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for descriptor discrete-time linear systems
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Abstract. Conditions for the existence of positive and asymptotically stable realizations for descriptor discrete-time linear systems are

established. Procedures for computation of positive and asymptotically stable realizations for improper transfer matrices are proposed. The

effectiveness of the methods is demonstrated on numerical examples.
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive theory is given in the monographs [1, 2].

Variety of models having positive behavior can be found in

engineering, economics, social sciences, biology and medi-

cine, etc. The positive fractional linear systems have been

addressed in [3–5].

An overview on the positive realization problem is given

in [1, 2, 6, 7]. The realization problem for positive continuous-

time and discrete-time linear systems has been considered

in [8-15] and the positive minimal realization problem for

singular discrete-time systems with delays in [12]. The real-

ization problem for fractional linear systems has been ana-

lyzed in [5, 16, 17] and for positive 2D hybrid systems in

[18]. A method based on the similarity transformation of the

standard realizations to the desired form has been proposed

in [13].

Positive stable realizations problem for continuous-time

standard and fractional linear systems has been addressed in

[9, 16] and computation of realizations of discrete-time cone

systems in [19]. Necessary and sufficient conditions for the ex-

istence of a set of positive asymptotically stable realizations

of a proper transfer function has been established in [11].

In this paper a method for computation of positive asymp-

totically stable realizations of descriptor discrete-time linear

systems will be proposed.

The paper is organized as follows. In Sec. 2 the posi-

tive and asymptotically stable realization problem for standard

discrete-time linear systems is recalled. The positive realiza-

tion problem for descriptor discrete-time linear systems is for-

mulated and solved in Sec. 3. An extension of this problem for

asymptotically stable linear systems is given in Sec. 4, where

two methods for computation of positive asymptotically sta-

ble realizations of improper transfer matrices are presented.

Concluding remarks are given in Sec. 5.

The following notation will be used: ℜ – the set of re-

al numbers, ℜn×m – the set of n × m real matrices, ℜn×m
+

– the set of n × m matrices with nonnegative entries and

ℜn
+ = ℜn×1

+ , ℜp×m(z) – the set of p × m rational matrices

in z with real coefficients, ℜp×m[z] – the set of p × m poly-

nomial matrices in z with real coefficients, In – the n × n

identity matrix

2. Preliminaries and positive realization

problem for standard systems

Consider the standard discrete-time linear system

xi+1 = Axi + Bui, i ∈ Z+ = {0, 1, ...}, (1a)

yi = Cxi + Dui, (1b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input

and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n,

D ∈ ℜp×m.

Definition 1. The system (1) is called (internally) positive if

xi ∈ ℜn
+, yi ∈ ℜp

+, i ∈ Z+ for any initial conditions x0 ∈ ℜn
+

and all inputs ui ∈ ℜm
+ , i ∈ Z+.

Theorem 1. [1, 2] The system (1) is positive if and only if

A ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ . (2)

The transfer matrix of the system (1) is given by

T (z) = C[Inz − A]−1B + D. (3)

The transfer matrix T (z) ∈ ℜp×m(z)is called proper if and

only if

lim
z→∞

T (z) = K ∈ ℜp×m (4)

and it is called strictly proper if K = 0. Otherwise the transfer

matrix is called improper.

The positive system (1) (matrix A) is asymptotically sta-

ble if

lim
i→∞

xi = 0 for all x0 ∈ ℜn
+. (5)
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Theorem 2. [2] The positive system (1) is asymptotically sta-

ble if and only if all coefficients of the polynomial

pA(z) = det[In(z + 1) − A] = zn + an−1z
n−1

+... + a1z + a0

(6)

are positive, i.e. ak > 0 for k = 0, 1, . . ., n − 1.

Definition 2. Matrices (2) are called a positive realization of

transfer matrix T (z) if they satisfy the equality (3).

Definition 3. A positive realization (2) is called asymptoti-

cally stable if the matrix A ∈ ℜn×n
+ is asymptotically stable.

Different methods for computation of a positive realiza-

tion (2) for a given proper transfer matrix T (z) have been

proposed in [2, 7, 12, 14, 15, 18] and for positive asymptoti-

cally stable realizations in [9–11, 13, 16].

3. Positive realization problem

for descriptor systems

3.1. Necessary and sufficient conditions for the existence

of positive realizations. Consider the descriptor discrete-time

linear system

Exi+1 = Axi + Bui, i ∈ Z+ = {0, 1, ...} (7a)

yi = Cxi (7b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input and

output vectors and E, A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

It is assumed that det E = 0 and the pencil of (E, A) is

regular, i.e.

det[Ez − A] 6= 0 for some z ∈ C

(the field of complex numbers).
(8)

Definition 4. The descriptor system (7) is called (internally)

positive if xi ∈ ℜn
+, yi ∈ ℜp

+, i ∈ Z+ for any consistent

initial conditions x0 ∈ ℜn
+ and all inputs ui ∈ ℜm

+ , i ∈ Z+.

If the nilpotency index µ of the matrix E is greater or

equal to 1 [9] then the transfer matrix of (7) is improper and

given by

T (z) = C[Ez − A]−1B ∈ ℜp×m(z). (9)

The improper matrix (9) can be always written as the sum of

strictly proper part Tsp(z) and the polynomial part P (z), i.e.

T (z) = Tsp(z) + P (z), (10a)

where

P (z) = D0 + D1z + ... + Dqz
q ∈ ℜp×m[z],

q ∈ N = {1, 2, ...}
(10b)

and q = µ − 1.

Theorem 3. Let the matrices

A ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ (11)

be a positive realization of the strictly proper transfer ma-

trix Tsp(z). Then there exists a positive realization of T (z) ∈
ℜp×m(z) of the form

E =





In 0 0 ... 0 0

0 0 0 ... 0 0

0 Im 0 ... 0 0
...

...
... ...

...
...

0 0 0 ... Im 0




∈ ℜn×n

+ ,

A =





A B 0 ... 0 0

0 Im 0 ... 0 0

0 0 Im ... 0 0
...

...
... ...

...
...

0 0 0 ... 0 Im




∈ ℜn×n

+ ,

B = −





0

Im

0
...

0




∈ ℜn×m

+ ,

C = [ C D0 D1 ... Dq ] ∈ ℜp×n
+ ,

n = n + (q + 1)m

(12)

if and only if

Dk ∈ ℜp×m
+ for k = 0, 1, . . ., q. (13)

Proof. If the matrices (11) are a positive realization of Tsp(z)
then the standard system

xi+1 = Axi + Bui, (14a)

yi = Cxi (14b)

is positive and xi ∈ ℜn
+, i ∈ Z+ for any initial conditions

x0 ∈ ℜn
+ and all inputs ui ∈ ℜm

+ , i ∈ Z+. Defining the new

state vector

xi =





xi

ui

ui+1

...

ui+q




∈ ℜn (15)

and using (12) we obtain

Exi+1 = Axi + Bui, (16a)

yi = Cxi. (16b)

From (16) if follows that xi ∈ ℜn
+ and yi ∈ ℜp

+ for i ∈ Z+

if and only if (13) holds since xi ∈ ℜn
+ and ui ∈ ℜm

+ for

i ∈ Z+. Using (12), (9) and (10) it is easy to verify that
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C[Ez − A]−1B = [ C D0 D1 ... Dq ]





Inz − A −B 0 ... 0 0

0 −Im 0 ... 0 0

0 Imz −Im ... 0 0
...

...
... ...

...
...

0 0 0 ... Imz −Im





−1



0

−Im

0
...

0





= [ C D0 D1 ... Dq ]





[Inz − A]−1B

Im

Imz
...

Imzq





= C[Inz − A]−1B + D0 + D1z + ... + Dqz
q

= Tsp(z) + P (z) = T (z).
(17)

3.2. Determination of positive realizations. The positive re-

alization problem for the descriptor system can be stated as

follows. Given an improper rational matrix T (z) ∈ ℜp×m(z),
find its positive realization (12).

If the conditions of Theorem 3 are satisfied then the de-

sired positive realization (12) of T (z) can be computed by

the use of the following procedure.

Procedure 1.

Step 1. Decompose the given matrix T (z) into the strict-

ly proper part Tsp(z) and the polynomial part P (z)
satisfying (10).

Step 2. Using one of the well-known methods [2, 5, 7, 9,

11–15, 17, 18, 20] find the positive realization (11)

of Tsp(z).
Step 3. Knowing the realization (11) and the matrices Dk ∈

ℜp×m
+ , k = 0,1,. . . ,q of (10b) find the desired real-

ization (12).

Example 1. Find a positive realization (12) of the transfer

matrix

T (z) =




z4 − 3z3 + 3z2 − 2z + 0.5

z2 − 3z + 2

z3 − 2z2 − 4z + 4

z2 − 4z + 3

3z3 − 11z2 + 6z + 0.5

z2 − 4z + 3

2z4 − 9z3 + 8z2 + 2z + 3.2

z2 − 5z + 6




.

(18)

Using Procedure 1 we obtain the following.

Step 1. The transfer matrix (18) has the strictly proper part

Tsp(z) =





z − 1.5

z2 − 3z + 2

z − 2

z2 − 4z + 3

z − 2.5

z2 − 4z + 3

z − 2.8

z2 − 5z + 6



 (19)

and the polynomial part

P (z) =

[
z2 + 1 z + 2

3z + 1 2z2 + z + 1

]

= D0 + D1z + D2z
2, (q = 2),

(20a)

where

D0 =

[
1 2

1 1

]
, D1 =

[
0 1

3 1

]
,

D2 =

[
1 0

0 2

]
.

(20b)

Step 2. The strictly proper transfer matrix (19) can be rewrit-

ten in the form

Tsp(z) =
1

(z − 1)(z − 2)(z − 3)

·

[
(z − 1.5)(z − 3) (z − 2)2

(z − 2.5)(z − 2) (z − 2.8)(z − 1)

] (21)

and the well-known Gilbert method can be applied to find its

positive realization [2, 9, 21]. The poles of (21) are z1 = 1,

z2 = 2, z3 = 3. Following Gilbert method we compute the

matrices

T1 = lim
z→z1=1

(z − z1)Tsp(z)

=





z − 1.5

z − 2

z − 2

z − 3
z − 2.5

z − 3

(z − 1)(z − 2.8)

(z − 2)(z − 3)





z=1

=

[
0.5 0.5

0.75 0

]
,

r1 = rank T1 = 2,
(22a)

T2 = lim
z→z2=2

(z − z2)Tsp(z)

=





z − 1.5

z − 1

(z − 2)2

(z − 1)(z − 3)
(z − 2)(z − 2.5)

(z − 1)(z − 3)

z − 2.8

z − 3





z=2

=

[
0.5 0

0 0.8

]
, r2 = rank T2 = 2,

(22b)

T3 = lim
z→z3=3

(z − z3)Tsp(z)

=





(z − 1.5)(z − 3)

(z − 1)(z − 2)

z − 2

z − 1
z − 2.5

z − 1

z − 2.8

z − 2





z=3

=

[
0 0.5

0.25 0.2

]
, r3 = rank T3 = 2

(22c)
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T1 = C1B1, C1 =

[
0.5 0.5

0.75 0

]
, B1 =

[
1 0

0 1

]
,

T2 = C2B2, C2 =

[
0.5 0

0 0.8

]
, B2 =

[
1 0

0 1

]
,

T3 = C3B3, C3 =

[
0 0.5

0.25 0.2

]
, B3 =

[
1 0

0 1

]

(23)

and
A = blockdiag[Ir1

z1, Ir2
z2, Ir3

z3]

= diag[1, 1, 2, 2, 3, 3],

B =




B1

B2

B3



 =





1 0

0 1

1 0

0 1

1 0

0 1





,

C = [ C1 C2 C3 ]

=

[
0.5 0.5 0.5 0 0 0.5

0.75 0 0 0.8 0.25 0.2

]
.

(24)

Step 3. The desired positive realization of (18) has the form

E =





I6 0 0 0

0 0 0 0

0 I2 0 0

0 0 I2 0




∈ ℜn×n

+ ,

A =





A B 0 0

0 I2 0 0

0 0 I2 0

0 0 0 I2




∈ ℜn×n

+ ,

B =





0

−I2

0

0




∈ ℜn×2

+ ,

C = [ C D0 D1 D2 ] ∈ ℜ2×n
+ ,

n = n + (q + 1)m = 6 + 3 ∗ 2 = 12

(25)

and the matrices A, B, C, D0, D1, D2 are given by (24) and

(20b).

A matrix A ∈ ℜn×n
+ is called monomial if in its every row

and every column only one entry is positive and remaining

entries are zero.

Theorem 4. The matrices

Ê = PEP−1 ∈ ℜn×n
+ , Â = PAP−1 ∈ ℜn×n

+ ,

B̂ = PB ∈ ℜn×m
+ , Ĉ = CP−1 ∈ ℜp×n

+ ,

D̂k = Dk ∈ ℜp×m
+ for k = 0, 1, . . ., q

(26)

are a positive realization of T (z) for any monomial matrix

P ∈ ℜn×n
+ if and only if the matrices

E ∈ ℜn×n
+ , A ∈ ℜn×n

+ ,

B ∈ ℜn×m
+ , C ∈ ℜp×n

+ ,

Dk ∈ ℜp×m
+ for k = 0, 1, . . ., q

(27)

are its positive realizations.

Proof. It is well-known [2] that P−1 ∈ ℜn×n
+ if and only if

P ∈ ℜn×n
+ is a monomial matrix. In this case (26) holds if

and only if the conditions (26) are met. Using (26) we obtain

Ĉ[Êz − Â]−1B̂ + D̂0 + D̂1z + ... + D̂qz
q

= CP−1[PEP−1z − PAP−1]−1PB + D0

+D1z + ... + Dqz
q

= CP−1{P [Ez − A]P−1}−1PB + D0

+D1z + ... + Dqz
q

= CP−1P [Ez − A]−1P−1PB + D0

+D1z + ... + Dqz
q

= C[Ez − A]−1B + D0 + D1z + ... + Dqz
q.

(28)

Therefore, the matrices (26) are a positive realization of T (z)
if and only if the matrices (27) are also its positive realization.

From Theorem 4 we have the following corollary.

Corollary 1. If there exists a positive realization (27) of T (z)
then there exists a set of positive realizations (26) for every

monomial matrix P ∈ ℜn×n
+ .

4. Positive asymptotically stable realizations

It is well-known [2, 20] that the positive realization (12) of the

transfer matrix T (z) is asymptotically stable if and only if the

positive realization (11) of the strictly proper transfer matrix

Tsp(z) is asymptotically stable. Therefore, the computation

of positive asymptotically stable realization of T (z) has been

reduced to computation of the positive asymptotically stable

realization (11) of the Tsp(z).

Note that Theorem 4 and Corollary 1 are also valid for

any asymptotically stable matrix A ∈ ℜn×n
+ .

The following two methods for computation of positive as-

ymptotically stable realizations of improper transfer matrices

will be presented.

Method 1.

Consider the strictly proper transfer function

Tsp(z) =
bn−1z

n−1 + ... + b1z + b0

zn − an−1zn−1 − ... − a1z − a0
. (29)
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Theorem 5. There exists a positive asymptotically stable re-

alization of the form

A =





0 1 0 ... 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

a0 a1 a2 ... an−1




, B =





0

0
...

0

1




,

C =
[

b0 b1 b2 ... bn−1

]

(30)

of (29) if the following conditions are satisfied

1) ak ≥ 0 for k = 0, 1, ..., n− 1, (31a)

2) bk ≥ 0 for k = 0, 1, ..., n− 1, (31b)

3) a0 + a1 + ... + an−1 < 1. (31c)

Proof is given in [10].

Remark 1. It is easy to show [10] that the following matrices

are also the positive stable realizations of (29):

A =





0 0 ... 0 a0

1 0 ... 0 a1

0 1 ... 0 a2

...
...

. . .
...

...

0 0 ... 1 an−1




, B =





b0

b1

b2

...

bn−1




,

C =
[

0 0 ... 0 1
]
,

(32)

A =





an−1 an−2 ... a1 a0

1 0 ... 0 0

0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0




, B =





1

0
...

0

0




,

C =
[

bn−1 ... b2 b1 b0

]
,

(33)

A =





an−1 1 0 ... 0

an−2 0 1 ... 0
...

...
...

. . .
...

a1 0 0 ... 1

a0 0 0 ... 0




, B =





bn−1

bn−2

...

b1

b0




,

C =
[

1 0 ... 0 0
]
.

(34)

Knowing the positive asymptotically stable realization (30) of

the strictly proper transfer function (29) a positive asymptot-

ically stable realization (12) of an improper transfer function

T (z) can be computed by the use of Procedure 1 with slight

modified Step 2 (a positive asymptotically stable realization

instead of a positive realization should be found). The details

will be demonstrated on the following example.

Example 2. Compute a positive asymptotically stable realiza-

tion (12) of the transfer function

T (z) =
z5 + 0.3z4 + 1.2z3 + 2.82z2 + 0.92z + 2

z3 − 0.7z2 − 0.1z − 0.08
. (35)

Using the Procedure 1 we obtain the following.

Step 1. The transfer function (35) has the strictly proper part

Tsp(z) =
4.4z2 + 1.2z + 2.16

z3 − 0.7z2 − 0.1z − 0.08
(36)

and the polynomial part

P (z) = D0 + D1z + D2z
2 (37)

where

D0 = [2], D1 = [1], D2 = [1]. (38)

Step 2. The positive realization (30) of (36) has the form

A =




0 1 0

0 0 1

0.08 0.1 0.7



 , B =




0

0

1



 ,

C = [ 2.16 1.2 4.4 ].

(39)

The realization (39) is asymptotically stable since the

condition (31c) is met. The poles of (36) are: z1 =
0.9074, z2 = −0.1037 + j0.282, z3 = −0.1037−
j0.282.

Step 3. The desired positive asymptotically stable realization

of (38) has the form

E =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0





,

A =





0 1 0 0 0 0

0 0 1 0 0 0

0.08 0.1 0.7 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





,

B =





0

0

0

−1

0

0





,

C = [ 2.16 1.2 4.4 2 1 1 ].

(40)

The method can be extended for m-inputs p-outputs systems

as follows.
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The strictly proper transfer matrix Tsp(z) ∈ ℜp×m(z) can

be written in the form

Tsp(z) =





N11(z)
d1(z) ...

N1,m(z)
dm(z)

... ...
...

Np,1(z)
d1(z) ...

Np,m(z)
dm(z)



 = N(z)D−1(z)

(41a)

where

N(z) =





N11(z) ... N1,m(z)
... ...

...

Np,1(z) ... Np,m(z)



 ∈ ℜp×m[z],

D(z) = diag[ d1(z) ... dm(z) ] ∈ ℜm×m[z],
(41b)

Ni,j(s) = c
dj−1
i,j zdj−1 + ... + c1

i,jz + c0
i,j ,

i = 1, ..., p; j = 1, ..., m
(41c)

dj(z) = zdj − aj,dj−1z
dj−1 − ... − aj,1z − aj,0,

j = 1, ..., m.
(41d)

Theorem 6. There exists a positive asymptotically stable re-

alization of the form

A = blockdiag [A1, A2, ..., Am],

Aj =





0 1 0 ... 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

aj,0 aj,1 aj,2 ... aj,dj−1




,

j = 1, ..., m;

B = blockdiag [b1, b2, ..., bm], bj =





0

0
...

0

1




∈ ℜdj ,

j = 1, ..., m;

C =




c0

11
c1

11
... c

d1−1

11
... c0

1,m c1

1,m ... c
dm−1

1,m

.

.

.

.

.

. ...

.

.

. ...

.

.

.

.

.

. ...

.

.

.

c0

p,1 c1

p,1 ... c
d1−1

p,1 ... c0

p,m c1

p,m ... cdm−1

p,m





(42)

of the transfer matrix Tsp(z) if the following conditions are

satisfied

1) aj,k ≥ 0 for j = 1, ..., mk = 0, 1, ..., dj − 1, (43a)

2) ck
i,j ≥ 0 for i = 1, ..., p, j = 1, ..., mk = 0, 1, ..., dj − 1,

(43b)

3) aj0 + aj1 + ... + aj,dj−1 < 1 for j = 1, ..., m. (43c)

Proof is given in [10].

If the conditions of Theorem 6 are satisfied then the pos-

itive asymptotically stable realization of the transfer matrix

(41) can be found by the use of the following procedure.

Procedure 2.

Step 1. Find the common denominators dj(z) j = 1, ..., m

and write the strictly proper transfer matrix in the

form (41a).

Step 2. Using

dj(z) = zdj − [ aj,0 aj,1 ... aj,dj−1 ]Zj , j = 1, ..., m

(44a)

where

Zj = [ 1 z ... zdj−1 ] (44b)

find the matrices A1, ..., Am and the matrix A.

Step 3. Using

N(z) = CZ (45a)

where

Z = blockdiag [Z1, Z2, ..., Zn] (45b)

find the matrix C.

Example 3. Find a positive stable realization of the transfer

matrix

T (z) =




2z3+0.6z2+0.6z+0.2

z2
−0.2z−0.1

z3+1.7z2+0.2z+0.2
z2

−0.3z−0.2

z3
−0.2z2+1.9z+0.2
z2

−0.2z−0.1
z3+0.7z2+0.5z+0.4

z2
−0.3z−0.2



 . (46)

Using Procedure 1 and 2 we obtain the following.

Step 1. The strictly proper part of (46) has the form

Tsp(s) =





z + 0.3

z2 − 0.2z − 0.1

z + 0.6

z2 − 0.3z − 0.2

2z + 0.2

z2 − 0.2z − 0.1

z + 0.6

z2 − 0.3z − 0.2



 (47)

and the polynomial part

P (z) = D0 + D1z (48a)

where

D0 =

[
1 2

0 1

]
, D1 =

[
2 1

1 1

]
. (48b)

Step 2. The strictly proper transfer matrix (47) has the form

Tsp(s) = N(z)D−1(z) (49a)

where

N(z) =

[
z + 0.3 z + 0.6

2z + 0.2 z + 0.6

]
,

D(z) =

[
z2 − 0.2z − 0.1 0

0 z2 − 0.3z − 0.2

]
.

(49b)
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Using (44a) and (49b) we obtain

A1 =

[
0 1

0.1 0.2

]
, A2 =

[
0 1

0.2 0.3

]
,

A =

[
A1 0

0 A2

]
=





0 1 0 0

0.1 0.2 0 0

0 0 0 1

0 0 0.2 0.3




.

(50)

From (45a) and (49b) we have

N(z) =

[
z + 0.3 z + 0.6

2z + 0.2 z + 0.6

]

=

[
0.3 1 0.6 1

0.2 2 0.6 1

]




1 0

z 0

0 1

0 z




= CZ

(51)

and

C =

[
0.3 1 0.6 1

0.2 2 0.6 1

]
. (52)

The matrix B defined by (42) has the form

B =

[
b1 0

0 b2

]
=





0 0

1 0

0 0

0 1




. (53)

Step 3. The desired positive asymptotically stable realization

of the (47) has the form

E =





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0





,

A =





0 1 0 0 0 0 0 0

0.1 0.2 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0.2 0.3 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





,

B = −





0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0





, C =

[
0.3 1 0.6 1 1 2 2 1

0.2 2 0.6 1 0 1 1 1

]
.

(54)

Method 2.

It is assumed that the distinct poles z1, z2,. . . , zn of the

transfer matrix Tsp(z) are real positive and satisfy the condi-

tion

zk < 1 for k = 1, 2, . . ., n. (55)

A positive asymptotically stable realization

A ∈ ℜN×N
+ ,

B ∈ ℜN×m
+ ,

C ∈ ℜp×N
+

(56)

of the transfer matrix Tsp(z) can be computed by the use of

the following procedure based on Gilbert method [2, 20, 21].

Procedure 3.

Step 1. Write the transfer matrix Tsp(z) ∈ ℜp×m(z) in the

form

Tsp(z) =
N(z)

d(z)
, N(z) ∈ ℜp×m[z] (57)

and compute the poles z1, . . ., zn satisfying (55)

d(z) = (z − z1)(z − z2)...(z − zn). (58)

Step 2. Using the formula

Ti = lim
z→zi

(z − zi)Tsp(z), i = 1, 2, ..., n (59)

compute Ti, i = 1, 2, ..., n where

ri = rankTi, i = 1, 2, ..., n (60)

and
Ti = CiBi,

rankCi = rankBi = ri,

Ci ∈ ℜp×ri

+ ,

Bi ∈ ℜri×m
+ ,

i = 1, 2, ..., n.

(61)

Step 3. Knowing z1,. . . ,zn, ri and Ci, Bi for i = 1, 2, . . ., n

find the realization (56) of the form

A = blockdiag[Ir1
z1, Ir2

z2, ...Irn
zn] ∈ ℜN×N

+ ,

B =





B1

B2

...

Bn




∈ ℜN×m

+ ,

C = [ C1 C2 ... Cn ] ∈ ℜp×N
+ ,

N =

n∑

i=1

ri.

(62)

Theorem 7. There exists a positive asymptotically stable re-

alization of the form (62) of (57) if the following conditions

are satisfied:

1. the real positive poles zk k = 1, 2, . . ., n of the transfer

matrix (57) satisfies the conditions (55),

2. the real matrices Ti defined by (59) have nonnegative en-

tries Ti ∈ ℜp×m
+ for i = 1, 2, . . ., n.
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Proof. If the condition 1) is met then A ∈ ℜN×N
+ is asymptot-

ically stable. If the assumption 2) is satisfied then (61) holds

for i = 1, 2, . . ., n and B ∈ ℜN×m
+ , C ∈ ℜp×N

+ . Using (62)

it is easy to check that C[INz − A]−1B = Tsp(z).

Example 4. Find a positive asymptotically stable realization

of the transfer matrix

T (z) =





z3+0.7z2+0.72z−0.13
(z−0.1)(z−0.2)

z3+0.6z2+0.63z−0.17
(z−0.1)(z−0.3)

2z3
−z2+1.12z−0.25

(z−0.2)(z−0.3)
3z3

−0.2z2+0.69z−0.18
(z−0.1)(z−0.3)



 .

(63)

Using the slight modified Procedure 1 we obtain the follow-

ing.

Step 1. The transfer matrix (63) has the strictly proper part

Tsp(z) =





z − 0.15

(z − 0.1)(z − 0.2)

z − 0.2

(z − 0.1)(z − 0.3)

z − 0.25

(z − 0.2)(z − 0.3)

z − 0.21

(z − 0.1)(z − 0.3)





(64)

and the polynomial part

P (z) = D0 + D1z (65a)

where

D0 =

[
1 1

0 1

]
,

D1 =

[
1 1

2 3

]
.

(65b)

Step 2. To find the positive asymptotically stable realization

of (64) we use Procedure 3. The transfer matrix (64)

can be written in the form

Tsp(z) =
1

(z − 0.1)(z − 0.2)(z − 0.3)

·

[
(z − 0.15)(z − 0.3) (z − 0.2)2

(z − 0.25)(z − 0.1) (z − 0.21)(z − 0.2)

] (66)

and its poles are: z1 = 0.1, z2 = 0.2, z3 = 0.3, which

satisfy the condition 1) of Theorem 7. Using (59) and

(66) we obtain

T1 = lim
z→z1

(z − z1)Tsp(z)

=





z − 0.15

z − 0.2

z − 0.2

z − 0.3

(z − 0.25)(z − 0.1)

(z − 0.2)(z − 0.3)

z − 0.21

z − 0.3





z=0.1

=

[
0.5 0.5

0 0.55

]
,

rank T1 = r1 = 2,

C1 =

[
0.5 0.5

0 0.55

]
,

B1 =

[
1 0

0 1

]
,

T2 = lim
z→z2

(z − z2)Tsp(z)

=





z − 0.15

z − 0.1

(z − 0.2)2

(z − 0.1)(z − 0.3)

z − 0.25

z − 0.3

(z − 0.21)(z − 0.2)

(z − 0.1)(z − 0.3)





z=0.2

=

[
0.5 0

0.5 0

]
,

rank T2 = r2 = 1,

C2 =

[
0.5

0.5

]
,

B2 = [ 1 0 ],

T3 = lim
z→z3

(z − z3)Tsp(z)

=





(z − 0.15)(z − 0.3)

(z − 0.1)(z − 0.2)

z − 0.2

z − 0.1

z − 0.25

z − 0.2

z − 0.21

z − 0.1





z=0.3

=

[
0 0.5

0.5 0.45

]
,

rank T3 = r3 = 2,

C3 =

[
0 0.5

0.5 0.45

]
,

B3 =

[
1 0

0 1

]
.

(67)

Using (62) and (67) we obtain the positive asympto-

tically stable realization of (64) in the form
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A = blockdiag[Ir1
z1, Ir2

z2, Ir3
z3]

= diag[0.1, 0.1, 0.2, 0.3, 0.3] ∈ ℜ5×5
+ ,

B =




B1

B2

B3



 =





1 0

0 1

1 0

1 0

0 1




∈ ℜ5×2

+ ,

C = [ C1 C2 C3 ]

=

[
0.5 0.5 0.5 0 0.5

0 0.55 0.5 0.5 0.45

]
∈ ℜ2×5

+ .

(68)

Step 3. The desired positive asymptotically stable realization

of the (63) is given by

E =




I5 0 0

0 0 0

0 I2 0



 ∈ ℜ9×9
+ ,

A =




A B 0

0 I2 0

0 0 I2



 ∈ ℜ9×9
+ ,

B = −




0

I2

0



 ∈ ℜ9×2
+ ,

C = [ C D0 D1 ] ∈ ℜ2×9
+ ,

(69)

where A, B, C, D0, D1 are defined by (68) and (65b).

5. Concluding remarks

Methods for computation of positive asymptotically stable re-

alizations for descriptor discrete-time linear systems with im-

proper transfer matrices have been proposed. Conditions for

the existence of positive realizations for given improper trans-

fer matrices have been established. Procedures for computa-

tion of positive asymptotically stable realizations have been

proposed and illustrated by numerical examples. The proposed

method can be easily extended to descriptor continuous-time

linear systems. An open problem is an extension of this meth-

ods for fractional descriptor linear systems and descriptor

continuous-discrete linear systems.
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