
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 61, No. 2, 2013

DOI: 10.2478/bpasts-2013-0034

Stability analysis for discrete-time fractional-order LTI
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conditions for the asymptotic stability
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Abstract. This paper presents a series of new results on the asymptotic stability of discrete-time fractional difference (FD) state space systems

and their finite-memory approximations called finite FD (FFD) and normalized FFD (NFFD) systems. In Part I, new, general, necessary and

sufficient stability conditions are introduced in a unified form for FD/FFD/NFFD-based systems. In Part II, an original, simple, analytical

stability criterion is offered for FD-based systems, and the result is used to develop simple, efficient, numerical procedures for testing the

asymptotic stability for FFD-based and, in particular, NFFD-based systems. Consequently, the so-called f -poles and f -zeros are introduced

for FD-based system and their closed-loop stability implications are discussed.
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1. Introduction

Non-integer or fractional-order dynamic models have recently

attracted a considerable research interest. Their specific prop-

erties can make them more adequate in modeling of selected

industrial systems [1–4]. However, an infinite-memory filter

incorporated in a fractional difference (FD) may lead to a

computational explosion. Therefore, a number of discrete-time

fractional difference (FD) LTI systems have been modeled

both via transfer function or difference equation models [5–9]

and state space ones [8, 10–12].

Apart from the computational and accuracy aspects in

approximating FD-based systems [13], our main reservation

against the above recalled approximation approaches based

on infinite impulse response (IIR) / finite impulse response

(FIR) / orthonormal basis function (OBF) filters is that they

are quite arbitrary, in that they do not use any a priori knowl-

edge about the mathematical (not to say physical) structure of

FD [13]. Therefore we advocate an alternative approach rely-

ing on the approximation of the FD filter with its truncated,

finite-memory version [10,11,14–16]. In analogy to FIR, the

term finite FD, or FFD, has been coined [13,17–19]. FFD may

however suffer from (remarkable) steady-state errors with re-

spect to FD [13]. To cope with this, we have introduced what

is here referred to as normalized FFD or NFFD [13, 18, 19].

In particular, in Ref. [13, 18], computational and steady-state

accuracy aspects for FFD and NFFD have been considered

and some results are recalled here.

Unlike for continuous-time LTI systems [20–25], stabili-

ty analysis for fractional order discrete-time LTI state space

systems has not been given due research attention. First sta-

bility results for FFD-based systems have included either (an-

alytical) sufficient conditions only [10, 15] or numerically in-

efficient necessary and sufficient ones [10, 15, 26, 27]. Later

complete analytical results for FD/FFD-based systems have

been obtained for a specific case of positive systems on-

ly [11, 14, 28–31]. Up to date, no general, either analytical

or numerically effective stability criteria have been given for

arbitrary FD/FFD/NFFD-based systems. In particular, it is not

until this paper that the continuous-time stability criterion of

Matignon [23] is extended to discrete-time fractional-order

systems.

This paper presents a number of new results concerning

the stability analysis for FD, FFD and NFFD-based LTI state

space systems. In particular, necessary and sufficient stabil-

ity conditions for the systems are offered in a general, uni-

fied, FD/FFD/NFFD-based form in Part I. This gives rise to

the culmination in Part II with an original, simple stability

criterion for FD-based systems and simple numerical proce-

dures for testing the stability of FFD and NFFD-based sys-

tems. Consequently, new definitions of poles and zeros of

FD-based systems, called f -poles and f -zeros, are offered,

which are used in the stability analysis of closed-loop sys-

tems.

Part I of the paper is structured as follows. Having in-

troduced the FD modeling problem in Sec. 1, the Grünwald-

Letnikov fractional discrete-time difference is recalled, togeth-

er with its FFD and NFFD approximations, in Sec. 2. An ap-

plication of FFD/NFFD in modeling of state-space systems is

presented in Sec. 3, with steady-state accuracy results recalled.

The most important Sec. 4 gives new, general, necessary and

sufficient conditions for the stability of NFFD and FFD-based

systems as well as FD-based ones, all finally presented in a

unified form of Theorem 7. Conclusions of Sec. 5 summarize

the achievements of the first part of the paper.
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2. Fractional difference

A simple generalization of the familiar Grünwald-Letnikov

difference [32] is the fractional difference (FD) in discrete

time t = 0, 1, . . ., described by equation [11, 12, 15, 33]

∆αx(t) =

t∑

j=0

Pj(α)x(t)q−j

= x(t) +

t∑

j=1

Pj(α)x(t)q−j ,

(1)

where α ∈ (0, 2) is the fractional order, q−1 is the backward

shift operator and

Pj(α) = (−1)jCj(α), (2)

with

Cj(α) =

(
α

j

)
=





1 j = 0
α(α− 1)...(α − j + 1)

j!
j > 0

(3)

Note that each element in Eq. (1) from time t back to 0 is

nonzero so that each incoming sample of the signal x(t) in-

creases the complication of the model equation. In the limit,

with t→ +∞, we end up with computational explosion.

Remark 1. Possible accounting for the sampling period T
when transferring from a continuous-time derivative to the

discrete-time difference results in dividing the right-hand side

of Eq. (1) by T α [15]. Operating without T α as in the sequel

corresponds to putting T = 1 or to the substitution of Pj(α)

for
Pj(α)

T α
, j = 0, . . . , t.

2.1. Finite fractional difference. In [13, 17–19], truncated

or finite fractional difference (FFD) has (in analogy to FIR)

been considered for practical, feasibility reasons, with the

convergence to zero of the series Cj(α) enabling to assume

Cj(α) ≈ 0 for some j > J , where J is the number of back-

ward signal samples used to calculate the fractional difference.

A formal definition of FFD has been presented in [13, 18] as

follows

Definition 1. Let the fractional difference (FD) be defined as

in Eqs. (1) to (3). Then the finite fractional difference (FFD)

is defined as

∆αx(t, J) = x(t) +

J∑

j=1

Pj(α)x(t)q−j , (4)

where J = min(t, J) and J is the upper bound for j.

The FFD has been analyzed in some papers under the

heading of a practical implementation of FD [11, 14], or a

finite difference [10, 15], or a short-memory difference [16].

An important problem encountered in FFD-based mod-

eling is an incorrect steady-state gain of the model, with its

discrepancy with respect to the corresponding FD one being

dependent on J [13]. Therefore, some special means have

been applied to provide steady-state error-free FFD modeling

with reasonably low J .

2.2. Normalized finite fractional difference [13, 18].

Definition 2. Let the fractional difference (FD) be defined as

in Eqs. (1) to (3) and the finite fractional difference (FFD) be

defined as in Definition 1. Then the normalized finite frac-

tional difference (NFFD) is defined as

∆α
Nx(t, J) = x(t) +

1

N

J∑

j=1

Pj(α)x(t)q−j , (5)

where N = N(J) is the normalizing factor.

The results below give the main properties of NFFD.

Lemma 1. Let NFFD be defined as in Definition 2. Then

steady-state error-free modeling with Eq. (5) can be provided

by the selection

N = −
J∑

j=1

Pj(α). (6)

Lemma 2. Let N = N(J) as in Eq. (6). Then

lim
J→∞

N(J) = 1. (7)

The asymptotic properties of the NFFD as t → ∞ and

J → ∞ are summarized in [13, 18]. Recursive versions of

NFFD, also for time-varying order α = αt, have been present-

ed in [13]. Powerful modifications to NFFD, called Adaptive

NFFD and Perfect NFFD, have also been introduced in [13],

with the former one improved in [34].

3. State space model

Consider a discrete-time state space LTI system described by

the (constant-order) fractional model

∆αx(t + 1) = Afx(t) + Bu(t), (8)

y(t) = Cx(t) + Du(t), (9)

where x(t) ∈ ℜn, u(t) ∈ ℜnu and y(t) ∈ ℜny are the

state, input and output vectors, respectively, Af ∈ ℜ
n×n,

B ∈ ℜn×nu , C ∈ ℜny×n and D ∈ ℜny×nu . Without loss of

generality we will assume in the sequel that the initial vector

x0 is zero, especially that we will operate on finite-memory

FD approximations that do not trace back to x0.

Note that Af = A − I , with A ∈ ℜn×n representing

a discrete-time state space system in a ’regular’ form (with

α = 1) and I ∈ ℜn×n is the identity matrix. Accounting

that the FD is calculated by formula (1), equation (8) can be

presented in the following form [15]

x(t + 1) =
(
Af + αI

)
x(t)

−
t+1∑

j=2

Pj(α)x(t − j + 1) + Bu(t).
(10)

Using the Definition 1 and Definition 2 we can jointly

present FD/FFD/NFFD-based discrete-time state equations as

x(t + 1) =
(
Af +

α

N
I
)

x(t)

−
1

N

J∑

j=2

Pj(α)x(t − j + 1) + Bu(t),
(11)
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with N = N(J) defined as in Definition 2 and J redefined

as J = min(t + 1, J).
Note that Eq. (11) can be considered the most general

fractional-difference state equation including the NFFD one,

FFD one (for N = 1) and FD one (for J → ∞ implying

N → 1).

Remark 2. Possible accounting for the sampling period T
(when transferring from a continuous-time derivative to the

discrete-time difference) results in the substitutions Af →
AfT α and B → BT α in Eqs. (10) and (11) [15].

3.1. Steady-state accuracy [13]

Theorem 1. Let the steady-state output error for the

FFD/NFFD-based state-space model with respect to the FD

one be defined as

ǫss = lim
t→∞

{
ǫy(t) = yNFD(t)− yFD(t)

}
, (12)

where yNFD(t) and yFD(t) are the outputs of the FFD/NFFD-

based and FD-based state-space models, respectively. Addi-

tionally, let Af be nonsingular. Then

ǫss = C(F −Af )−1FA−1

f Buss, (13)

where uss is the steady state input and

F =


1 +

1

N

J∑

j=1

Pj(α)


 I, (14)

with N = N(J) as in Lemma 1 for the NFFD-based system

and N = 1 for the FFD-based one.

It is clear now that steady-state error-free output modeling

can be obtained for the NFFD-based system only. In fact, the

matrix F is zero in that case.

4. Stability

4.1. NFFD-based system. Our preliminary NFFD stability

result is now recalled as

Theorem 2. [13] The NFFD-based discrete-time state equa-

tion (11), with α ∈ (0, 2) and N selected as in Lemma 1, is

asymptotically stable if

||A|| < φ(α), (15)

where ||.|| is a norm of a matrix, A = Af +
α

N
I , φ(α) =

α

N
for α ∈ (0, 1) and φ(α) = 2−

α

N
for α ∈ (1, 2).

Interestingly, the stability condition (15) for the NFFD-

based state space system with the normalizing factor selected

according to Lemma 1 includes both that for the FD-based

one (compare Monje et al., 2010), in which case J → ∞
implying N → 1, and that for the FFD-based one (N = 1) as

well as that for the “regular” difference (α = 1 and N = 1).

Remark 3. For the FFD-based system, the result of Theo-

rem 2 is similar to those of [10] and [15]. More general but

computationally involving stability results for the FFD-based

system have been given in Refs. [26, 27].

In the sequel, all the illustrating examples will be

processed in the Matlab environment.

Example 1. Consider the NFFD-based discrete-time state

space system with

Af =

[
−0.10224 0.31921

−0.24145 0.31286

]

The actual stability area and that obtained from Theorem 2

are presented in Fig. 1 (note: The actual stability area is deter-

mined from heuristic BIBO stability experiments and verified

by the analytical result of the forthcoming Theorem 3).

Fig. 1. The actual stability area vs. that of Theorem 2

It can be seen that the conservative condition (15) covers

only some 50% of the actual stability area and it strongly de-

pends on α. Moreover, for specific values of α (and J) the

actual NFFD/FFD system can be stable whereas the condition

(15) is never satisfied.

The above Example shows that it is of vital interest to

seek for necessary and sufficient conditions of the asymptotic

stability. Here is the first, new, original result in the field.

Theorem 3. The NFFD-based discrete-time state equa-

tion (11) with α ∈ (0, 2) is asymptotically stable if and only

if all the roots of the characteristic equation

det


IzJ −AzJ−1 +

J∑

j=2

βjz
J−j


 = 0, (16)

where z ∈ C, A = Af +
α

N
I and βj =

1

N
Pj(α)I , j = 2, ...J ,

are strictly inside the unit circle.

Proof. See Appendix A.

Remark 4. The result for an FFD-based state space equation

is immediately obtained by setting N = 1.

Remark 5. Note that a rather complicated proof of this new

fundamental stability result (tracing back to the original Ã
formulation) can be easily verified. In fact, the z-domain so-

lution to the state equation (11), under the condition x0 = 0,

can be obtained as

X(z) =



zI −A +
1

N

J∑

j=2

Pj(α)z−j+1




−1

BU(z) (17)

which leads immediately to the characteristic equation (16).
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Note that the above Remark 5 can stand in fact as proof of

Theorem 3, so that proof of Appendix A might be considered

unnecessary. However, we strongly emphasize that an original

idea of relying the stability proof on the matrix Ã [14, 15] is

worth of further dissemination. The idea is effectively used in

the stability analysis of a combined, FFD/Laguerre-based sys-

tem [35] employing the new FD modeling concept intimated

in Ref. [36].

4.2. FD-based system. Related to Theorem 3, a new result

for an FD-based state-space system can be obtained as

Theorem 4. The FD-based discrete-time state equation (10)

with α ∈ (0, 2) is asymptotically stable if and only if all the

roots of the characteristic equation

det
[
z(1− z−1)αI −Af

]
= 0 (18)

are strictly inside the unit circle.

Proof. See Appendix B.

Remark 6. It is interesting to note that for FD-based state

space equation (11), with x0 = 0 and J → ∞ implying

N → 1, we have

X(z) =
[
z(1− z−1)αI −Af

]−1
Bu(z). (19)

Example 2. Consider the NFFD/FFD/FD-based discrete-time

state space system with

Af =

[
0.6 −1.45

1 −1

]
.

The stability areas obtained from Theorems 3 and 4 are pre-

sented in Fig. 2.

Fig. 2. Stability areas obtained from Theorems 3 and 4

It is interesting to note from Fig. 2 that the NFFD-

based system is unstable for very low J . For higher J , the

NFFD/FFD-based system is unstable for α exceeding some

critical value. For J → ∞, the stability condition for the

FD-based system is α < 0.7749. It is interesting to note that

this condition cannot be “seen” by Theorem 2 under J →∞
and N = 1. In fact, the condition (15) is never satisfied for

the specific system of Example 2.

4.3. Coordinate transformations. It is interesting now to

pursue a stability area for FD-based systems in a transformed

complex domain with respect to eigenvalues of the matrix

Af (or A). We can provide yet another, new result in this

respect. Note that the characteristic Eq. (18) can be rewritten

as det(wI −Af ) = 0, where

w = z(1− z−1)α, (20)

is the (nonlinear) coordinate transformation, mapping the unit

circle into a w-domain stability contour for FD (Fig. 3). Al-

ternatively, referring to the integer-order state matrix A =
Af + I , whose well-known stability condition can be a refer-

ence, we can introduce another coordinate transformation

v = z(1− z−1)α + 1 = fα(z) (21)

which, for a specific α, maps the unit circle into a v-domain

stability contour for FD (Fig. 3).

Remark 7. Note that, unsurprisingly, the v-domain contour

reduces to the z-domain one for α = 1.

Since it is impossible to analytically determine an inverse

z = f−1
α (v), we find the v-domain stability contour for FD in

a numerical way.

To this end, recall the z-domain stability contour, which is

the unit circle, for which the modulus |z| = 1, that is z = eiϕ,

where ϕ = arg(z). Thus,

v = eiϕ(1 − e−iϕ)α + 1 (22)

or

w = eiϕ(1− e−iϕ)α (23)

which can be plotted for a specific α within the range 0 ≤
ϕ ≤ 2π. The obtained v-domain (w-domain) vs. z-domain

stability contours for α = 0.6 are shown in Fig. 3.

Fig. 3. Illustration of coordinate transformations (20) and (21) for

α = 0.6

It is interesting that the specific value (−2α) for Im w = 0
(or 1 − 2α for Im v = 0) can be obtained analytically. We

will show that, for α ∈ (0, 1), the interior of the unit circle is

mapped by the transformations (20) or (21) into the interior

of the FD stability contour, but this does not necessarily hold

true for α ∈ (1, 2).

It is also of interest to seek for a 3D illustration of the w-

domain stability contours, with α parametrized (i.e. α = par).

The result for selected values of α is presented in Fig. 4.
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Fig. 4. Plot of (the sections of) the FD stability solid for the specific

values of α

The obtained 3D geometric shape constitutes the general

stability boundary for the FD-based state equation. We shortly

call the 3D geometric shape S as “the FD stability solid”. We

are now in a position to formulate yet another new stability

result.

Theorem 5. Consider the FD-stability solid related with the

coordinate transformation (21), with α = par. The FD-based

discrete-time state Eq. (10) with α ∈ (0, 2) is asymptotically

stable if and only if all the roots of the characteristic equation

det[vI − A] = 0 (24)

that is all eigenvalues of A, are strictly inside the FD stability

solid.

Proof. See Appendix C.

Since det(vI − A) = det(wI − Af ), Theorem 5 can be

easily reformulated for the mapping (20) to obtain.

Theorem 6. Consider the FD stability solid S related with the

coordinate transformation (20), with α = par. The FD-based

discrete-time state equation (10) with α ∈ (0, 2) is asymptot-

ically stable if and only if all the roots of the characteristic

equation

det[wI −Af ] = 0 (25)

that is all eigenvalues of Af , are strictly inside the FD stability

solid.

The boundary surface related with the FD stability solid

can be calculated once with some resolution step for α and

kept stored in a data base for future use, or, more practical-

ly, the boundary contour can be immediately calculated for a

specific α according to equation (22) or (23).

Remark 8. We continue with the mapping (20) as it is shown

that, rather surprisingly, the presence of the unity in the trans-

formation (21) precludes some simple analytical manipula-

tions in the complex v-domain.

Remark 9. The stability domain related with the mapping (20)

has also been discussed in Ref. [8] for α = 1/d, d = 1, 2, ....

Example 3. Consider the FD-based discrete-time state equa-

tion with

Af =

[
0.2 −0.5121

1 −1

]

whose eigenvalues are z1 = −0.4− 0.39i, z2 = −0.4+0.39i
as depicted with the asterisks in Fig. 5, which is a horizontal

cross-section of the stability solid S of Fig. 4 for specific αs.

Testing for the asymptotic stability according to Theo-

rem 4 or 6 reveals that the system is stable e.g. for α = 0.7
and α = 1.2, but unstable for α = 1.5 (Fig. 5).

Fig. 5. Plots of FD stability contours for the specific values of α

4.4. NFFD/FFD/FD-based systems revisited. We are in a

position now to present a general stability result valid for

NFFD, FFD and FD-based systems.

Theorem 7. The NFFD/FFD/FD-based discrete-time state

equation (11) with α ∈ (0, 2) is asymptotically stable if and

only if all the roots of the characteristic equation

det[wI −Af ] = 0 (26)

that is all eigenvalues of Af , are strictly inside the stability

solid

S =
{
eiϕΨ(ϕ); 0 < α < 2; 0 ≤ ϕ ≤ 2π

}
(27)

and

i) Ψ(ϕ) = 1 +
1

N

J∑
j=1

Pj(α)e−ijϕ for NFFD,

ii) Ψ(ϕ) as above with N = 1 for FFD,

iii) Ψ(ϕ) = (1− e−iϕ)α for FD.

Proof. The result follows immediately from Theorems 3, 4

and 6.

Remark 10. Again, for specific α we can operate on a spe-

cific stability contour, that is a specific section of the stability

solid for α = par. And again, Theorem 7 can be easily refor-

mulated to include v and A.
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Remark 11. The considered NFFD/FFD/FD stability contours

are quite regular in shape so that a selection of increments for

ϕ, with 0 ≤ ϕ ≤ 2π, need not be “dense”.

Note that our result for FFD is essentially simpler from

the computational viewpoint than the necessary and sufficient

conditions of [10, 15], where expanding the size of the ma-

trix Ã (see proof of Theorem 3) for higher J might lead to

prohibitive numerical problems e.g. in the Matlab environ-

ment. Also, execution times for even admissible values of J
were dramatically high in [10,15] as compared with our result

which operates on the simple calculation of the contour (27)

(in addition to eigenvalues of the matrix Af ). We have not ex-

perienced any problems under Matlab, even for J = 100, 000
which is in fact unreasonably and unnecessarily high.

Example 4. Consider the NFFD/FFD/FD-based discrete-time

state space system with α = 0.5 and

Af =

[
0.58 −0.54

1 −1

]

whose eigenvalues are z1 = 0.08, z2 = −0.5.

The stability areas obtained from Theorem 7 under the

specifications i), ii) and iii) are presented in Fig. 6. Theo-

rem 7 reveals that FD and NFFD-based systems (J = 30)

are unstable but the FFD-based system is stable. The exam-

ple selection for Af serves illustrating a rather typical case

where inferring on the asymptotic stability of FFD-based sys-

tems may sometimes be less reliable than for the NFFD-based

ones.

Fig. 6. Plots of NFFD/FFD/FD stability contours for α = 0.5

5. Conclusions

Previously formulated necessary and sufficient stability con-

ditions for FD-based state space LTI systems have suffered

from computational ineffectiveness. In Part I of the paper,

new compact results have been formulated, referring the sta-

bility of FD/FFD/NFFD-based state space systems to the roots

of certain characteristic equations, in particular eigenvalues

of some low-dimensional matrix. This has led to essential

computational savings as compared to previous stability re-

sults.

Our final contribution in Part I has been the introduction

of a unified framework to analyze FD/FFD/NFFD-based LTI

state space systems in the complex domain. The framework

directly leads in Part II to the presentation of an original

stability criterion for the FD-based systems as well as new,

simple numerical procedures for an approximate testing the

stability of FFD/NFFD-based systems.

Appendix A. Proof of Theorem 3

Equation (11) can be presented by the extended state equa-

tion [14, 15], with

Ã =




A −β2 . . . −βJ−1
−βJ

I 0 . . . 0 0

0 I . . . 0 0

...
...

. . .
...

...

0 0 . . . I 0




, (28)

where A = Af +
α

N
I and βj =

1

N
Pj(α)I , j = 2, ...J . The

matrix zI − Ã is now

zI − Ã = H1

=




zI −A β2 β3 . . . βJ−1
βJ

−I zI 0 . . . 0 0

0 −I zI . . . 0 0

...
...

...
...

...

0 0 0 . . . −I zI




.
(29)

We consider the consecutive columns of the matrix H1 in the

reverse order, that is starting from the last column. Denote the

reverse-order columns of that matrix as C1
j , j = J, ..., 1. Us-

ing the elementary column operation C2

J−1
← C1

J−1
+z−1C1

J

on H1 we obtain the matrix

H2 =



zI −A β2 β3 . . . βJ−1
− z−1βJ βJ

−I zI 0 . . . 0 0

0 −I zI . . . 0 0

...
...

...
...

...

0 0 0 . . . 0 zI




,
(30)

thus getting rid of the submatrix (−I) from the pre-last col-

umn of H1.

Using consecutively the elementary column operations

Ci+1

j ← Ci
j + z−1Ci

j+1, i = 2, ..., J − 1, j = J − 2, ..., 1
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on the consecutive matrices Hi, i = 2, ..., J , we arrive at the

triangular matrix

HJ =




zI −A + S1 S2 S3 . . . SJ = βJ

0 zI 0 . . . 0

0 0 zI . . . 0

...
...

...
. . .

...

0 0 0 . . . zI




, (31)

where

S1 =

J∑

j=2

βjz
−j+1 and Si =

J∑

j=i

βjz
−j+i, i = 2, ..., J.

The essence of the above matrix transformations is that the

elementary column operations

Ci+1

j ← Ci
j + z−1Ci

j+1,

i = 1, ..., J − 1, j = J − 1, ..., 1,

do not change the determinants of the matrices H1 to HJ

[37, 38], so that, finally, the determinant of the triangular

matrix HJ is of form

det(zI − Ã) = det
[
IzJ−1(zI −A + S1)

]

= det


IzJ −AzJ−1 +

J∑

j=2

βjz
J−j




(32)

and the result follows.

Appendix B. Proof of Theorem 4

Rewrite the matrix in equation (16) for N = 1 and obtain

zJ−1
[
(Iz(1 + P1(α)z−1 + P2(α)z−2 . . .

+PJ(α)z−J)−Af

] (33)

with P1(α) = −α. Now, for J → ∞, using the extended

Newton binomial

(a + b)α =
∞∑

j=0

(
α

j

)
aα−jbj (34)

and accounting for the fact that
∞∑

j=0

Pj(α)z−j is the binomial

expansion for a = 1 and b = −z−1 we can write that

lim
J→∞

(
1 + P1(α)z−1 + P2(α)z−2 . . . + PJ (α)z−J

)

= (1− z−1)α
(35)

leading, together with (33), to the characteristic equation (18).

Appendix C. Proof of Theorem 5

Proof of Theorem 5 parallels that for the celebrated Cauchy’s

Argument Principle-based Nyquist Stability Criterion [39].

The characteristic equation (24) can be written as

det(vI −A) = (v − λ1)(v − λ2) . . . (v − λn) = 0, (36)

where λi, i = 1, ..., n, are the eigenvalues of A. The system is

asymptotically stable iff all the elements v − λi, i = 1, ..., n,

do not generate unstable poles in the z-domain. Assuming that

J → ∞ we obtain the meromorphic function v(z) (compare

Proof of Theorem 4)

v(z) = z(1− z−1)α + 1

= lim
J→∞

zJ +
J∑

j=1

Pj(α)zJ−j + zJ−1

zJ−1
.

(37)

Now, consider a simple closed positively oriented con-

tour D (Fig. 7) whose interior domain is C = C\
{
reiϕ, 0 ≤

r < 1, 0 ≤ ϕ ≤ 2π
}

such that for z ∈ C, v(D) 6= 0 and

v(D) 6= ∞. Then by virtue of the Argument Principle and

Rouche’s Theorem [39]

W
(
v(D), λi

)
=

1

2πi

∮

D

v′(z)

v(z)− λi

dz = nz − np, (38)

where W
(
v(D), λi

)
is the winding number of v(D) about

λi, that counts the number of times the curve v(D) winds

around the point λi, and nz and np denote the number of

zeros and poles of v(z)−λi inside the contour D, respective-

ly. Immediately from Eq. (37) we have np = 0. The contour

v(D) is presented in Fig. 8 and we can observe that when

λi is inside the area bounded by eiϕ(1 − e−iϕ)α + 1, then

W
(
v(D), λi

)
= 0 so the zeros of Eq. (37) are not enclosed

by the contour D and they are inside the area bounded by eiϕ.

Fig. 7. Simple closed positively oriented contour D (including U)
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Fig. 8. The contour of v(D) (including Ω)

It is essential that the inference of λi is directed from the

interior of Ω =
{
eiϕ(1 − eiϕ)α + 1, 0 ≤ ϕ ≤ 2π

}
, with

Ω ⊂ v(D), to the interior of U =
{
eiϕ, 0 ≤ ϕ ≤ 2π

}
, with

U ⊂ D, and not vice versa. This means that the stability area

involves the whole interior of Ω, but this must not necessar-

ily be mapped to by the whole interior of U , the case being

characteristic for α ∈ (1, 2). Well, for α ∈ (0, 1) the inference

operates on the whole interiors of both Ω and U . Anyway, the

proof is valid for α ∈ (0, 2).
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