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FINITE ELEMENT ANALYSIS OF PLATE ON LAYERED TENSIONLESS
FOUNDATION

R. BUCZKOWSKI', W. TORBACKI!

The method of calculations of a thick plate on the two-parameter layered foundation by the finite
element method is presented. The numerical model allows to add a few (number of) foundation
layers. The expressions for the element stiffness matrices of the foundation are based on 18-node
zero-thickness interface elements. For modelling of thick plates the 9-node Mindlin element of the
Lagrange family is used. The formulation of the problem takes into account the shear deformation of
the plate and unilateral contact conditions between plate and foundation. The tensionless character
of the foundation is achieved by removing from the global stiffness matrix the appropriate part
of foundation stiffness attached to the node being in the separation stage. The advantages of the
proposed algorithm are illustrated by numerical examples.
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1. INTRODUCTION

In analysis of plates resting on the elastic foundation using the Winkler model, a
single parameter kg is used to describe beahaviour of the foundation. In that method,
it is assumed that deflection at each point is proportional to the pressure applied at
the point and completly independent from the pressures or deflections occuring at the
neighbouring points along the foundation. A model of such medium can be represented
by an infinite row of closely spaced elastic springs, each of them being deformed only
by the pressure acting on it, without any shear deformations between them.
Filonenko-Borodich [1] and Pasternak [2] attempted to make the classical Winkler
more realistic model postulating a two-parameter model. Their model takes into account
the effect of shear interaction among adjacent points in the foundation. In this model
the shear parameter has to be determined experimentally. Vlasov and Leont’ev [3] have
introduced another arbitrary parameter, vy, dependent on soil material and thickness of
the soil layer and suggested an approximate value of y between 1 and 2. However, they
did not report the method of determining this parameter. In the work of Vallabhan and
Daloglu [4], it has been shown how the soil parameter, ¥, can be estimated using an
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iterative computational procedure for plates. The elastic foundation modulus E; was
there a linear function throught the thickness of the foundation z

(1.1) E\(z) = E, + (E; —El)g

where £} = Egz = 0) and E, = E{(z = H) are the elasticity modulus at the top
and bottom of the foundation, respectively. In the paper of Celik and Omurtag [5] a
quadratic variation of elasticity modulus E; was discussed, given as

2
(1.2) E\(z) = Ey + (E; - El)%

Celik and Saygun [6], Ozgan and Daloglu, Ozgan and Omurtag [7, 8], Buczkowski and
Torbacki [9] have presented finite element technique where the material properties of
the soil are taken into account to incorporate the surrounding effect. In the last paper
the response of the foundation was modelled by using an 18-node quadratic interfa-
ce elements of zero-thickness. The authors concluded that the lagrangian quadratic
9-node elements can be an optimal choice for modelling thick plates interacting with
non-homogeneous foundation. The elastic plates of rectangular shape resting on a
tensionless Winkler foundation was analyzed by Celep [10]. The static and dynamic
analysis of a circular plate on a two-parameter tensonless foundation was recently
investigated using Galerkin’s approximation technique by Celep and Giiler [11]. The
problem of tensionless elastic foundation under flexible rectangular Mindlin plates
was also studied by Mishra and Chakrabarti [12]. The tensionless character of the
foundation was achieved by employing a set of uncorrelated elastic springs attached to
each node of the plate and by making these springs active in compression stage only. A
unilateral plate contact with the elasto-plastic one-parameter Winkler foundation model
was presented by Lewandowski and Switka [13]. In the paper of Eratll and Akoz [14],
a solution for Reissner plates on Winkler foundation based on the Gateaux derivative
theory was formulated. Ozgelikbrs et al. [15] also used the Gateaux differential method
combined with the classical Hellinger-Reissner and Hu-Washizu variational formula-
tions in order to obtain a solution for interaction of orthotropic Kirchhoff plate and
orthotropic Pasternak foundation. The mixed Galerkin-perturbation technique to nonli-
near bending analysis of rectangular Reissner-Mindlin plate with free edges, resting on
Pasternak elastic foundation, was recently attempted by Shen [16]. In the work of Feng
and Owen [17] a coupled finite element and boundary element procedure to analyse
a plate-foundation problem was described in which the boundary element equations
of the foundation were not explicitly assembled with the finite element equations,
but an iterative procedure was proposed to obtain the final coupled solution instead.
The discrete singular convolution method was developed by Civalek and Acar [18]
for static analysis of thick plates bending on the Pasternak foundation for different
boundary conditions and arbitrary edges.
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Analysis of interaction of thick plate with arbitrary layered foundation is a very
complex engineering problem. The foundation consist of several layers of varying
thickness and the kinematic constraints for each of the layers must be ensured. One
of the first satisfactory numerical solution of rectangular plates resting on layered
foundatiohn was obtained by Fraser and Wardle [19]. In their paper solutions were
presented for the displacements and maximum bending moments for uniformly loaded
raft of arbitarary rigidity resting on homogeneous isotropic multi-layered medium.
Kolar and Nemec [20] developed a 3D-FEM model allowing for the contribution from
the soil medium located outside the area of the plate. In their model, the effect of
the reaction of the foundation outside the plate was involved by the use of the elastic
springs distributed along the plate. In the model, the deflection outside the contact area
between plate and foundation was approximated by the assumed exponential function.
Sadecka [21] introduced modifications in the Kolar-Nemec model. In her model in-
finite elements for modelling the behaviour of layered foundation outside the plate
were used. Wang et al. [22] presented a semi-analytical method combined with finite
element for analyzing plates on layered soils by applying Hankel transforms. Almeida
and Paiva [23] recently proposed the boundary element method to analyze of static
soil-pile interaction in layered soil. In their study, the authors Kim, Lim and Cho [24]
presented a solution for three-dimensional elastodynamics interaction of surface fun-
dation on a layered half-space in which they adopted a coupling method that combines
the finite element for surface foundation and the bounadry element for the layered
half-space. In Ai nad Yue [25] the analytical method using the Hankel transforms,
combined with the finite difference method, has been recently adopted for analyzing
the axially loaded single piles in multilayered non-homogeneous medium subjected to
a vertical point load. Andersen and Clausen [26] discussed a BEM solution for dy-
namic soil-structure interaction (a rigid foundation on a layered subsoil) whereas the
solution based on domain-transformation method and the Green’s function for layered
viscoelastic half-space.

The main aim of this paper is to present a new method for the modelling of
multi-layered foundation using zero-thickness interface elements. In Section 2 we begin
with short description of the two-parameter foundation model and the finite element
procedure in order to determine the stiffness matrices of the finite interface-foundation
element. In Section 3 a numerical example is presented in order to illustrate the validity
of the method proposed. In the final section some conclusions are drawn.

2. FINITE ELEMENT PROCEDURE

In this section we present short expressions for the element stiffness matrix and the
soil reactions based on quadratic Lagrange 9-node Mindlin plate (nodal dof: w —
transverse displacement in the direction z and 6., 6, — the normal rotations about the
x- and y-axis respectively) and 18-node zero-thickness foundation elements [27]. We
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recommend here the nine-node Mindlin plate element of the Lagrange family in which
3% 3 Gauss integration scheme is employed for both the bending, and shear deformation
to handle extremely thin plates for very large length-thickness ratios up to b/t = 10°
[9]. (An alternative proposal is the use of the heterosis element which represents a
synthesis of the serendipity type of the interpolation which is used on displacement
only, and a lagrangian one on rotations, see Reference [28].)

The present formulation is based on the theory of the plates which enables the
transverse shear deformations. In this theory the displacements w and both rotations
B and B, at the plate midsurface are assumed independent variables. Moreover, the
concept of isoparametric C finite plate element can be directly constructed. According
to the small bending theory, the displacement components of a point of coordinates x,
y and z are

(21) u= _Zﬂx(x, y)’ V= _Zﬁy(-x’ y)’ w = W()C, y)

where w is the transverse displacement and S,(x,y) and S,(x,y) are the rotations of
the normal to the undeformed middle surface. In the Kirchhoff plate theory shear
deformations are excluded, then 8, = w and B, = w,, see for details Reference [29].

2.1. FORMULATION OF THE FOUNDATION

A two-parameter model for a plate resting on elastic foundation including a shear effect
of the foundation is investigated. In this model the expression relating the pressure and
corresponding deflection of the foundation is [2]

?’w  Pw
2.2) p =kow — k (W + c’)_yz)
where p, w and k| are the surface pressure, the transverse deflection, and the shear
modulus of the foundation (second foundation parameter) respectively; kg is modulus
of subgrade reaction of the soil (first or Winkler foundation parameter).
The strain energy expressions for the Winkler foundation and the energy associated
with the second foundation parameter k| are

1 1
(2.3) Ur = 3 f [w e, )] ko [w (x,y)] dxdy + 3 f yrkiyrdxdy
A A

The second term in the above equation can be regarded as the strain energy in
shear associated with the parameter k;, where the shear strain vector 7y can be written
as
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(2.4) VF

For the foundation elements, the soil tractions and relative soil displacements
w(x,y) are evaluated for nodes situated between the top and bottom planes of the
interface element; for details we refer to Reference [27]. We express these relative
transverse displacements as

(2.5) w(x,y) = w(x,y)top — w(x,y)gor = Nw

where w is a vector of the nodal transverse displacements of the interface element
defined as

(2.6) W = [W1 Wo ... Wg W19 W11 ... ng]T

and the matrix N is given by

2.7) N=[N; Ny N3;..Ny —N; =Ny —N3 ... —No]

Where N; is a shape function for node i. The matrix N includes non-differentiated
shape functions of the thick nine-node plate Mindlin element is given, for example, in
[29].

By substituting equation (2.5) into the strain energy expression (equation (2.3))
we obtain the total stiffness matrix of the foundation

ON;ON; ON;dN;
2. K=k N; k —— 4+ ——|dxd
(2.8) ; off Ndxdy+1ff(axax ayﬁy)xy

Following the isoparametric concept, the stiffness submatrices linking nodes i and
J of the interface element related to the first ky and the second foundation parameter
ki, (Ko);; and (K;);; have the form

+1 +1

(2.9) (Ko);j =k0ffNjN,-detjd§dn

-1 -1
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and

ON;dy ON;dy\[ON;dy ON;dy
K At At DA | UCAN Lt PP |
(K = ffdetJ(ﬁf an 9y 35)(56 on ~ an og)

aNJ' ox ON Ox (?Ni Ox 6N,~ ox
_—+ — ———— + ——|dé&dp
det j\ o0& on  on 8§ o0& dn  On O¢

where the determinant of the transformation Jacobian matrix is expressed as

(2.10)

@.11) detj= X0y _0x0y

9g dn  dn 9&
The reactions of foundation related to the first parameter ky and the second one
ki, that is the transverse force W and the shear forces (at the node i) T = (7, T))
respectively, can be expressed as [9]

+1 +1
(2.12) W), = ko f f Niw; det jdédn
-1 -1
and
+1 +1 a 6 6 a
_ Nidy _ONidy)
2.13) <Tx>,~—k1ff(6§ - af) dédn
-1 -1
C CloNox 9N,
X X
(2.14) (Ty)i—klff(an 6_§_¥0n) dedn
-1 -1

in which the expressions dx/0¢, dx/dn, dy/0& and dy/On are components of the Jacobian
matrix.

The numerical integration of equations (2.9) and (2.10) for the quadrilateral ele-
ment of rectangular shape with 3x3 sampling points leads to

3 3
(2.15) (Ko)y ZZ (€0 ko (£ mg) det (€5, mg) W, W,

p=1g=1
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and

2

b2 3 3 ky
o =75 ———— (Nisg) (&p210) Wy W,
(2.16) Vij = 5 ;;detj(gp’zq)( -.f) (1 774) pWat

4 2.2 ﬁ (Nisn) (&ps1g) W Wg

with W), and W, being the integration weights.

The stiffness matrices of the interface element related to the first, ky, and the
second parameter, k;, (equations (2.15 and (2.16)) were integrated, and their explicit
forms are given in Reference [9].

2.2. FOUNDATION PARAMETERS k( AND ki

The two parameters ky and k; in terms of the elastic contstants and the dimensions
of the plate and the soil foundation were evaluated by Vallabhan, Straughan and Das
[4]. These parameters applied to the foundation with a finite depth of soil, A, can be
defined by

Ey h 5
2.17) ko = f P’ (z)°dz
(1 - vé) 0
and
(2.18) k| = —f Y- (z)dz
2(1+v,) Jo

with the mode function ¥(z) which can be obtained by using variational principles
and applying the proper boundary conditions, such as ¥(0) = 1 and ¥ (h) = 0, so due
to Vallabhan et al. [4] this function is given as

sinhy =2
(2.19) P(z) = — i
sinhy

The generalized modulus of elasticity, Ey, and the Poisson ratio, vy, are defined
by

Er VF

Yo
2’
1 Vi

(2.20) Ep =

:1—VF
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where Er and vp are the modulus of elasticity and Poisson’s ratio of the foundation,
respectively, and % is the foundation depth. If the elasticity modulus E; is constant
through the thickness of the foundation and using the mode function ¥(z) as given
in equation (2.19), the foundation parameters ko (equation (2.17)) and k; (equation
(2.18)) become

Er(1 —vp) 2y sinh 2y + 4y

(2.21) ko =
O T 8h(1+ve)(1-2v)  sinhy
and
Erh 2y sinh 2y — 2y?
(2.22) k = r el el

16y%(1 + v) sinh’y

However, these parameters also depend on a coefficient, v, which represents the
rate of decrease of the displacement and the normal stresses in the vertical direction
in the soil foundation. According to Vallabhan, Straughan and Das [4] the parameter
vy can be expressed as

+00 +00

(2.23) 22 (1=2v) _{o [o{(aww)) (ﬁw(”)) }dxdy
| y +00 +00
2(1 s) f f WZ (xv)))dXdy

For plates on the elastic foundation, the dimensionless parameter, y, can be evalu-
ated using an iterative procedure after the determination of the vertical displacement
w(x,y). At the end of every iteration a criterion is monitored to see whether the iterative
solution converged within the tolerance.

In order to analyze cases in which the modulii of elasticity of the foundation E;
(equation (1.1)) can vary linearly in the vertical direction from E; at the top to E; at
the bottom, expressions for the foundation parameters ko and k; can be modified to the
following form

(2.24)
o 1-vp E\(2y sinh2y + 4y?) + (E> — E))(cosh2y — 1 + 4y?)
07 8h(1 + vp)(1 = 2vr) sinh?y
and
225 & = h E (2y sinh2y — 2y?) + (E» — E})(cosh2y — 1 — 2y?)

16y2(1 + vp) sinh’y
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When the elasticity modulus E, (equation (1.2)) changes quadratically through the
depth of the foundation, the foundation parameters ky and k; can be evaluated by

(2.26)
ko = 1 —vp 3[E; + E1(2y% = 1)] sinh 2y + [E»(4y* = 3) + E|(3 + 2y?)[2y
*T A +vpd - 2vp) 24 1y sinhy
and

h E> + E1(2y* — 1)] sinh 2y — [E»(4y? Ei(2y* -3)]2
227) ki = 3[E, + E1(2y* — D] sinh2y — [E;(4y* +3) + Ei(2y* - 3)12y

(1+vr) 483 sinh?y

3. NUMERICAL APPLICATION

A computer program for the finite element analysis of bending Mindlin plates resting
on a two-parameter elastic layered foundation is used to verify the accuracy of the
proposed method. The finite element model allows to add a few foundation layers
(Figure 1).

A plate

1
) 77777 /o / 1st |ayer
. o Oy/o <o
— 7

A Znd layer

ard layer

4th layer

Fig. 1. The finite element model of the layered foundation.
Rys. 1. Model podioza wielowarstwowego za pomocg elementéw skoriczonych
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3.1. FREE RECTANGULAR PLATE ON AN UNILATERAL HOMOGENEOUS FOUNDATION

A free rectangular plate of the size of 9.6 X 7.2 m and thickness of # = 0.2 m resting
on a two-parameter homogeneous soil medium subjected to uniformly distributed load
q = 1 MPa on a central (painted in grey) square (Figure 2) is considered first.

y
17.768 -28.256 [mm]w X
-22.5
-15.0
-7.5
0.0
28179 225 15.0 75 5.28

Fig. 2. Free rectangular plate on an unilateral Winkler foundation; (for w > 0 [mm] passive contact zone
— separation or loss of contact).
Rys. 2. Plywajaca prostokatna plyta na jednostronnym podtozu Winklera; (w > O [mm] — kontakt
pasywny — separacja lub utarata kontaktu)

Due to the symmetry only the quarter of the plate is taken into account. The
18 X 24 mesh consists of 432 quadratic Lagrange 9-node Mindlin plate elements.
The calculations are performed for the first (Winkler) ky and the second foundation
parameter k;. Both the foundation parameters are assumed to be dependent on material
properties and the depth of the soil medium (see equations (2.21) and (2.22)) as well
as on the dimensionless parameter y given by equation (2.23). The calculations are
performed for the foundation depth, 2 = 5 m, the Poisson ratios v; = 0.45 and v, = 0.17
for the soil (foundation) and plate, respectively. The Young modulus of the plate is
assumed E = 23 GPa. In order to enable comparison of our results with the first
parameter only, with those reported by Lewandowski and Switka [13] and Jirousek
at al. [30], we made calculations for £; = E, = 42MPa and y as given in Table 1.
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The results are in close agreement with those by Jirousek ar al. [30], solved by a
hybrid-Trefftz approach and by assuming the Winkler conditions there.

Table 1
The settlement of the plate along x-axis for uniformly distributed load [mm],
(ko [MPa/m], k; [MPa m], h =5[m], E, = E, = 42 [MPa]).
Obnizenie ptyty wzdluz osi w przypadku obcigzenia stalym ci$nieniem [mm],
(ko [MPa/m], k; [MPam], h=5[m], E, = E, = 42[MPa])
Winkler model v =1.1316 y =2.1327
x[m] ((ko =20, ky = 0) (ko = 32.7862, k; = 30.0426) (ko = 39.1322, k; = 16.4144)
0.0 -28.256 -12.962 -5.234
0.6 -24.571 -10.978 -4.759
1.2 -19.961 -7.952 -3.269
1.8 -12.272 -4.283 -1.328
2.4 -4.674 -0.427 0.261
3.0 1.459 3.190 1.389
3.6 7.368 6.487 2.474
4.2 12.491 8.423 3.427
4.8 17.768 9.661 4.189

It can be noted from Table 1 that, for larger parameter ky , the settlement of
foundation is smaller. The larger parameter y the smaller the active contact zone
(w < 0), see Figure 3. This is the result of resistance of the foundation due to influence
of the second parameter. In particular, for very small values of the parameter k; the
behaviour of the foundation approaches the Winkler foundation model for which the
second parameter k; is assumed zero. For the Winkler approach, the value of maximum
settlement at the center of the plate is equal to w = 28.256 [mm] (see another results
from Table 1 and Figure 3 to compare).

3.2. FREE RECTANGULAR PLATE ON A LAYERED FOUNDATION

A free rectangular plate of the size 9.144 X 12.192 m and thickness of 0.1524 m,
subjected to uniformly distributed load, were analyzed next (Figure 4). The size of the
fundation and its depth are: 27.432 x 30.48 m and /& = 3.048 m. It was assumed the
Poisson ratio equals to v = 0.25 and v, = 0.20 for the soil and plate, respectively.
The same problem in which the elasticity modulus of the foundation E, at the bottom
is equal to E; at the top was considered by Celik and Saygun [6] and Vallabhan at
al. [4].

The results are obtained for E; = 68950 kN/m2 and E, = 20685 MN/m2 for
the top of the foundation and the plate, respectively. The foundation parameters kg
and k; are assumed dependent on material properties and the depth of the foundation,
as well as on the dimensionless parameter y given by equation (2.23). The vertical
displacements at the centre of the plate are shown in Table 2.
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Fig. 3. The settlement of the plate along x-axis for uniformly distributed load.
Rys. 3. Obnizenie ptyty wzdluz osi x w przypadku obciazenia stalym ci$nieniem

4Ax2 286 m

2x3.048 m

4x2.286 m 2x2.286 m

Fig. 4. Free rectangular plate on elastic foundation (only one quadrant is discretized).
Rys. 4. Plywajaca prostokatna ptyta na podtozu sprezystym (pokazano tylko jedng ¢wiartke)
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q
‘ Lol E e, £
-
h
/ Ez Ez Ez
(a) (b) ()

Fig. 5. Free plate: (a) one layer, E, = E, (b) two layers, E, = Ey, (c) two layers, E, = 2E,.
Rys. 5. Plyta plywajaca, E, = E;, (b) dwie warstwy, E, = E}, (c) dwie warstwy, E, = 2E,

Table 2
The vertical displacement at the centre of the plate for uniformly distributed load.
Pionowe przemieszczenie centralnego punktu plyty w przypadku obcigzenia stalym ci$nieniem

h(m) Reference ko(KN/m®) k1(KN/m) b% w (cm)
3.048 | Present, 27212 81789 0.5844 | 0.0734
Figure 5(a)
Present,E, = E|, 54423/54423 40895/40895
Figure 5(b) top/bottom top/bottom 0.5844 1 00733
P.resent,Ez =2FE,, 54433/108865 39825/79650 05947 | 0.0609
Figure 5(c) top/bottom top/bottom

3.3. FREE SQUARE PLATE ON A LAYERED FOUNDATION (FIGURE 6)

A square thick plate of length @ = 5 m and thickness of # = 0.25 m or = 1.25 m
resting on two-layered foundation of size 10 X 10 m is considered. The same example
was also analyzed by Sadecka [21]. The numerical solution obtained by a weighting
method for the isotropic semi-infinite medium was presented by Fraser and Wardle
[19]. In the Kolar-Nemec’s model, the deflection outside the contact area between
plate and foundation is approximated by the assumed exponential function. Sadecka
introduced modifications in the Kolar-Nemec’s model. In her model infinite elements
were used for modelling of the layered foundation outside the plate. A quarter of plate
division into finite elements is shown in Figure 6. The whole plate is loaded by a
uniformly distributed load ¢ = 1 MPa.

The foundation is divided into two layers of thickness 4, = 3m and 4, = 7m for
the top and the bottom, respectively (Figure 7).

The Poisson’s ratio for both the layers is vz = 0.3. The material properties of the
plate are as follows: Young’s modulus £, = 21000 MPa, Poisson’s ratio v, = 0.167.
The generalized modulus of elasticity from equation (2.20) Ey = E,/500 and E, =
E,/1000 are chosen for calculations. According to equations (2.21) and (2.22), the
following foundation parameters are obtained for both the foundation layers: in the
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4x1.25m

4x1.25 m

Fig. 6. Arrangement of square plate on elastic foundation.
Rys. 6. Aranzacja plyty kwadratowej na podiozu sprezystym

7|‘ —

Fig. 7. Thick plate on two-layered foundation.
Rys. 7. Plyta gruba na podiozu dwuwarstwowym
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case of E,/Ey = 500, kg = 5.291 MPa / m and k; = 61.369 MPam, while in the case
of E,/Ey = 1000, ky = 2.646 MPa / m and k; = 30.684 MPam.

Selvadurai [31] suggests the following form for the modulus of foundation in the
case of the Winkler model

2Er
a-In(1 + 2(H/a))

3.1 ko =

where H = h; + h is the thickness of the foundation and « is the length of the plate.

Table 3
The vertical displacement of the plate for uniformly distributed load (in [mm]).
Pionowe przemieszczenie ptyty w przypadku obciazenia staltym ci$nieniem (w [mm])

EJE, | tla) | v varfnslflr;:tr twop;:zzeter Sadecka [21] | Fraser and Wardle [19]
500 | 0.05 | 1.1249 | 10.1074 7.6014 7.8040 10.61
500 | 025 | 1.1249 | 9.8243 5.1059 53538 777

1000 | 0.05 | 1.1254 | 19.9589 14.4128 14.6173 2121

1000 | 0.25 | 1.1254 | 19.6451 10.4276 10.5891 15.54

According to equation (30), for E,/Ey = 500, the Winkler parameter ko equals
9.4990 MPa/m, while in the case of E,/Ey = 1000k it is equal to 4.7495 MPa/m for
both the foundation layers. As expected, the maximum value of the settlement at the
center of the plate for the Winkler approach is always greater than for the two-parameter
one. Table 3 summarizes the results for both, the one- and two-parameter foundation
models. The results obtained for the two-parameter model are closer to the solution of
Sadecka [21] than the results obtained for semi-infinite medium by Fraser and Wardle
[19].

3.4. FREE SQUARE PLATE ON A FOUR-LAYER FOUNDATION (FIGURE 8)

A thick plate of size 10 x 10 m and thickness of t = 0.5m resting on a four-layer
foundation of size 20 X 20 m is considered. The example was adopted from Fraser
and Wardle [19] and Wang ef al. [22] where results for elastic halfspace were given.
The material constants of the plate are as follows: Young’s modulus E, = 15000 MPa,
Poisson’s ratio v, = 0.2. Due to the symmetry, only a quarter of the square plate is
taken into consideration. The whole plate was loaded by a uniformly distributed load
q = 0.1 MPa.

The foundation is divided into four layers of thickness 10 m (see Figure 9). The
Poissons’ ratio for all layers is equal to vy = 0.3. The Youngs’ modulus, the foundation
parameters ko and k; are given in Figure 9. The parameter y is obtained to be equal
to 1.2481 for each layer.



270

R. Buczxkowskr, W. TorBACKI

4x2.5m

Fig. 8. Finite element discretization of square plate.
Rys. 8. Siatka elementéw skoriczonych ptyty kwadratowej

10m

E.= 100 MPa k,= 14.0131 MPa/m k, = 106.4837 MPa-m

10m

E.=80MPa k = 112106 MPa/m K =85.1870 MPa-m

10m

E.,=860MPa k,=8.4079 MPa/m  k, = 63.8802 MPa-m

10m

E.=100 MPa k = 14.0131 MPaim K, = 106.4837 MPa-m

Fig. 9. Thick plate on four-layered foundation.
Rys. 9. Plyta gruba na podfozu czterowartwowym
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Table 4
The vertical displacement of the plate for uniformly distributed load (in [mm]).
Pionowe przemieszczenie plyty w przypadku obcigzenia stalym ci$nieniem (w [mm])
Point Wang at al.[22] Fraser and Wardle [19] Fraser and Wardle [19]
Present . . .
of plate numerical numerical equivalent
A 0.0102 0.0120 0.0114 0.0107
B 0.0071 0.0089 0.0087 0.0078

The results are compared with those reported by Wang at al. [22], and the nu-
merical results presented by Fraser and Wardle [19] (Table 4). The result are in good
agreement with both the numerical results of the other authors.

4. CONCLUSIONS

The problem of bending plate resting on the two-parameter layered foundation was
solved by using the interface elements of zero-thickness. The adopted model can be
employed to analyze thick plates resting on foundation with any type of common
boundary conditions and loading combinations. The method proposed may also take
account of the surrounding effect outside the plate, as well as the unilateral contact
conditions between the plate and foundation. A good agreement with the other results
reported in the literature is worth noting.
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APPENDIX: TENSIONLESS FOUNDATION: ITERATIVE SOLUTION PROCEDURE

The solution of the problem of tensionless foundation is obtained by the incremental iterative
Newton-Raphson procedure which goes as follows.
(i) contact conditions

(1) wix,y) = (WP + AwP) = (W' = AwhH)n - gy 2 0= W = ko ff [w(x,y)] dxdy <0
A

(active node),

w(x,y) = ((wB + AwWP) — (wA - AWA))n — g0 < 0= W = 0(passive node)

where

w(x,y) — the actual value of the gap between the plate and the foundation,

n — the unit normal vector to be assumed constant,

W — the actual value of the normal contact force,

Aw — the value of an increment displacement due to load increment,

8o — the initial gap between the plate and the foundation.

The indices A and B correspond to the top and the bottom nodes of the zero-thickness interface ele-
ment, respectively. In equation of constraint optimization (1) can be concisely written as the Kuhn-Tucker
condition

2) Wwx,y) =0, W<0, wkx,y)>0

(i) for the (m + 1) external load increment AR,,,,.

At the beginning of each load increment (m + 1), i.e. AR,,,;, the iteration scheme is based on the
following parameters: the nodal displacements Aw,,, the unbalanced forces ¥, ,, and the nodal vector of
internal forces Af,,,;. Thus within an increment of load (m + 1) we have

3) AW,

m+1

= AR,,,; — [Af",, + AW" ],

m m+1

where m denotes the number of load increment, n is the number of iteration at every increment, Af,,,;
is the nodal increment vector of internal forces, i.e., the resultant forces acting on each node from the
surrounding elements which is calculated from the actual element stresses

4) Af e = f BTAo':’anV,

while

) AW, | =k ff Aw; ., dxdy.
A

is the increment vector of the normal contact forces.
To define w,,, in expression (3) we can use the Taylor series expansion up to first-order and write

AP

6 A\I;n+l = AP
(6) + awn

Aw" = 0.
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For clarity we omit the superindex (m + 1) in the above expression. Substituting equations (3) and
(4) to (6) lead to

@) AW = [AR,y — (AF2,, + AW" ] — (Kp)',, AW",, =0,

m+1 m+1 m+1

where the tangent stiffness matrix (Kyz) is defined as

n
m+1

I(AY"
®) (Kot = G =

[Ky" + Kp)'].

The first term in (8) represents the elastic stiffness matrix of the plate elements, while the second
one corresponds to the stiffness matrix of the foundation. The term Aw,, ; from equation (7) can be used
to find the accumulated displacement vector after (n + 1) iterations in the (m + 1) load increment acording

to the following equation

n+l _ n n
(9) A")Vm+l = Wil + AVVerl'

At the end every iteration there should be a convergence check in order to see whether the iterative
solution converged within the out-of-balance force tolerance (see equation (7)).

Streszczenie

W pracy zaprezentowano obliczenia za pomocg metody elementéw skoiczonych plyty grubej spoczywaja-
cej na dwuparametrowym podiozu wielowarstwowym. Model numeryczny pozwala na dodanie dowolnej
liczby warstw podloza. Wyrazenia na obliczenie macierzy sztywnosci podioza bazujg na wykorzystaniu
18-weztowego miedzypowierzchniowego elementu kontaktowego o zerowej grubosci. W celu zamodelo-
wania elementu plyty grubej wykorzystano 9-wezlowy element plytowy z rodziny Lagrange’a zdefiniowany
wedlug teorii Mindlina. Sformutowanie uwzglednia zar6wno wplyw naprezeni Scinajacych w plycie jak
réwniez warunki kontaktu jednostronnego pomig¢dzy plyta a podtozem. Warunki kontaktu jednostronnego
sg zrealizowane przez usuniecie odpowiedniej czgs$ci macierzy sztywnosci podioza, ktéra przypisana jest
do weztéw nie bedacych w kontacie. Poprawno$¢ zaproponowanego algorytmu zilustrowano kilkoma
przyktadmi numerycznymi.
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