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A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR DYNAMIC
OF FULLY SATURATED SOIL

B. WRANA1

The fully coupled, porous solid-fluid dynamic field equations with u−p formulation are used in this
paper to simulate pore fluid and solid skeleton responses. The present formulation uses physical
damping, which dissipates energy by velocity proportional damping. The proposed damping model
takes into account the interaction of pore fluid and solid skeleton.
The paper focuses on formulation and implementation of Time Discontinuous Galerkin (TDG) me-
thods for soil dynamics in the case of fully saturated soil. This method uses both the displacements
and velocities as basic unknowns and approximates them through piecewise linear functions which
are continuous in space and discontinuous in time. This leads to stable and third-order accurate so-
lution algorithms for ordinary differential equations. Numerical results using the time-discontinuous
Galerkin FEM are compared with results using a conventional central difference, Houbolt, Wilson
θ, HHT-α, and Newmark methods. This comparison reveals that the time-discontinuous Galerkin
FEM is more stable and more accurate than these traditional methods.

Key words: Soil dynamics; discontinuous Galerkin finite element method; wave propagation; saturated
porous soil.

1. I

The equations governing the response of saturated porous media, incorporating the
fluid-solid skeleton interaction, was first established for the quasi-static QS case in
1941 by Biot [1] who then extended them to include dynamics [2, 3]. Later, Truesdell
[4, 5] introduced ‘mixture theory’ to formulate this problem, which provided a new
basis for such coupled equations. Such formulations have been subsequently extended
to consider the nonlinearity of deformation [6-8].

Multiphase ground deformations are caused by static loads resulting from dead
load and temporary long-time loads. In addition, soil may transfer the short-time loads
called dynamic loads, which depends on the dynamics characteristics: frequency and
amplitudes. Types of loads acting on the soil are shown in Figure 1.

In QS analysis usual assumptions of drained or undrained behaviour are made
depending on the rate of loading vis-à-vis the rate of drainage. In dynamic analysis,
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Fig. 1. Types of loads due to changes in time.
Rys. 1. Przypadki obciążenia zmiennego w czasie

the formulation is further complicated by the presence of inertial terms associated with
both the motion of solid skeleton and that of the pore fluid. Depending on the rate of
loading and the characteristics of flow and deformation, for the response of saturated
porous media, the following three idealizations are possible:
• Fully dynamic (FD): In this case, the coupled equations of flow and deformation

are formulated including the acceleration of both solid skeleton and fluid.
• Partly dynamic (PD): In this case, the coupled equations of flow and deformation

consider only the acceleration of solid skeleton and not that of pore fluid. This
is also called the u−p formulation as in this case the governing equations can be
represented only in terms of solid displacement, u and pore fluid pressure, p.

• Quasi-static (QS): Here, all inertial terms are ignored resulting in QS coupled flow
and deformation formulation.
The analytical solutions for various conditions and formulation are developed in

[9] under plane strain condition with linear dynamic problem. Non-linear dynamic
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problem with implicit Newmark’s integration scheme in time domain can be found in
[10].

2. D 

Depending on the motion of the pore fluid and the solid skeleton, as well as the
permeability of the porous medium, it is possible to have different idealizations in
the coupled flow and deformation problem. These idealizations were first described
by Zienkiewicz et al. [11]. Considering the inertial forces associated with both solid
skeleton and pore fluid, equations for FD are written as:

(2.1a) σi j, j + ρüi + ρfẅi − ρbi = 0,

(2.1b) −p,i + ρf üi +
ρf

n
ẅi − ρfbi =

ρf gi

ki
ẇi,

(2.1c) ε̇ii − ẇi,i +
n
Kf

ṗ = 0,

where ẅi is the average fluid acceleration relative to solid skeleton, üi is the acceleration
of solid skeleton, gi is the appropriate component of the gravitational acceleration, ρ is
the total density of the porous medium defined by ρ =n ρ f +(1–n) ρs, with n denoting
the porosity and ρ f – the density of the fluid, and p – excess pore water pressure.

Ignoring the inertial forces associated with the relative pore fluid displacement
(ẅi = 0), the governing equations for PD become:

(2.2a) σi j, j + ρüi − ρbi = 0,

(2.2b) −p,i + ρf üi − ρfbi =
ρf gi

ki
ẇi,

(2.2c) ε̇ii − ẇi,i +
n
Kf

ṗ = 0.

The definition of the combined compressibility of the fluid and solid phases can be
presented by

(2.3) C = nCf + (α − n)Cs � nCf + (1 − n)Cs,

where C f is the compressibility of fluid defined by C f =1/K f , and Cs is the compres-
sibility of solid particles defined as Cs =1/Ks. Substituting α and C into Eqs. (2.2c),
leads to

(2.4) αε̇ii − ẇi,i +
ṗ
C

= 0.
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The pore fluid pressure p, the relative average velocity of fluid flow to solid phase ẇi,
and the displacement of solid skeleton ui are the unknown variables in these equations
system. The variable ẇi can be eliminated from the equations, so the simplified gover-
ning equation, which contain two independent variables ui and p, can be achieved as
follows:

(2.5) σi j, j + ρüi − ρbi = 0.

Combining Eqs. (2.2b) and Eqs. (2.4) and substituting them into (2.4) we obtain the
second governing equation

(2.6) αε̇ii +

[
ki

ρf gi

(
p,i + ρf üi − ρfbi

)]

,i
+

ṗ
C

= 0.

Eqs. (2.5) and Eqs. (2.6) together form the u – p formulation, which must be solved in
a coupled manner. In order to solve these equations, the initial and boundary conditions
are necessary. For the total momentum balance on the part of boundary Γt , the total
traction t is specified, while for Γu, the displacement u is given. For the fluid phase,
the value of p is specified on Γp.

3. FE    

The spatial discretization can be achieved by suitable shape functions for two variables
ui and p, defined as u = Nuū and p = Npp̄, where Nu and Np are the shape functions.
The governing equations can now be transformed into a set of algebraic equations in
space by the use of an appropriate Galerkin method. The discretization of first equation
in space can be achieved by pre-multiplying Eqs. (2.5) by (Nu)T and by integrating it
over the spatial domain, as

(3.1) Mǖu +

∫

Ω

BTσ′dΩ − αQp̄ − f (1) = 0,

where the constitutive relation is taken into account and defined as δσ′ = Dδε = DBδū,
where B is the matrix relating to the increments of strain and displacements. In Eq.
(3.1), the mass matrix Mu, the coupling matrix Q and the load vector f (1) are defined
as

(3.2a) Mu =

∫

Ω

(Nu)TρNudΩ,

(3.2b) Q =

∫

Ω

(∇Nu)T αmNpdΩ,
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(3.2c) f (1) =

∫

Ω

(Nu)TρbdΩ +

∫

Γt

(Nu)T t̄dΓ,

where mT = {1, 1, 1, 0, 0, 0} .
In a similar manner the second discretized equation is obtained by pre-multiplying

Eqs. (2.6) by (Np)T and integrating it over the spatial domain as

(3.3) Q̇̄u + Hp̄ + Ġ̄p − f (2) = 0,

where

(3.4a) H =

∫

Ω

(∇Np)Tk (∇Np) dΩ,

(3.4b) G =

∫

Ω

(Np)T
1
C

NpdΩ,

(3.4c) f (2) = −
∫

Ω

(Np)T∇T(kρfb)dΩ +

∫

Γp

(Np)Tq̄dΓ.

The overall system can be defined in terms of the variable set {ū, p̄}T as

(3.5)

∣∣∣∣∣∣∣
Mu 0
0 0

∣∣∣∣∣∣∣


¨̄u
¨̄p

 +

∣∣∣∣∣∣∣
0 0

QT G

∣∣∣∣∣∣∣


˙̄u
˙̄p

 +

∣∣∣∣∣∣∣
Kep −Q
0 H

∣∣∣∣∣∣∣


ū
p̄

 =


f (1)

f (2)

 ,

where Kep =

∫

Ω

∇NTDep∇NdΩ.

In order to complete the numerical solution, it is necessary to integrate the diffe-
rential Eqs. (3.5) in time

(3.6) Md̈(t) + Cḋ(t) + Kd(t) = f(t),

where d = {ū, p̄}T

4. H’ L  V A

Direct solutions to initial value problems, first proposed by Hamilton (1835) [4.1]
include all of the forces acting on or within the system, whether conservative or
nonconservative

(4.1) δ

∫ tk

t0
(T + W )dt = 0.
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Bailey (1975, 1977) [13, 14] extended the direct solutions to conservative, nonconserva-
tive, stationary, or nonstationary systems with prescribed initial conditions, prescribed
boundary conditions, and prescribed loading

(4.2) δ

∫ tk

t0
(T + W )dt −

∑N

r=1

∂T
∂q̇r

δqr

∣∣∣∣tkt0 = 0,

where: qr (t) is the dependent variable representing the displacement (which may or
may not be a generalized coordinate) of the r-th degree-of-freedom, r = 1, 2, . . . ,N ;

T is the kinetic energy of the system;
δW =

∑
r
Qrδqr is the (real) evolutional work expression, which includes the work

of the conservative, non-conservative and damping forces, where Qr are the associated
(generalized) forces.

Eq. (4.2), called as Hamilton’s Law of Varying Action has been applied to linear,
nonlinear, time invariant, and time varying dynamic systems in order to solve the
response problem directly, without the use of differential equations of motion by:
Baruch (1982) [15], Hodges (1991) [16], Öz(1995, 2010) [17, 18], Peters (1988) [19].

5. T 

In order to solve the equation of motion, the time-discontinuous Galerkin with discre-
tisation in space and time is proposed:

(5.1) Md̈(t) + Cḋ(t) + Kd(t) = f(t).

Various direct integration methods or step-by-step time integration methods have
been widely used to obtain numerical solutions for Eq. (5.1) of elastodynamic or
structural dynamic problems. Among these, the second-order accurate methods, such
as the Houbolt method [20], the Newmark method [21], the Wilson- θ method [22],
the Park method [23], and the HHT-α method [24], have been most frequently used.

The time-discontinuous Galerkin (TDG) method to the area of structural dynamics
was first applied by Hughes and Hulbert [25-27].

The finite element discretization in Eq. (5.1) defines a damping matrix which takes
into account physics of velocity dependent interaction of pore water and solid skeleton.

The finite element discretizations are used in both space and time simultaneously.
The assumed nodal primary unknown vector and its derivative, with respect to time
for the semi-discrete field equation, are independently interpolated by piecewise poly-
nomial functions in the time domain. DGFEM permits discontinuities of functions at
discretized time levels.

Let 0 = t1 <. . .< tn < tn+1 <. . .< tN+1 = T be a sequence of discrete time levels tn
with corresponding time steps ∆tn = tn+1 − tn and let the trial solution space be:

(5.2) Vh
n ⊂

{
u ∈ H1 (Sn) , u = ūonΓ1 × I

}
,



A  G          125

and the weighting function space be:

(5.3) Wh
n ⊂

{
w ∈ H1 (Sn) ,w = 0onΓ1 × I

}
,

where for each space-time domain Sn = Ω ×In, where In = (tn, tn+1).
We assume that both the space Vh

n and Wh
n consist of tensor products of bilinear

functions of x and t on space-time elements. Moreover, the variables (displacements
and velocities) are discretized both in space and in time.

We use the following notations to denote discontinuous functions at time tn:

(5.4a) w+
n = lim

ε→0+
w(tn + ε),

(5.4b) w−n = lim
ε→0−

w(tn − ε),

where the functions are continuous over each time interval but allow jumps at the
discrete time level tn as shown in Fig. 2.

Fig. 2. Illustration of a) time-discontinuous approximation functions, b) linear shape function.
Rys. 2. Aproksymacja a) funkcją nieciągłą w czasie, b) liniowa funkcja kształtu

While considering a, let d1 and v1 denote the nodal displacements and velocities at
t+n , respectively, and u2 and v2 the nodal displacements and velocities at t−n+1, respecti-
vely and time step In =(tn, tn+1). Also, let d−1 and v−1 represent the nodal displacements
and velocities at t−n , respectively which are determined from either the previous steps
calculations or, if n=1, as the initial data. Thus, the displacements and velocities at an
arbitrary point x and time t ∈ (tn, tn+1) can be expressed as:

(5.5) dh(x, t) = N(x)φ1(t)d1 + N(x)φ2(t)d2,

where:

(5.5a) φ1(t) =
tn+1 − t

∆t
,
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(5.5b) φ2(t) =
t − tn
∆t

,

for P1-P1 as linear shape function.
The temporal derivative of the primary unknown vector, i.e. the velocity vector

v(t), at arbitrary time t ∈ [tn, tn+1] is interpolated as an independent variable by linear
time shape functions as

(5.6) vh(x, t) = N(x)φ1(t)v1 + N(x)φ2(t)v2.

As the vectors of the nodal displacements d and velocities v vary independently in
the following variational equation in the time domain In =

(
t−n , t

−
n+1

)
, Equation (5.1) is

re-expressed as

(5.7) Mv̇ + Cv + Kd = fe,

with the constraint condition

(5.8) ḋ − v = 0.

The weak forms of the semi-discretized equation (5.7) and the constraint condi-
tion (5.8), together with the discontinuity conditions of d and v on a typical time
sub-domain In can be expressed as
(5.9)∫

In

δvT (Mv̇ + Cv + Kd − fe) dt +

∫

In

δdTK
(
ḋ − v

)
dt + δdT

nK [[dn]] + δvT
n M [[vn]] = 0.

Substituting Eqs. (5.5) and (5.6) into Eq. (5.9), we obtain the following matrix equation
from independent variations of dn, dn+1, vn, vn+1
(5.10)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
K

1
2
K −∆t

3
K −∆t

6
K

−1
2
K

1
2
K −∆t

6
K −∆t

3
K

∆t
3

K
∆t
6

K
1
2
M +

∆t
3

C
1
2
M +

∆t
6

C − ∆t2

12
K

∆t
6

K
∆t
3

K −1
2
M +

∆t
6

C − ∆t2

12
K

1
2
M +

∆t
3

C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



dn

dn+1

vn

vn+1


=



Kd−n
0

F1 + Mv−n
F2



in which

(5.11a) F1 =

∫

In

φ1(t)Fdt
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(5.11b) F2 =

∫

In

φ2(t)Fdt.

This is the basic matrix equation of the time discontinuous Galerkin finite element
method. The solutions for nodal displacement vectors dn, dn+1 are uncoupled from
those for nodal velocity vectors vn, vn+1.

It is assumed that the nodal external force vector of the system varies within the
incremental time step In ∈ (tn, tn+1) in the linear form, i.e.

(5.12) F(t) = f(tn)φ1 + f(tn+1)φ2 = fnφ1 + fn+1φ2,

where f(tn), f(tn+1) are the nodal external force vectors at times tn, tn+1. Substitution
of expression (5.5) into expression (5.11) gives

(5.13a) F1 =
∆t
3

fn +
∆t
6

fn+1,

(5.13b) F2 =
∆t
6

fn +
∆t
3

fn+1.

Equation (5.10) can be recast as follows:

(5.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
K

1
2
K −∆t

3
K −∆t

6
K

−1
2
K

1
2
K −∆t

6
K −∆t

3
K

∆t
3

K
∆t
6

K
1
2
M +

∆t
3

C
1
2
M +

∆t
6

C − ∆t2

12
K

∆t
6

K
∆t
3

K −1
2
M +

∆t
6

C − ∆t2

12
K

1
2
M +

∆t
3

C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



dn

dn+1

vn

vn+1


=



Kd−n
0

F1 − F2 + Mv−n
F1 + F2 + Mv−n − ∆tKd−n


This is the basic matrix equation of the time discontinuous Galerkin finite element
method. The solutions for nodal displacement vectors dn, dn+1 are uncoupled from
those for nodal velocity vectors vn, vn+1. Equation (5.14) can be written as

(5.15) dn = d−n (i.e.d+
n = d−n ),

(5.16)∣∣∣∣∣∣∣∣∣∣

M +
∆t
6

C − ∆t2

12
K −∆t

6
C − ∆t2

12
K

∆t
2

C +
∆t2

3
K M +

∆t
2

C +
∆t2

6
K

∣∣∣∣∣∣∣∣∣∣


vn

vn+1

 =


F1 − F2 + Mv−n

F1 + F2 + Mv−n − ∆tKd−n

 ,
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(5.17) dn+1 = d−n +
1
2

∆t (vn + vn+1) .

It should be noticed that continuity of the nodal displacement vector dn at any time
level tn in the time domain I = (0, T ) is automatically ensured in the present DGFEM
formulation. It is only the nodal velocity vectors at discretized time levels that remain
discontinuous. Obviously, this is a significant advantage, particularly for materially
non-linear problems, over the existing DGFEM formulations, in which both nodal
displacements and velocities at both ends of a typical time step, i.e. at times tn and
tn+1, are discontinuous.

6. S  

Stability and accuracy should be taken into account when considering the effectiveness
of an iterative solution method in the time domain [28-31]

Stability analysis
In stability analysis, it is convenient to work with the undamped, free vibration

single degree of freedom model problem

(6.1) d̈ + ω2u = 0

where ω denotes the undamped angular frequency.
Thus, Eq. (5.10) can be reduced to the simple form

(6.2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
K

1
2
K −∆t

3
K −∆t

6
K

−1
2
K

1
2
K −∆t

6
K −∆t

3
K

∆t
3

K
∆t
6

K
1
2
M

1
2
M

∆t
6

K
∆t
3

K −1
2
M

1
2
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



d1

d2

v1

v2


=



Kd−1
0

Mv−1
0


.

Herein, v2 and d2 can be determined in terms of d−1 and v−1 and then rearranged in a
matrix form, as follows:

(6.3)


v2

d2

 = A


v−1
d−1

 ,

where the matrix A denotes the amplification matrix. The explicit form is given as
follows:

(6.4) A =
1
D

∣∣∣∣∣∣∣
36 − 14(ω∆t)2

[
−36(ω∆t)2 + 2(ω∆t)4

]
/∆t

∆t
[
36 − 2(ω∆t)2

]
36 − 14(ω∆t)2

∣∣∣∣∣∣∣ ,
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with D = 36 + 4(ω∆t)2 + (ω∆t)4.
The method is stable if each spectral radius satisfies the following condition, i.e.,

(6.5) ρ(A) ≤ 1

where the spectral radius ρ is defined as ρ(A) = max(λ1, λ2).
The spectral radii of the amplification matrix are plotted in Fig. 3 for the P1-P1

TDG and commonly used direct integration methods. The TDG method succeeds
in asymptotically annihilating spurious high-frequency behaviour without introducing
excessive dissipation in the low-frequency regime.

Fig. 3. Comparison of spectral radii for TDG, Central difference, Houbolt, Wilson-θ, HHT-α, and
Newmark methods.

Rys. 3. Porównanie promienia spektralnego w algorytmach: TDG, różnicy centralnej, Houbolta,
Wilsona-θ, HHT-α oraz metody Newmarka

Accuracy analysis
Accuracy refers to the difference between the numerical solution and the exact

solution when the numerical solution process is stable. If the eigenvalues of A remain
complex, i.e.,

(6.6) λ1,2 = A ± Bi = e(−ξ̄±i)Ω̄,

in which B ,0, and Ω=ω∆t and Ω̄ = ω̄∆t (ω̄ is the approximate frequency evaluated
from a numerical solution) the method considered here is stable.

From Eq. (6.6), we can obtain the following expression:

(6.7) Ω̄ = tan−1(B/A),
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(6.8) ξ̄ =
− ln(A2 + B2)

2Ω̄
,

where ξ̄, is the algorithmic damping ratio. The algorithmic damping ratio provides a
measure of the numerical dissipation. The relative period error is taken as the measure
of numerical dispersion and is calculated as

(6.9)
T − T̄

T
=

Ω

Ω̄
− 1 =

2π(∆t/T )
tan−1(B/A)

,

where T = 2π/ω and T̄ = 2π/ω̄ are the exact natural period and the approximate natural
period evaluated from a numerical solution, respectively.

The algorithmic damping ratios and the relative period errors are plotted and
compared with other known methods in Figs. 4 and 5, respectively. Fig. 5 reveals very
little numerical dissipation in the low-frequency regime. Meanwhile, Fig. 4 indicates
that the period error of the TDG algorithm is virtually negligible in the low-frequency
regime.

7. C  

This work has presented a space-time finite element formulation that is implemented for
the soil dynamics problems. The paper focuses on the formulation and implementation
of Time Discontinuous Galerkin methods for soil dynamics. The algorithms derive
directly from the implicit parent TDG method with piecewise linear functions in time
(P1-P1), which approximate displacements and momenta.

Accuracy and stability analyses have been performed on undamped systems sho-
wing that the schemes are accurate and can be adopted with a user-defined dissipation,
and are helpful in eliminating unresolved non-physical high-frequency modes in the
time response. Moreover, the dissipative properties of the schemes are achieved without
introducing any spurious root as only displacements and momenta are involved in the
formulation.

Remarks:

1. Notes to the method of integration over time:

a) The proposed method of integration over time provides the analysis of errors of
approximation in time in terms of the Galerkin formulation of Hamilton principle

b) For the load pulse, the efficiency of the discontinuous formulation is significantly
higher compared to the classical methods

c) The formulation described above includes the linear shape functions of P1. One
can use higher degree polynomials, which increases the effectiveness of the method

2. TDG method permit assumed unknown vector and its derivative with respect to
time to be discontinuous at the discrete time levels. It can effectively capture the
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Fig. 4. Comparison of relative period errors for TDG, Houbolt, Wilson θ, HHT-α, and Newmark
methods.

Rys. 4. Porównanie względnego błędu okresu w algorytmach: TDG, Houbolta, Wilsona-θ, HHT-α oraz
metody Newmarka

discontinuities at the wave front and filter out the effects of spurious high modes
and control spurious numerical oscillation.

3. The traditional Galerkin finite element method characterized by the semi-discrete
procedure in spatial domain such as the Newmark method in time domain fails to
capture discontinuities or sharp gradients of the solution for the dynamic problems
subjected to impulse loads. In addition, it is also incapable of filtering out the
effects of spurious high modes and controlling spurious numerical oscillation.

4. In TDG, continuity of the displacement vector at each discrete time instant is auto-
matically ensured, whereas discontinuity of the velocity vector at the discrete time
levels still remains. The computational cost is then obviously saved, particularly in
the materially non-linear problems.
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Fig. 5. Comparison of algorithmic damping ratio for TDG, Houbolt, Wilson θ, HHT-α, and Newmark
methods.

Rys. 5. Porównanie procentu tłumienia krytycznego w algorytmach: TDG, Houbolta, Wilsona-θ, HHT-α
oraz metody Newmarka
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ROZWIĄZANIE ZADANIA DYNAMIKI CAŁKOWICIE NAWODNIONEGO GRUNTU PRZY
ZASTOSOWANIU MES Z NIECIĄGŁYM SFORMUŁOWANIEM GALERKINA W CZASIE

S t r e s z c z e n i e

Artykuł podejmuje zagadnienie analizy rozchodzenia się fal naprężeniowych w gruncie w ujęciu meto-
dy elementów skończonych bazując na sformułowaniu rozwiązania ciągłego w przestrzeni i nieciągłego
w dziedzinie czasu Galerkina (space and time-discontinous Galerkin TDG finite element method). W tym
sformułowaniu zarówno przemieszczenia jak i prędkości są wielkościami nieznanymi wzajemnie nieza-
leżnymi aproksymowanymi ciągłymi funkcjami kształtu w przestrzeni i nieciągłymi funkcjami kształtu
w czasie.

Do opisu zachowania się gruntu w pełni nasyconego wodą zastosowano sformułowanie u−p w ujęciu
metody elementów skończonych. Grunt traktowany jest, jako ośrodek dwufazowy składający się ze szkie-
letu i wody w porach. Zastosowane sformułowanie uwzględnia tłumienie ośrodka przez uwzględnienie
dyssypacji energii proporcjonalnej do prędkości wody względem szkieletu.

W artykule przedstawiono porównanie proponowanej metody rozwiązania numerycznego w dziedzi-
nie czasu do metod obecnie stosowanych, takich jak: metoda różnicy centralnej, metoda Houbolta, Wilsona
θ, HHT-α oraz najczęściej stosowanej metody Newmarka. Z porównania wynika, że proponowana metoda
jest metodą stabilną o małym błędzie numerycznego rozwiązania.
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