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Abstract. In the paper linear distributed delay stochastic systems are considered. Using theory of stochastic differential equations sufficient

conditions for different kinds of stability are formulated and proved. The article attempts to generalise results presented in the paper [1] and

thus theorems proved in [1] become a special case of a generalised approach. The considered class is wider – the function that influence

dynamics of a problem can be a real solution of N-degree linear deterministic differential equation. Therefore the generalised reduction

technique of distributed delay to lumped delay has to be applied. Criteria for numerous properties of the aforementioned class followed Mao

theory designed for point delay systems [2, 3].
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1. Introduction

The following paper develops methods classically applied to

the investigation of stability and other properties of point de-

lay equations to explore these features for a special class

of distributed delay stochastic differential equations. Simul-

taneously, the paper attempts to extend results presented in

[1] where only a narrow case is considered. The pondered

case has numerous applications in various financial models

[4]. Therefore the aforementioned class has been extended on

rational functions that allow to fit a used model to special

needs of modellers. The analysis of stability of such systems

can be significantly facilitated by finding a proper reduction

technique that reduce distributed delay to crisp delay. If the

technique can be found, then well-known criteria that work

for crisp delay. It is worth stressing that the distributed delay

equations could be applied allow to describe mathematically

dynamics of various complex processes but the theory of dis-

tributed delay systems is not as “well-equipped” as the crisp

delay theory. There exist numerous theorems that allow to

examine stability, asymptotic stability, asymptotic bounded-

ness and many other features of point delay systems whilst

the number of effective tools for analysis of these properties

for distributed delay equations is very limited. The following

paper extends the basic distributed delay class mentioned in

[1] using rational functions, then finds a reduction technique

and after successful reduction process uses Mao’s theory that

works under specific assumptions and conditions. Moreover,

the article proves that criteria presented in paper [1] are spe-

cial cases of conditions touched in this article. It is worth

pointing out that the robust stability of differential linear con-

trol systems has been considered in the following papers [5,

6] and [7].

2. Preliminary

Throughout this article we use the following notation. Let

(Ω,F ,P) be a probability space with embedded increas-

ing and right continuous family {Ft}t≥0 of complete sub-σ-

algebras of F . Let C([−τ ; 0],Rn) be the space of continuous

functions from [−τ ; 0] into R
n with the sup-norm defined as

follows

‖ψ‖s = sup
−τ≤u≤0

‖ψ(u)‖Rn , ψ ∈ C([−τ ; 0],Rn). (1)

Let B̃ be an element of C([−τ ; 0],Rn) whilst z be a contin-

uous stochastic process z : Ω × [−τ ; +∞] → R
n. For z we

define a segment of a trajectory, i.e. continuous Ft-adapted

stochastic process zt : Ω → C([−τ ; 0],Rn), where the follow-

ing condition holds for ∀t ≥ 0:

zt(s, ω) = z(t+ s, ω), s ∈ [−τ ; 0]. (2)

In further notation stochastic variable ω is omitted to simplify

a notation e.g.

z(t) := z(t, ω).

Let us consider the following class of stochastic differential

delayed equations (SDDEs) with distributed delay:





dz(t) =
(
Ãz(t) +

t∫

t−τ

B̃(t− u)z(u)du
)
dt+ C̃z(t)dw(t),

z
∣∣
[−τ ;0]

≡ z0, z0 ∈ C([−τ ; 0]; Rn),

(3)

where Ã and C̃ are real constant matrices and w(t) is n-

dimensional Brownian motion. We assume that local Lipschitz

and linear growth conditions are satisfied. These conditions
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are indispensable for the existence and uniqueness of a solu-

tion of Problem (3). In this paper we assume that kernel B is

rational.

Definition 1. A kernel B̃ is called rational if it can be ex-

tended to B that is n×n matrix - valued function defined on

[0; +∞) for which the Laplace transform

Lt[B(t)](s) :=

+∞∫

0

B(t)e−stdt (4)

is a rational function of s.

The above definition indicates that elements of matrix B

may belong to the following set of functions

{eαt, t, cos(αt), sin(αt), cosh(αt), sinh(αt),

eαt cos(βt), eαt sin(βt)}, α, β ∈ R
(5)

and also can be a linear, finite combination of the enumerated

elements.

The condition that kernel B is rational can be equivalently

replaced by a condition that B is a real solution of the linear

deterministic differential equation:

MNB
(N)(u)+MN−1B

(N−1)(u)+ . . .+M0B(u) = 0. (6)

where {Mi}i=0...N ⊂ R. Problem (3) is worth of further

considering due to its numerous applications in finance. The

above equation allows to describe dynamics of a financial

item (such as price, value, rate of return etc.) taking into ac-

count past behaviour (continuously) of the item. An integral

smoothes jumps and combined with embedded functionB is a

representative of a trend for process z. Subsequently, function

B allows to make more important some values of z. For exam-

ple values of B can be weights that make the nearest historical

observations more important than older within trend indicat-

ing process. Therefore, Problem (3) can successfully embed

signals that follow technical analysis (moving averages, expo-

nentially weighted moving averages, trend and many others)

into classic stochastic problem that describes dynamics. More

details in [4]. The similar problem was considered in [4], but

there was a condition that was sufficient for various practical

applications of a problem but significantly limited:

Ḃ(u) = MB(u). (7)

Nevertheless, utility of the above equation with assumption (6)

is also significant and can be used in simple financial or eco-

nomic models.

3. Extended reduction technique

The main target of this Sec. is to present an effective pro-

cedure that reduces a distributed delay to lumped delay. It is

worth reminding that if B(·) is rational then there exists a ho-

mogenous differential equation (Eq. (6)) that is solved by B.

We denote N as an order of this equation. The main idea of

the reduction will be based on transformation of Eq. (6) into

the set of differential equations. Details of the whole reduction

process were described in [8] and [9].

Now we recall two immediate lemmas. Please, find the

proofs in [8] and [9].

Lemma 1. Let us consider problem (3). For the afore-

mentioned distributed stochastic delay system and for i =
1 . . .N + 1 we define the following set of functions

ξi(t) = Aiz(t) +

τ∫

0

Bi(u)z(t− u)du, (8)

ξN+1(t) = z(t). (9)

Then for i = N + 1 . . . 1 we get

dξi(t) = ξi−1(t)dt−Bi(τ)z(t− τ)dt + Ciz(t)dw(t), (10)

where the Ai and Bi(·) satisfy the following conditions (D is

a derivation operator).

Ai−1 = AiA+Bi(0), (11)

Bi−1(u) = (DBi +AiB)(u), (12)

Ci = AiC, (13)

and

AN+1 = I, (14)

BN+1(·) = 0, (15)

As an immediate consequence we get the second lemma.

Lemma 2. If B(·) is rational, then there exists a positive

integer N and matrices Xi, for i = 1 . . .N + 1, such that

ξ0(t) = −

N+1∑

i=1

Xiξi(t). (16)

Please, find details of proof in [8] and [9]. The main idea

of the proof relies on existence of a sequence of matrices

X1, . . . , XN such that

B0(u) +
N∑

i=1

XiBi(u) = 0. (17)

Now, we define XN+1 = −
N∑

i=0

XiAi. The below theorem is

the main reduction theorem and allows to reduce a distributed

delay to point delay.

Theorem 1 (Reduction procedure). If B(·) is a rational ker-

nel, then the stochastic distributed delay problem (3) can be

transformed into a stochastic delay equation with point delay

in an (N +1)n-dimensional space. N is a rank of a homoge-

nous differential equation and B(·) is its solution.

Proof. Below we present a sketch of the proof. Lemma 1

clearly indicates that
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d




ξ1(t)

ξ2(t)
...

ξN+1(t)




=




ξ0(t)

ξ1(t)
...

ξN (t)



dt

−




B1(τ)
...

BN (τ)

0



ξN+1(t− τ)dt +




C1

...

CN

CN+1



ξN+1(t)dw(t).

(18)

Invoking Lemma 2 we obtain the following equivalent and

the unique point-delay form of Problem (3):




dξ1(t)

dξ2(t)
...

dξN+1(t)




︸ ︷︷ ︸
dx(t)

=




−X1 −X2 . . . −XN+1

I 0 . . . 0
. . .

...

I 0




︸ ︷︷ ︸
A




ξ1(t)

ξ2(t)
...

ξN+1(t)




︸ ︷︷ ︸
x(t)

dt

+




0 · · · 0 −B1(τ)
...

...

0 · · · 0 −BN (τ)

0 · · · 0 0




︸ ︷︷ ︸
B




ξ1(t− τ)
...

ξN (t− τ)

ξN+1(t− τ)




︸ ︷︷ ︸
y(t)

dt

+




0 · · · 0 C1

...
...

0 · · · 0 CN

0 · · · 0 CN+1




︸ ︷︷ ︸
C




ξ1(t)
...

ξN (t)

ξN+1(t)




︸ ︷︷ ︸
x(t)

dw(t).

(19)

Recapitulating, Problem (3) was reduced to the linear Problem

(19) of the form

dx(t) = (Ax(t) +By(t))dt+ Cx(t)dw(t). (20)

It is worth pointing out that the form (19) is an equivalent

form of problem (3) and thanks to the reduction process, the-

orems that work for point-delay theory may be applied to this

problem. The next task is finding conditions that have to be

satisfied to be able to use point-delay theorems for examina-

tion of asymptotic properties of the considered class of delay

systems.

4. Stochastic boundedness and stability

The main target of this chapter is to show the conditions that

provide asymptotic boundedness, stability, asymptotic stabil-

ity and existence of the stochastic attractor for the extended

Problem (3) with condition that kernel B is rational.

Let us recall the basic definitions. We consider a gener-

alised SDDE with delay τ

dx(t) = ν(x(t), y(t), t)dt + θ(x(t), y(t), t)dw(t),

t ≥ 0,
(21)

where y(t) = x(t− τ) with the initial condition x|[−τ ;0] ≡ ζ0
where for ν and θ the local Lipschitz and linear growth con-

ditions hold for x and y that provide existence and uniqueness

of a solution x(t).

4.1. Asymptotic boundedness. Let us recall a difinition of

asymptotic boundedness.

Definition 2. Let p > 0. The SDDE (21) is said to be as-

ymptotically bounded in p-th moment if there is a positive

constant H such that

lim sup
t→∞

E|x(t)|p ≤ H, ∀ξ0 ∈ C([−τ ; 0]; Rn), (22)

if p = 2 we say that the SDDE is asymptotically bounded in

mean square.

The below theorem presents a criterion that allows to

check the asymptotic boundedness of the delay stochastic

problem.

Theorem 2. Let σ0 := σ(A) denotes a spectrum of matrix A

defined in Eq. (19). In case of σ0 ⊆ R, a solution of Problem

(3) with a condition of rational B is asymptotically bounded

in mean square if the following condition holds

λmax(A) ≤ −




√√√√
N∑

i=1

|Bi(τ)|2 +
1

2

N+1∑

i=1

|Ci|
2


 , (23)

In other cases the following condition

λmax(A+AT ) ≤ −



2

√√√√
N∑

i=1

|Bi(τ)|2 +

N+1∑

i=1

|Ci|
2



 , (24)

provides an asymptotic boundedness, where λmax is a maxi-

mum real part of eigenvalue.

Proof. The main idea of the proof is to show this property

for an equivalent problem (19). The below Lemma 3 (proof

in [3]) is very useful.

Lemma 3. Let us consider the point delay problem (21) with

the initial data ξ0 ∈ C([−τ, 0],Rn). Assume that there exist

a function V ∈ C2,1(Rn × R+; R+) and positive constants

p, α, c1, c2, λ1, λ2 with λ1 > λ2 such that

c1|x|
p ≤ V (x, t) ≤ c2|x|

p, ∀(x, t) ∈ R
n × R+ (25)

and
LV (x, t) ≤ −λ1|x|

p + λ2|y|
2 + α,

∀(x, y, t) ∈ R
n × R

n × R+.
(26)
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Then

lim sup
t→∞

E|x(t; ξ)|p ≤
α

c1λ
, ∀ξ ∈ C([−τ, 0],Rn), (27)

where

λ ∈ (0, λ1 − λ2),

is the unique root of the equation

λc2 + λ2e
λτ = λ1,

where

LV (x, y, t) = Vt(x, t) + Vx(x, t)f(x, y, t)

+
1

2
trace[gT (x, y, t)Vxx(x, t)g(x, y, t)].

(28)

Proof (Theorem 2). Now we consider a case where σ0 ⊆ R.

Let us define the following Lyapunov-type function V (x, t) =
|x|2 (then c1 = c2 = 1).

For further proceeding we need to calculate LV :

LV (x, t) = 2xT (Ax +By) + |Cx|2 =

2xTAx+ 2xTBy + |C|2|x|2

≤ 2xT (A)x + 2|x||B||y| + |C|2|x|2

≤ 2xT (A)x+ |B|(|x|2 + |y|2) + |C|2|x|2

≤ (2λmax(A) + |B| + |C|2)|x|2 + |B||y|2.

If

−(2λmax(A) + |B| + |C|2) ≥ |B|

namely

λmax(A) ≤ −

(
|B| +

1

2
|C|2

)
, (29)

then the linear SDDE (19), according to Lemma 3, is asymp-

totically bounded in mean square. It is obvious that λmax is

negative.

We need to calculate |B| and |C|:

|B|2 = tr(BTB) =

N∑

i=1

|Bi(τ)|
2 (30)

that is equivalent to

|B| =

√√√√
N∑

i=1

|Bi(τ)|2. (31)

Similarly we calculate |C|:

|C|2 = tr(CTC) =

N+1∑

i=1

|Ci|
2 (32)

that is equivalent to

|C| =

√√√√
N+1∑

i=1

|Ci|2. (33)

Recapitulating, for the extended reduction technique con-

dition (29) has the following form

λmax







−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0







≤

−





√√√√
N∑

i=1

|Bi(τ)|2 +
1

2

N+1∑

i=1

|Ci|
2



 ,

(34)

In other cases (σ0 ⊆ R does not hold) the above inequality

has a form

LV (x, t) = 2xT (Ax+By) + |Cx|2 =

2xTAx+ 2xTBy + |C|2|x|2

≤ 2xT (A)x + 2|x||B||y| + |C|2|x|2

≤ xT (A+AT )x+ |B|(|x|2 + |y|2) + |C|2|x|2

≤ (λmax(A+AT ) + |B| + |C|2)|x|2 + |B||y|2.

Recalling Lemma 3 the following inequality

−(λmax(A+AT ) + |B| + |C|2) ≥ |B|

provides an asymptotic boundedness in mean square. But the

inequality is equivalent to

λmax







−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0




+




−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0




T



≤

−



2

√√√√
N∑

i=1

|Bi(τ)|2 +

N+1∑

i=1

|Ci|
2



 ,

(35)

what completes the proof.

Please, find examples in chapter 5.

4.2. Moment exponential stability.

Definition 3. For p > 0 the SDDE (21) is said to be expo-

nentially stable in p-th moment if the p-th moment Lyapunov

exponent is negative, namely

lim sup
t→∞

1

t
log
(
E|x(t)|p

)
< 0,

∀ξ0 ∈ C([−τ, 0],Rn).

(36)

If p = 2 we say that the SDDE is exponentially stable in mean

square. The below theorem proves that the condition (23) and

224 Bull. Pol. Ac.: Tech. 61(1) 2013



Stability criteria for a class of stochastic distributed delay systems

(24) is sufficient for the stochastic delay problem (3) to be

exponentially stable in mean square.

Theorem 4. Let us consider extended Problem (3) i.e. ker-

nel B is rational. Problem (3) is exponentially stable in mean

square if Condition (23) holds (in case of σ0 ⊆ R) or Condi-

tion (24) holds in other cases.

Proof. We examine this property for the equivalent crisp delay

problem (19) similarly as in the proof of Theorem 2.

To show that the above theorem is true we will use the

following criterion on the p-th moment exponential stability

(proof in[3]).

Lemma 5. Let us consider the point delay problem (21) with

initial data ξ0 ∈ C([−τ, 0],Rn). Assume that there exist a

function V ∈ C2,1(Rn × R+; R+) and positive constants

p, c1, c2, λ1, λ2 with λ1 > λ2 such that

c1|x|
p ≤ V (x, t) ≤ c2|x|

p, ∀(x, t) ∈ R
n × R+

and

LV (x, t) ≤ −λ1|x|
p+λ2|y|

2, ∀(x, y, t) ∈ R
n×R

n×R+.

Then

lim sup
t→∞

1

t
log
(
E|x(t)|p

)
≤ −λ, ∀ξ ∈ C([−τ, 0],Rn),

where

λ ∈ (0;λ1 − λ2)

is the unique root to the equation

λc2 + λ2e
λτ = λ1,

where

LV (x, y, t) = Vt(x, t) + Vx(x, t)f(x, y, t)

+
1

2
trace[gT (x, y, t)Vxx(x, t)g(x, y, t)].

Similarly to the proof of Theorem 2 we assume that

V (x, t) := |x|2. Calculating LV (x, t) for the equivalent Prob-

lem (19) and using matrix inequalities we obtain

LV (x, t) ≤ (2λmax(A) + |B| + |C|2)|x|2 + |B||y|2,

in case of σ0 ⊆ R or in the other cases

LV (x, t) ≤ (λmax(A+AT ) + |B| + |C|2)|x|2 + |B||y|2.

If the following conditions hold:

−(2λmax(A) + |B| + |C|2) ≥ |B| ⇔

λmax(A) ≤ −(|B| +
1

2
|C|2) ⇔

⇔ λmax







−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0







≤

−





√√√√
N∑

i=1

|Bi(τ)|2 +
1

2

N+1∑

i=1

|Ci|
2



 .

and

−(λmax(A+AT ) + |B| + |C|2) ≥ |B| ⇔

λmax(A+AT ) ≤ −(2|B| + |C|2) ⇔

⇔ λmax







−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0




+




−X1 −X2 · · · −XN+1

I 0 · · · 0
. . .

...

I 0




T



≤

−



2

√√√√
N∑

i=1

|Bi(τ)|2 +
N+1∑

i=1

|Ci|
2



 ,

then the assumptions of Lemma 5 are satisfied and therefore

the theorem is true.

Examples in Sec. 5.

4.3. Almost sure exponential stability.

Definition 4. The SDDE (21) is said to be almost surely ex-

ponentially stable if the sample Lyapunov exponent is almost

surely (a.s.) negative, namely

lim sup
t→∞

1

t
log
(
|x(t)|

)
< 0 (37)

for any ξ0 ∈ C([−τ ; 0],Rn).
The following lemmas are crucial to show that the class

of differential delay systems (3) is almost sure asymptotically

stable if the well-known conditions (23) and (24) hold.

In the previous paragraphs we proved that conditions (23)

and (24) imply asymptotic boundedness and mean square ex-

ponential stability. The below two lemmas confirm that these

conditions provide almost surely asymptotical stability but the

additional inequalities must hold.

Lemma 6. Assume that there exists a constant K for the

Eq. (6) such that

|f(x, y, t)| + |g(x, y, t)| ≤ K(|x| + |y|),

∀(x, y, t) ∈ R
n × R

n × R+.
(38)

Let p > 0, λ > 0 and the initial data ξ ∈ C. If

lim sup
t→∞

1

t
log
(
E|x(t)|p

)
< −λ, ∀ξ0 ∈ C, (39)

then

lim sup
t→∞

1

t
log
(
|x(t)|

)
< −

λ

p
, a.s. (40)

Lemma 7. Let (38) hold. Assume also that Conditions (23)

or (24) of Theorem (4.3) are satisfied. Then Problem (3) is

almost surely exponentially stable.

Lemma (4.7) shows that Condition (38) is always valid.

Lemma 8. For Eq. (19) Property (38) holds.
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Proof (Lemma 8). We define K as follows

K := max{|A| + |C|, |B|}.

For Eq. (3) the inequality (38) is in the form:

|Ax +By| + |Cx| ≤ |A||x| + |B||y| + |C||x| =

(|A| + |C|)|x| + |B||y| ≤ K(|x| + |y|),

what completes the proof.

Recapitulating, Lemma 8 provides that inequality (38)

holds. Simultaneously, Theorem 4 indicates that Conditions

(23) and (24) are sufficient for holding (39). From Lemma 8

we have that under Conditions (23) and (24) the delay differ-

ential system is almost surely exponential stable.

5. Examples and applications

5.1. Example 1. We shall prove that the problem that has

been considered in [1] is a special case of Problem (3). There-

fore, let us consider the following class of equations




dz(t) =
(
Ãz(t) +

t∫

t−τ

B̃(t− u)z(u)du
)
dt+ C̃z(t)dw(t),

z
∣∣
[−τ ;0]

≡ z0, z0 ∈ C([−τ ; 0]; Rn),

(41)

and B̃(u) satisfies

˙̃
B(u) = MB̃(u), (42)

where M , Ã and C̃ are constant matrices and w(t) is n-

dimensional Brownian motion whilst the trace norm is defined

as follows |M | =
√

trace(MTM).
We define a function v : [−τ ;∞] → R

n as a superposition

of B function and z.

v(t) := S−1(B̃ ∗ z)(t),

where S is an invertible matrix. It means that v has the fol-

lowing form

v(t) := S−1

t∫

t−τ

B̃(u)z(t− u)du. (43)

Let us substitute v(t) to Problem (41) and use Duhamel dif-

ferential to calculate dv(t) The simplified reduction procedure

presented in [1] leads to the following matrix equation with

lumped delay
[
dz(t)

dv(t)

]
=

([
Ã S

S−1B̃(0) S−1MS

][
z(t)

v(t)

]

+

[
0 0

−S−1B̃(τ) 0

][
z(t− τ)

v(t− τ)

])
dt

+

[
C̃ 0

0 0

][
z(t)

v(t)

]
dw(t),

(44)

where function v : [−τ ;∞] → R
n is defined as follows

v(t) := S−1

t∫

t−τ

B̃(u)z(t− u)du. (45)

Below we attempt to conduct the extended reduction process

for Eq. (3) and our task is to check whether Eq. (26) is a

special form of the Eq. (3) obtained via extended reduction.

For N = 1 we define:

ξ1(t) := A1z(t) +

τ∫

0

B1(u)z(t− u)du, (46)

ξ2(t) := z(t). (47)

Applying the reduction process presented in Sec. 3 we calcu-

late

B2(u) = 0, A2 = 1, (48)

B1(u) = Ḃ2(u) +A2B(u) = B(u),

A1 = A2A+B2(0) = A,
(49)

B0(u) = Ḃ1(u) +A1B(u) =

MB(u) +AB(u) = (M +A)B(u),
(50)

A0 = A1A+B(0) = A2 +B(0). (51)

Following Verriest’s theory ([9]) we can find matrices Xi. We

put

X0 = 1. (52)

In order to calculate the matrix X1 we consider the following

equation

B0(u) = −X1B1(u). (53)

Applying Eqs. (32), (33), (34) and (35) we obtain

(M +A)B(u) = −X1B(u). (54)

Immediately we have

X1 = −M −A. (55)

In order to calculate X2 we use Lemma 2:

X2 = −X0A0 −X1A1 =

−A0 + (M +A)A1 = MA−B(0).
(56)

Finally, we obtain the reduced form (via extended reduction)

of Eq. (26).
[
dξ1(t)

dξ2(t)

]
=

([
M +A B(0) −MA

1 0

] [
ξ1(t)

ξ2(t)

]

+

[
0 −B(τ)

0 0

][
ξ1(t− τ)

ξ2(t− τ)

])
dt

+

[
0 C1

0 0

][
ξ1(t)

ξ2(t)

]
dw(t).

(57)

It is worth reminding that the Eq. (57) is an equivalent form

of Eq. (44):
[
dξ2(t)

dξ1(t)

]
=

([
Ã S

S−1B̃(0) S−1MS

][
ξ2(t)

ξ1(t)

]

+

[
0 0

−S−1B̃(τ) 0

][
ξ2(t− τ)

ξ1(t− τ)

])
dt

+

[
C̃ 0

0 0

][
ξ2(t)

ξ1(t)

]
dw(t).

(58)
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It is easy to find non-singular transformations that allow to

convert matrix
[

Ã S

S−1B̃(0) S−1MS

]
into

[
M +A B(0) −MA

1 0

]
.

The aforementioned considerations clearly indicate that a suf-

ficient condition for stability for the generalized problem i.e.

B is rational

λmax

([
Ã S

S−1B̃(0) S−1MS

])
≤

−

(
|S−1B̃(τ)| +

1

2
|C̃|2

)
,

(59)

is also a sufficient condition for the problem described in ar-

ticle [1] and for A = 0 there is no difference between them.

5.2. Example 2. Let us consider a numerical example with

τ = 1

dz(t) = −
1

4




t∫

t−1

e−(t−u)z(u)du



 dt+ C̃z(t)dw(t), (60)

where Ã ≡ 0 and B̃(u) = −
1

4
e−u, M = −1 that follows

from Condition (6). The matrix from Eq. (19) has the follow-

ing form
[

−X1 −X2

1 0

]
=

[
−1 − 1

4

1 0

]
(61)

There are two eigenvalues for the aforementioned matrix (49).

λ1 = λ2 = −
1

2
. (62)

The negative values of eigenvalues clearly indicate that for

sufficiently small |C̃| the inequality (48) is satisfied and there-

fore assumptions of theorems of boundedness and moment

exponential stability are fulfilled.

5.3. Example 3. The below example presents financial ap-

plications of class (3). The whole equation was described in

details in [4]. It is worth reminding that one of the most nec-

essary tools for options pricing is Black-Scholes equation of

the following form

dS(t) = rS(t)dt + σS(t)dw(t), (63)

where S is an underlying asset, S(t) denotes a price of un-

derlying instrument in time t, σ is a volatility whilst r de-

notes risk-free rate. The main task of Eq. (63) is to describe

dynamics of an underlying asset S(t) of a derivative instru-

ment. The equation is analytically solvable and allows to price

a derivative in risk-neutral world that provides a unique price

of a derivative security. Empirical research confirms that Eq.

(63) does not describe all classes of commonly traded securi-

ties properly. Therefore, it should be better to fit instruments’

properties. Thus, there exists separate models for various as-

sets. The main motivation to use Eq. (3) instead of (63) has

been taking into consideration signals of technical analysis.

Technical analysis claims that the future prices can be fore-

casted with past behavior of an instrument. Therefore, the

delay stochastic equation of the form (3) is a reasonable class

of equations for stock prices that take into consideration past

signals. Generality of function B̃ and Ã allows to use various

techniques of a technical analysis. The wider range of B̃ and

Ã, the more acceptable tools can be used. Detailed discrete

and continuous models were wider described and investigat-

ed in [4]. Moreover, options were priced in [4] in the delayed

model (exponential moving averages were sources of technical

analysis signals) and results were compared to classic theory.

The general assumption was that the option prices calculated

on a delayed model indicated much better long-term value of

an option and became more useful for analysts who examine

long-term portfolio value or valuate a portfolio holder. Sta-

bility of such models is also an important issue. The below

equation presents one model

dS(t) = r


1

τ

0∫

−τ

St(u)du


 dt

+ σ


1

τ

0∫

−τ

St(u)du


 dw(t),

(64)

where
1

τ

0∫

−τ

St(u)du is a continuous moving average.

This subsection is only one of many applications of class (3).

The similar class of stochastic distributed delay equations are

also used in analysis of computer networks [14].

6. Recapitulation

The main motivation for this paper has been an extension of

a range of tools that can be used to analyse asymptotic prop-

erties of the problem that can be effectively used in various

models and allows to describe dynamics taking into account

past behaviour of the stochastic process. In finance the afore-

mentioned model allows to take into consideration technical

analysis signals, for instance exponential moving averages etc.

The article [1] presented tools that can be used to examine

properties such as stability, asymptotic stability and bounded-

ness of a special class of distributed delay stochastic equations

that were strictly limited by a special condition. In the above

paper there has also been showed a special inequality that

provided ability of using point delay tools to analyse distrib-

uted delay stochastic equations. This article extends consid-

ered class on rational functions and presents conditions that

should be satisfied to be able to use theorems inherited from

crisp delay “world” to investigate stability, stochastic bound-

edness and other properties.
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