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COMPUTING INTERNODAL CONDUCTIVITIES IN NUMERICAL MODELING
OF TWO DIMENSIONAL UNSATURATED FLOW ON RECTANGULAR GRID

A. SZYMKIEWICZ1, K. BURZYŃSKI2

This paper compares numerical solutions of transient two-dimensional unsaturated flow equation
by using different averaging schemes for internodal conductivities. Averaging methods such as
arithmetic mean, geometric mean, upstream weighting, and integrated mean are taken into account,
as well as a recent approach based on steady-state approximation. The latter method proved the
most flexible, producing relatively accurate solutions for both downward and upward flow cases.

Key words: unsaturated zone, Richards’ equation, hydraulic conductivity, finite difference method, finite
volume method.

E 

Unsteady water flow in partially saturated soil is driven by capillary and gravity forces.
It can be described by a parabolic partial differential equation, known as the Richards’
equation. Its characteristic feature is a strongly nonlinear relationship between the
water potential, saturation and hydraulic conductivity. When the Richards’ equation
is solved numerically, it is necessary to estimate the average value of the hydraulic
conductivity between adjacent nodes, in order to compute the water flux from discrete
form of the Darcy’s law. The most often used techniques include the arithmetic average,
geometric average, upstream weighting, where the value of the conductivity is taken
from the node which is positioned upstream with respect to the flow direction, and
integrated average, based on the integration of the hydraulic conductivity function for
the range of water potentials corresponding to their nodal values. For horizontal flow,
the integrated average provides good results, but for vertical flow none of these methods
ensures accurate solution for a wide range of boundary conditions, soil parameters and
spacing between nodes. Recently, a more accurate approach was proposed, based on the
analysis of the steady-state flow between nodes. It consists of three distinct formulas,
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one of which is to be chosen, depending on the relation between capillary and gravity
forces at the scale of a single grid cell. The performance of various averaging methods
was compared for two examples of 2D simulations on rectangular grid, representing
downward and upward flow respectively. In the first case, the new averaging method
was the most accurate one, while the geometric and integrated averages did not lead to
convergent solutions. In the second case, where upward capillary flow was simulated,
the geometric mean was the most accurate, the new method being second-best. Thus, it
can be concluded that the new method ensures accuracy for both upward and downward
flow, in contrast to other existing approaches.

1. I

Water flow in partially saturated soils is commonly described with the Richards’ equ-
ation (e.g. Zaradny 1990 [14]), which for a two-dimensional isotropic case can be
written as follows:

(1.1)
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∂t
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(
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∂h
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)
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∂z

(
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(
∂h
∂z
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))
= 0

where: h – water potential head (negative in the unsaturated zone), θ(h) – volumetric
water content, K(h) – hydraulic conductivity, t – time, x – horizontal coordinate, z
– vertical coordinate (oriented positively downwards). Eq. (1.1) represents the law of
mass conservation of incompressible fluid with water fluxes expressed by the Darcy’s
law. The values of θ and K depend on the water potential in a highly nonlinear manner,
which can be described for example by the Brooks-Corey – Mualem model (Zaradny
1990 [14]):

(1.2)
θ (h) = θR + (θS − θR) · |hE/h|λ
K (h) = KS · |hE/h|2+2.5/λ for h < hE

(1.3)
θ (h) = θS

K (h) = KS
for h > hE

where: θR – residual water content, θS – water content at full saturation, hE – air-entry
pressure, depending on the size of the largest pores, λ – shape parametr, depending
on the pore size distribution, KS – hydraulic conductivity at full saturation. The form
of Eqs. (1.2-1.3) implies that in unsaturated conditions the values of hydraulic con-
ductivity may differ by several orders of magnitude over relatively small distances.
On the other hand, numerical solution of the Richards’ equation requires that the
average hydraulic conductivity is computed between two adjacent nodes (if the finite
difference method is used) or within a single element (if the finite element method is
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used). As it was shown by many authors (e.g. Haverkamp & Vauclin 1979 [9], Helmig
& Huber 1996 [10], Belfort & Lehmann 2005 [5]), the choice of averaging method
has a significant influence on the solution accuracy. This issue has been considered
in detail for finite difference solution of one-dimensional flow (Haverkamp & Vauclin
1979 [9], Baker 2006 [3], Szymkiewicz 2009 [12]), but the proposed approaches can
be easily extended for the case of two-dimensional flow, if Eq. (1.1) is solved with
finite difference or finite volume method on a rectangular grid (e.g. Gastó et al. 2002
[8]). In this paper, we examine the accuracy of the averaging scheme proposed by
Szymkiewicz (2009) [12] and compare it with other popular averaging methods for the
two-dimensional case.

2. C    1D 

Let us consider vertical flow between nodes U (upper) and L (lower), show in Fig. 1a.
Replacing the derivative with a differential quotient, one can approximate the water
flux between nodes as follows:

(2.1) q = −KAV ·
(
hL − hU

zL − zU
− 1

)
= −KAV ·

(
∆ h
∆ z
− 1

)

where KAV is the average value of conductivity between nodes U and L. The most
commonly used averaging methods include:

• arithmetic mean:

(2.2) KARIT (hU , hL) = 0.5 · (KU + KL)

• geometric mean:

(2.3) KGEOM (hU , hL) =
√

KU · KL

• upstream weighting:

(2.4) KUPS (hU , hL) =



KU , if
∆ h
∆ z
− 1 6 0

KL, if
∆ h
∆ z
− 1 > 0

• integrated mean:
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(2.5) KINT (hU , hL) =



1
(hL − hU)

∫ hL

hU

K (ψ) dψ, gdy hU , hL

KU , gdy hU = hL

On the basis of previously published results (e.g. Forsyth et al. 1995 [7], Miller
et al. 1996 [11], Baker et al. 1999 [4], Gastó et al. 2002 [8]) one can conclude that
none of these methods is truly universal. Their accuracy depends on the soil type
(which determines the form of K(h) function), initial and boundary conditions, and the
distance between nodes. In specific conditions each of the methods may lead to large
errors in the values of the fluxes or to non-physical oscillations in the water potential
within the solution domain.

A more flexible approach seems to be the so-called Darcian mean (from the name
of H.Ph. Darcy), proposed by Warrick (1991) [13]. It is based on the assumption
that the instantaneous value of the flux between two nodes should be equal to its
steady-state value for the considered nodal values of water potential. For horizontal
flow the Darcian mean is equal to the integrated mean (Baker 2000 [2]). For vertical
flow its value depends on the relation between capillary and gravity forces within a
single gridblock, and in most cases can be calculated only approximately (Baker 1995
[1], Baker et al. 1999 [4], Baker 2000 [2], Gasto et al. 2002 [8]). In the paper by
Szymkiewicz (2009) [12] the approximating formulas were derived from the analysis
of the steady-state pressure profiles between nodes. Three different formulas were
proposed, which correspond to various types of flow:
◦ downward flow with ∆h/∆z < 0 (infiltration in dry soil):

(2.6) KDAR = max
(
KINT (hU , hL) ,

KU

1 − ∆h/∆z

)

◦ downward flow with 1 > ∆h/∆z > 0 (drainage, infiltration close to water table):

(2.7) KDAR = min
(

KU

1 − ∆h/∆z
,K

(
hL − (∆h)2

∆z

))

◦ upward flow with ∆h/∆z > 1 (capillary rise):

(2.8) KDAR =
∆z · K (1)

AV · K (2)
AV

(∆z − δz) · K (1)
AV + δz · K (2)

AV

where:
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√
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K (1)
AV = KINT (hU , hR) , K (2)

AV = K (hR) , hR = hL − ∆ z

The proposed approximation of the Darcian mean depends not only on the values of
hU i hL, but also on ∆z.

Fig. 1. Spatial discretisation of the unsaturated flow equation: a) one-dimensional in z direction,
b) two-dimensional in x − z or r − z plane.

Rys. 1. Dyskretyzacja przestrzenna równania przepływu nienasyconego: a) jednowymiarowego
w kierunku z, b) dwuwymiarowego w płaszczyźnie x − z lub r − z

3. N   2D    

Eq. (1.1) is solved on the numerical grid shown in Fig. 1b. The finite volume grid is
constructed in such a manner that the cell edges are located mid-way between nodes.
Coupling finite volume spatial disctetization with fully implicit time discretization, one
obtains the following discrete equation for cell i, j:

(3.1) Vi, j

θ
(
hk+1

i, j

)
− θ

(
hk

i, j

)

∆t
+ Si+1/2 · qi+1/2 − Si−1/2 · qi−1/2+

+S j+1/2 · q j+1/2 − S j−1/2 · q j−1/2 = 0
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where: i – spatial index in x direction, j – spatial index in z direction, k – time step
index, Vi, j – cell volume, S – areas of the outer surfaces of the cell, q – fluxes normal
to the outer surfaces of the cell, computed as follows:

(3.2) qk+1
i+1/2 = −Ki+1/2 ·


hk+1

i+1, j − hk+1
i, j

∆ xi+1/2

 , qk+1
i−1/2 = −Ki−1/2 ·


hk+1

i, j − hk+1
i−1, j

∆ xi−1/2



(3.3) qk+1
j+1/2 = −K j+1/2 ·


hk+1

i, j+1 − hk+1
i, j

∆ z j+1/2
− 1

 , qk+1
j−1/2 = −K j−1/2 ·


hk+1

i, j − hk+1
i, j−1

∆ z j−1/2
− 1



If the Darcian mean is used, the average conductivities in horizontal direction Ki+1/2
oraz Ki−1/2 are computed as the integrated means from Eq. (4d), while the conductivities
in vertical direction K j+1/2 and K j−1/2 are computed from Eq. (2.6), (2.7) or (2.8)
according to the actual flow conditions. Note that the same approximation can be
used for 2D flow in Cartesian coordinates and in cylindrical coordinates – the only
differences will be in the volumes and outer areas of the cells.

Substituting formulae (3.2-3.3) into Eq. (3.1), written for each finite volume, a
system of nonlinear equations is obtained, whose unknowns represent the values of the
water potential at the new time step hk+1

i, j . This system has to be solved iteratively for
each time step. In this case the modified Picard metod (Celia et al. 1990 [6]) is used,
which leads to a system of linear equations with sparse matrix in each iteration. The
sparse linear system is solved by the conjugated gradient method. A numerical code
based on the outlined algorithm was written by the authors and used in the examples
presented below.

4. N 

4.1. E 1

In order to assess the accuracy of the presented averaging approaches for 2D flow
problems, several numerical tests were carried out. Two representative cases are shown
in this section.

The first example concerns downward infiltration with prescribed flow rate in sandy
soil. Initial and boundary conditions are shown in Fig. 2a. The Brooks-Corey parame-
ters are as follows: θR = 0.043, θS = 0.450, hE = 7.1 cm, λ = 0.592,
KS = 5.8×10−5 m/s.

The reference solution was obtained on a dense grid, for which all the conductivity
averaging methods provided very similar results. Next, a series of simulations were
carried out on coarse grid using various averaging methods described above. The results
are compared in Fig. 3. One can see the positions of two isolines of water potential
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Fig. 2. Solution domain and initial and boundary conditions applied in the numerical examples:
a) example 1, b) example 2.

Rys. 2. Obszar rozwiązania oraz warunki początkowo brzegowe zastosowane w przykładach
numerycznych: a) przykład 1, b) przykład 2

head: -50 cm i -700 cm, obtained with different methods. In the reference solution these
isolines are close to each other, indicating a sharp infiltration front. This steep shape
is virtually impossible to represent on coarse grid – in all other solutions the wetting
front is much more diffused. It should be noted however, that the Darcian approach
produced the overall shape of the wet zone most similar to the reference solution. The
arithmetic and upstream means overestimated significantly the flow rate in horizontal
direction, although they were more accurate with respect to the position of the isoline
-700 cm in the bottom part of the wet zone. It was impossible to obtain convergent
solutions using the geometric and integrated mean, which confirmed that they had
limited applicability for problems involving infiltration into dry soil. Both methods
largely underestimate vertical conductivities, leading to unphysical oscillations in the
solution (Baker et al. 1999 [4], Szymkiewicz 2009 [12]). As a quantitative measure of
the accuracy of various methods, the root-mean-square error in the potential head can
be introduced:

RMSEh =


1
N

N∑

i=1

(
hi − hi,re f

)2

0.5

where hi is the value of the potential head at node i for the final time t = 4h obtained
from the coarse grid solution and hi,re f is the corresponding value from the reference
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solution. For the Darcian averaging method RMSEh = 91 cm, for the arithmetic mean
159 cm and for the upstream mean 176 cm.

Fig. 3. Example 1: Pressure head isolines after 4hrs for different conductivity averaging schemes.
Rys. 3. Przykład 1: Izolinie wysokości ciśnienia po 4 godzinach dla różnych sposobów uśredniania

przewodności

4.2. E 2

In the second case we considered the axi-symmetric upward capillary rise in silty clay
(Fig. 2b). The following Brooks-Corey parameters were used: θR = 0.056, θS = 0.423,
hE = 34.5 cm, λ =0.159, KS = 2.5x10−7 m/s. As in the previous, case the reference
solution was obtained using a fine grid with ∆z = ∆r = 1 cm. In Fig. 4 the reference



C        . . . 223

Fig. 4. Example 2: Pressure head isolines after 20 days for different conductivity averaging schemes.
Rys. 4. Przykład 2: Izolinie wysokości ciśnienia po 20 dniach dla różnych sposobów uśredniania

przewodności

solution is compared to coarse-grid solutions obtained with x = ∆z = 20 cm using
various averaging methods. The position of water potential isolines -500 cm and -9000
cm after 20 days of upward flow is presented. Again, the results obtained with Darcian
mean are in relatively good agreement with the reference solution. Virtually the same
results were obtained with the integrated mean, thus they are not shown in the figure.
The geometric mean leads to even better results in this case, while the arithmetic and
upstream means significantly overestimate the size of the wet zone. In contrast to the
previous case, here the total amount of water which enter the domain largely depends
on the choice of the averaging scheme. Thus, it is convenient to use the infiltrated
volume as an error measure:
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EV =
V − Vre f

Vre f
· 100%

where V is the volume of water that entered the system from the lower boundary
according to the coarse grid solution, and Vre f the corresponding value obtained from
the reference solution. The errors for various averaging schemes are as follows: geo-
metric +5.5%, Darcian +15.3%, integrated +18.4%, arithmetic +34.7% and upstream
+74.6%. This confirms the result of the visual inspection of the isolines, showing that
the Darcian averaging method is second best after the geometric mean.

5. C

The presented examples allow us to conclude that the approximate Darcian mean
leads to relatively accurate solution on coarse grid for different soils and boundary
conditions. Other methods generated significant errors or failed to converge in one of
the test cases. In particular, the geometric and integrated mean should be avoided when
modeling downward infiltration in dry sandy soils, while they can be used for upward
capillary dominated flow. Further research is necessary to evaluate the accuracy and
applicability of various methods for unstructured grids.
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S t r e s z c z e n i e

W artykule porównano rozwiązania numeryczne dwuwymiarowego równania przepływu nienasycone-
go z użyciem różnych metod uśredniania współczynnika przewodności hydraulicznej między sąsiednimi
węzłami. Uwzględniono średnią arytmetyczną, geometryczną, “pod prąd” oraz całkową, a także niedawno
zaproponowany sposób uśredniania oparty na analizie przepływu ustalonego. Ten ostatni sposób okazał
się najbardziej uniwersalny, gdyż umożliwiał otrzymanie stosunkowo dokładnych wyników dla przepływu
wody w strefie nienasyconej zarówno w kierunku w dół jak i w górę.
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