 2 presents viscoelastic rheological models suited

for constitutive modelling of asphalt-aggregate mixes. The

classical Burgers model is shown in Fig. 2a while the frac-

tional Huet-Sayegh (1965) model is presented in Fig. 2b. The

third fractional model shown in Fig. 2c is our original propos-

al. It is composed of two branches. The left branch contains

spring and fractional elements joined in series while the right

one is the Maxwell branch (spring and dashpot in series). This

model is called simplified fractional model.

Fig. 2. Classical Burgers model (a), fractional Huet-Sayegh model

(b) and simplified fractional model (c)

The problem of parameters’ estimation of Burgers and

Huet-Sayegh models based on experiments was considered in

[8]. In case of the Burgers model the following results were

obtained: E1 = 12446 MPa, E2 = 7195 MPa, c1 = 368 MPa

· s and c2 = 126 MPa · s. For the Huet-Sayegh model the

procedure of the curve fitting leads to the values as follows:

E1 = 1003 ·105 MPa, E2 = 0 MPa, α1 = 0.787, α2 = 0.247,

η1 = 660 MPa · sα1 , η2 = 2985 MPa · sα2 . It was proved

in [8] that using the fractional model one can better fit the

experiments within wide range of the excitation frequencies.

Applying the curve fitting procedure for simplified fraction-

al model gives the following results: E1 = 12599 MPa,

E2 = 1574 · 104 MPa, α1 = 0.640, η1 = 623 MPa · sα1 ,

c = 7.716 MPa · s.

In order to establish the characteristics of rheological mod-

els shown in Fig. 2, we use their transfer functions. In case

of Burgers model we have the following equation
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E∗

B (s) =
1

1

E1
+

1

s c1
+

1

E2 + s c2

. (7)

The transfer functions in case of fractional Huet-Sayegh mod-

el E∗

H and fractional simplified model E∗

S are as follows

E∗

H (s) = E2 +
1

1

E1
+

1

η1sα1

+
1

η2sα2

, (8a)

E∗

S (s) =
1

1

E1
+

1

η1sα1

+
1

1

E2
+

1

s c

. (8b)

For linear systems being analysed we can write the fol-

lowing equation relating stresses and strains

σ∗ (s) = E∗ (s) ε∗ (s) , (9)

where σ∗ (s) and ε∗ (s) denote Laplace transforms of the

stress σ (t) and strain ε (t) states respectively. Having analyt-

ical forms of the Laplace transforms for excitations suited for

evaluation of such characteristics as creep/relaxations curves

and hysteretic loops one can find the solution using inverse

Laplace transform. This operation is carried out numerically

using algorithms described in [9].

The results of numerical calculations are shown in Figs. 3–

5. It shows the differences in characteristics for the classical

Burgers model, fractional Huet-Sayegh model and simplified

fractional model proposed herein.

Fig. 3. Stress relaxation curves for Burgers and Huet-Sayegh models

Fig. 4. Creep compliance behaviour of Burgers and Huet-Sayegh

models

Fig. 5. Hysteretic loops of Burgers model and simplified fractional

model (strain excitation)

The majority of methods used for numerical calculation of

inverse Laplace transforms have serious limitations concern-

ing the class of functions that can be inverted or the achievable

accuracy. The procedures applied in this paper can be used

for analysis of fractional rheological models. The required ac-

curacy of the results can be enhanced without changing the

algorithm, only at the cost of a longer computation time.

3. Viscoelastoplastic model

Typical creep and the recovery relation for asphaltic materi-

als is shown in Fig. 6. There are three characteristic sections

visualized in this graph. The section “a” is equal to immedi-

ate, time-independent strains and the section “b” equals the

recoverable part of the strain. The “c” section is a permanent

strain.

Fig. 6. Typical strain-time relation in creep and recovery test

In case of linear viscoelastic models, time-independent be-

haviour is always associated with elastic properties of the ma-

terial while the permanent deformations are associated with

viscosity phenomenon. The lengths of sections “a” and “b”

are the same assuming viscoelastic behaviour of the material.

Viscoelastic rheological schemes shown in previous sec-

tion can only model time-dependent permanent deformations

associated with viscosity. Applying large stresses results in

additional time-independent plastic deformations. As a con-

sequence the lengths of the sections “a” and “b” visualized in

Fig. 6 are not the same and obey the relation a > b. Modelling
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both viscous and plastic permanent pavement deformations is

a crucial issue in the process of rutting prediction. With the

increase of traffic loads and tire pressures, most of the per-

manent deformation occurs in the upper layers of the road

structure (viscoplastic rutting).

We propose a generalization of the Burgers model includ-

ing plasticity phenomenon. The original rheological model is

shown in Fig. 7. The additional elastoplastic network com-

posed of the spring and slider in parallel is used. The limit

stress in the slider modelling plasticity is denoted by σ0.

Fig. 7. Viscoelastoplastic rheological model of asphalt-aggregate

mixture

The total deformation of the body is composed of four

parts. The first one is time-independent elastic deformation of

the spring E1. The second part is viscous permanent defor-

mation of the dashpot η1. We introduced an internal variable

εv in order to describe viscous strains. Another strain vari-

able describing viscoelastic part of the strain is εve. Finally

the elastoplastic permanent deformations are modelled using

the variable εep.

The system of constitutive relationships of the proposed

model can be formulated in the following form

σ = E1 (ε − εv − εve − εep) ,

σp = σ − E3ε
ep,

ε̇v = fv (σ) ,

ε̇ve = fve (σ, εve) ,

ε̇ep = fep (σ, σp, εve, ε̇) ,

(10a)

where σp denotes plastic stress in the slider. The functions fv

and fve describing viscous and viscoelastic rates of deforma-

tion respectively, are easy to formulate

fv (σ) =
1

η1
σ

fve (σ, εve) =
1

η2
(σ − E2ε

ve) .

(10b)

The crucial problem is to write the elastoplastic strain rate

function fep. The procedure of so called differential succes-

sions which may be used for this purpose has been described

in [10–12]. Differential successions define additional relations

which should be satisfied by the time derivatives of variables,

describing the constitutive relation. The whole algorithm is

complicated, thus we present only the final result

fep (σ, σp, εve, ε̇)

=







0 if |σp| < σ0,

E1

σp(E1+E3)

[

σp
(

ε̇ + E2

η2

εve − σ
ηeq

)]+

if |σp| = σ0,

(10c)

where

ηeq :=
η1η2

η1 + η2
, [z]+ :=

{

z if z > 0,

0 if z ≤ 0.
(10d)

Integrating the system of differential Eq. (10) we can eval-

uate the stress history based on the given strain excitations.

The viscoelastoplastic model presented in this Section de-

pends on six material parameters. The values of viscoelastic

components E1, E2, η1 and η2 can be obtained based on curve

fitting procedure of the creep test, because the solution of the

Burgers equation with static step excitation has an analytical

form [4]. The results of such a procedure using algorithms

implemented in MATLAB software are shown in Fig. 8 and

in Table 1. The remaining parameters E3 and σ0 can be easi-

ly established observing the creep-recovery test results. If the

applied stress σ is bigger than the plastic limit σ0, then the

following relations hold

a =
σ − σ0

E3
+ b, b =

σ

E1
. (11)

Fig. 8. Curve-fitting result for viscoelastic parameters’ evaluation

Table 1

Parameters of viscoelastoplastic model

E1 E2 E3 η1 η2 σ0

[MPa] [MPa] [MPa] [GPa · s] [GPa · s] [MPa]

5130 1650 1540 6160 2150 1.0

Using Eqs. (11) along with Fig. 6 we can calculate the

values of E3 and σ0 for certain material. The set of parame-

ters obtained using the above mentioned method is present-
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ed in Table 1. The experimental results were assumed based

on [13].

Figure 9 presents numerical results of the creep and re-

covery simulations. Two models were considered taking the

parameters shown in Table 1 – viscoelastic and viscoelasto-

plastic. The amplitude of step excitation for creep behaviour

modelling was equal to 2.0 MPa. The results show how the

plastic limit stress influences the value of intermediate defor-

mations.

Fig. 9. Strain-time relation in creep and recovery numerical test for

viscoelastic and viscoelastoplastic models

The idea of modelling elastic-visco-plastic properties of

asphalt-aggregate mixes via rheological schemes is not new

[14]. It should be noted, however, that the new approach pro-

posed in this paper is related to a method which produces

constitutive relationships in the form of explicit non-linear

differential equations that are not presented in the literature.

A differential form of constitutive equations allows straight-

forward implementation of integration algorithms.

4. Three-dimensional constitutive equations

The stress tensor σ as well as the strain tensor ε, can be de-

composed additively into volumetric and deviatoric parts. The

following relations hold

σ = p + s where s := σ − 1

3
tr (σ) I, (12)

ε = a + e where e := ε − 1

3
tr (ε) I. (13)

In the above expressions the symbols p and a denote vol-

umetric stress and strain tensor respectively, while s and e

denote stress and strain deviators. Moreover, I denotes 2nd

rank identity tensor and the symbol “tr” denotes the trace

operation.

This part of the study is devoted to the analysis of three-

dimensional constitutive relationships suited for modelling

of viscous and plastic permanent deformations of asphalt-

aggregate mixes. The idea of the Burgers’ model generaliza-

tion taking into account plasticity phenomenon is used. The

investigations is focused on differential description of the pro-

posed equations.

Let us begin with an assumption limiting the viscosity and

plasticity phenomena to the deviatoric subspaces of stress-

es and strains. Thus, the volumetric deformations are elas-

tic, recoverable and time-independent. For such a behaviour

modelling, the yield function should be pressure independent.

The simplest hypothesis we can use in this case is the Huber-

Mises-Hencky (HMH) condition. We formulate constitutive

equations taking into account rheological scheme shown in

Fig. 10.

Fig. 10. Rheological schemes of viscoelastic-plastic model in devia-

toric subspace

The constitutive relationships are as follows

s = 2G1 (e− ev − eve − ep) ,

ėv = fv
B (s) ,

ėve = fve
B (s, eve) ,

ėp = f
p
B (s, eve, ė) .

(14a)

The mappings describing non-elastic strain rates can be

expressed in the following form

fv
B (s) =

1

2µ1
s,

fve
B (s, eve) =

1

2µ2
(s− 2G2e

ve) ,

f
p
B (s, eve, ė) =

{

0 if ‖s‖ <
√

2k,

λs if ‖s‖ =
√

2k,
,

(14b)

where

λ =
1

2k2

[

s · ė +
G2

µ2
s · eve − k2

µeq

]+

and µeq :=
µ1µ2

µ1 + µ2
.

(14c)

Equations (14) should be completed by a formula p =
3Ka, describing volumetric behaviour where K denotes bulk

modulus.
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The proposed model expressed via Eq. (14) is relatively

simple but has a limiting possibility for modelling of asphalt-

aggregate mixes. First of all let us note that the yield condition

taken seems to be too simple in case of asphaltic materials.

Next model we formulate is more complicated and it uses the

idea of pressure-dependency. Thus, a yield condition depends

on volumetric stresses and exhibits hardening. We still use the

assumption limiting viscosity to the deviatoric subspaces of

strains and stresses.

The decomposition rule assumed for stresses and strains

can be visualized based on rheological schemes shown in

Fig. 11. The tensor of deviatoric strains e is decomposed onto

elastic, plastic ep, viscous ev and viscoelastic eve parts (see

Fig. 11a). Both elastic and viscoelastic strains are recoverable,

while the plastic and the viscous strains are permanent. On the

other hand, the intensity of the elastic and the plastic strains

depends only on the intensity of external loading. The values

of viscoelastic and viscous strains depend additionally on the

loading rates. We use additional kinematic variables describ-

ing deviatoric plastic stress state sp and volumetric plastic

stress state pp.

Fig. 11. Rheological schemes of asphalt-aggregate model in devia-

toric (a) and volumetric (b) subspaces

In case of volumetric strains (see Fig. 11b), the elastic-

plastic model with kinematic hardening was assumed. The

volumetric plastic strains are denoted by ap.

Elastic constants K1 and K2 shown in Fig. 11b denote

bulk moduli. The constants G1, G2 and G3 (Fig. 11a) denote

shear moduli while µ1 and µ2describe deviatoric viscosity.

The plastic properties of the model depend on a yield con-

dition. In the paper, a pressure dependent Mises-Schleicher

(MS) hypothesis was assumed [13, 15]. The MS yield func-

tion can be expressed in the following form

FMS (σp) := ‖sp‖n + αRn−1 trσp − Rn, (15a)

where
R =

√
2keq,

keq =
G2

G1 + G2
k,

σ
p = sp + pp,

sp = 2G2 (e− ev − eve − ep) ,

pp = 3K2 (a − ap) .

(15b)

In Eq. (15) additional material constants k, α and n are

introduced. The k denotes pure shear plastic limit. The equiv-

alent plastic limit keq is also used, because within an experi-

ment the total stresses are measured, while the yield function

expressed via Eq. (15a) describes only plastic stresses σ
p. The

form of Eq. (15b) defining keq results from the rheological

scheme modelling kinematic hardening.

Dimensionless parameters α ≥ 0 and n ≥ 1 describe the

shape of the yield function in meridional plane (Fig. 12). In

deviatoric plane, the MS function is of circular shape with

variable radius depending on the value of trσp. Assuming

α = 0 in Eq. (15a) leads to the HMH yield function. Tak-

ing n = 1 in Eq. (15a) we obtain the Drucker-Prager (DP)

condition.

Fig. 12. MS yield functions in meridional plane for selected values

of parameter “n”

The proposed model can be reduced to the classical vis-

coelastic Burgers scheme taking k → ∞. Assuming µ1 → ∞
and µ2 → ∞ the model exhibits only elastic-plastic proper-

ties with kinematic hardening. Such an interpretation allows

to determine the constants G1 and G2 based on pure shear

test. The bulk moduli K1 and K2 can be determined based on

the values of Young modulus E and Poisson ratio ν. The re-

maining parameters should be evaluated applying creep tests

within the range of small loadings not provoking any plastic

behaviour.

The system of constitutive equations has complicated

form. The total stress state is decomposed into volumetric

and deviatoric parts (see Eq. (12a)). The volumetric part can

be described as follows

p = 3K1a + 3K2 (a − ap) ,

ȧp = f
p
vol (σ, eve, ε̇) ,

(16a)

where

f
p
vol (σ, eve, ε̇) =

{

0 if FMS (σp) < 0,

λαRn−1I if FMS (σp) = 0.

(16b)
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The deviatoric stresses are described by the following rela-

tionships

s = 2G1 (e− ev − eve) + sp,

ėv = fv
dev (s) ,

ėve = fve
dev (s, eve) ,

ėp = f
p
dev (σ, eve, ε̇) ,

(16c)

taking into account the following equations defining the rates

of internal variables

fv
dev (s) =

1

2µ1
s,

fve
dev (s, eve) =

1

2µ2
(s− 2G3e

ve) ,

f
p
dev (σ, eve, ε̇) =







0 if FMS (σp) < 0,

λn ‖sp‖n−2
sp if FMS (σp) = 0.

(16d)

The Lagrange multiplier λ (see Eq. (16b) and Eq. (16d)) has

an analytical explicit form

λ=

[

2G2n ‖sp‖n−2
sp

(

ė− 1
2µeq

s+G3

µ2

eve
)

+3K2αRn−1trε̇
]+

2G2n2 ‖sp‖2(n−1) +9K2α2R2(n−1)
.

(16e)

It may be proved that taking K2 = 0, G1 = 0, µ1 → ∞,

µ2 → ∞, n = 2 and α = 0 one can obtain the constitutive

relationships of the elastic-perfectly plastic material obeying

HMH yield hypothesis.

The system of constitutive equations (16) has a differen-

tial explicit form in case of the MS yield condition. Analysing

more complex yield criteria with non-circular deviatoric sec-

tions it may be impossible to obtain an analytical formula for

the Lagrange multiplier λ (Eq. (16e)). In such a case the value

of λ should be obtained numerically within of each step of

integration of constitutive relationships.

5. Conclusions

In the paper we presented the characteristics of viscoelas-

tic rheological models of asphalt-aggregate mixes. Interesting

results were obtained in Sec. 2 using simplified fractional

model, which can be an alternative to Huet-Sayegh (1965)

model. It should be emphasized that the simplified model we

proposed has only 5 parameters which has to be calculated

using curve-fitting procedure. It is an advantage with respect

to 6-parameter Huet-Sayegh model.

One-dimensional viscoelastoplastic model as well as its

three-dimensional generalization presented in Sec. 3 and

Sec. 4 respectively were obtained based on the procedure ex-

plained in [10]. Such material models may be used for con-

stitutive description of multilayer road structure subjected to

dynamic or quasi-static loads [16, 17].

The main advantage of the method being proposed here-

in is that the differential equations defining the behaviour of

asphalt-aggregate mixes are of explicit type. Thus, the exis-

tence of the solution as well as its uniqueness can be proved.

On the other hand, it allows straightforward implementations

in the FEM commercial codes.

In case of 3D models the choice of an appropriate yield

criterion should be justified via experimental tests which are

not standard in case of asphalt-aggregate mixes [18]. Addi-

tional testing is required over the static and dynamic range of

load rates in order to evaluate plastic and viscous properties

of the material. For example, somewhat similar material mod-

el presented in [19] was calibrated based on direct tensile test

results carried out for various strain rates. In our case such

an experiment should be completed by testing the material in

pure shear stress state because of the complexity of the yield

surface.

There are number of possible enhancements to the current

3D model. For instance, the assumption limiting the viscosi-

ty phenomenon to deviatoric subspace should be revised. On

the other hand, in the case of large pressure-stress states, the

material obeying Mises-Schleicher yield condition does not

exhibit plasticity phenomenon. Thus, some modification of

yield function leading to so called cap models should also be

considered [20]. Another problem needed to be considered is

a generalization of viscoelastic models described by fraction-

al derivatives including plasticity phenomenon. For example

generalization of the Huet-Sayegh model taking into account

permanent plastic deformations should be proposed. The work

in this area is currently underway by the author.
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