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Abstract. This paper presents the application of a particle swarm optimization (PSO) to determine iterative learning control (ILC) law gains

for an inverter with an LC output filter. Available analytical tuning methods derived for a given type of ILC law are not very straightforward

if additional performance requirements of the closed-loop system have to be met. These requirements usually concern the dynamics of a

response to a reference signal, the dynamics of a disturbance rejection, the immunity against expected level of system and measurement

noise, the robustness to anticipated variations of parameters, etc. An evolutionary optimization approach based on the swarm intelligence is

proposed here. It is shown that in the case of the ILC applied to the LC filter, a cost function based on mean squares can produce satisfactory

tuning effects. The efficacy of the procedure is illustrated by performing the optimization for various noise levels and various requested

dynamics.
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1. Introduction

Sine wave inverters (also known as true sine wave inverters)

have been the essential part of recently heavily developed

uninterruptible power supply (UPS) systems and distributed

power generation from renewables. A steadily growing de-

mand for more and more accurate control algorithms for these

converters is attributed to the need of achieving high quality

of the output voltage waveform. There exist various control

system synthesis methods for these applications. Majority of

them do not exploit repetitiveness of the process under con-

sideration. Standard feedback control, deadbeat control [1],

sliding mode control [2] or hysteresis control [3], cannot de-

liver good performance in the case of a non-linear load as,

for instance, a diode rectifier with a capacitor in the DC-

link. It should be noted that the considered inverters work in

the constant-amplitude constant-frequency (CACF) mode and

hence the LC filter control law derivation task can be accom-

plished by exploiting its repetitive character resulting from the

periodic nature of a reference signal and a disturbance. There

are several schemes that exploit the process repetitiveness, e.g.

solutions with oscillatory terms tuned to the selected frequen-

cies anticipated in the load current [4], solutions derived from

the repetitive control theory [5–9], and the iterative learning

control theory [10]. Some of these controllers, although de-

signed using different approaches, share many joint features

and sometimes are even identical with respect to their topol-

ogy [5]. The ILC approach is very promising and attractive

in applications for various power electronic converters due to

a relatively simple and easy for implementation control law.

However, frequently when applying to practical situations, af-

ter initial error damping its oscillations build-up appears again

over the pass-to-pass direction, which feature has to be elim-

inated. The common way to solve this problem is to apply

an additional zero-phase low-pass filter which is aimed to

limit the controller learning process to a certain frequency

bandwidth. This immunizes the system against periodic dis-

turbances, which otherwise could cause the instability [11].

At the same time, the simple and elegant ILC control law does

not imply straightforward analytical tuning methods and lin-

ear cost function minimization [12, 13], which task however

is known to be non-trivial [14].

Our main goal is to test the possibility of solving

these problems by employing evolutionary based optimization

methods, with the use of non-parametric performance index,

as e.g. the squared control error integral (ISE) or the integral

of squared time multiplied control error (ISTE) to eliminate

the need for subjective penalty coefficient(s) selection. The

only parameters aimed to be selected are the expected noise

level and these which govern dynamics of a closed-loop sys-

tem. Determining the latter should be as simple as possible,

e.g. only one time constant of a first-order lag element to

be set by the designer. Obviously there is the possibility to

extend this research for more sophisticated models and cost

functions.

2. Iterative learning control law for LC filter

There is a variety of ILC algorithms, from the simplest, that

use only control error from previous and current passes [15],

through more complex requiring also full-state information.

An example of the latter is presented and analyzed in detail
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in e.g. [11], and was already applied to a single-phase inverter

with an LC output filter [10]. In what follows, some key points

extracted from [10] are briefly discussed for compactness.

The single-phase inverter depicted in Fig. 1 is considered

here as a plant to be controlled. It is important to note that

the PSO procedure does not require knowledge of the mathe-

matical model in the state space form as far as a simulational

model built in any e.g. drag-and-drop modeling environment

like Matlab/Simulink/PLECS is available. To formulate the

control law discussed in [10] it is only necessary to identi-

fy state variables. For sake of clarity initially the simplified

mathematical model of the plant (as in Fig. 2) and resulting

controller topology are considered. The LC filter with the non-

negligible choke resistance, fed by a pulse width modulated

(PWM) converter with negligible dynamics, can be described

by the state-space equation of the following form
{

ẋ (t) = Acontx (t) + Bcontu (t) + Econt iload(t)

y (t) = Cx (t)
(1)

with

Acont =





−Rf

Lf

−ki

Lfku

ku

Cfki

0



 , (2)

Bcont =




kcki

Lf

0



 , (3)

Econt =




0
−ku

Cf



 , (4)

C =
[

0 1
]
, (5)

x =

[
imL

um
C

]
, (6)

where Rf , Lf and Cf denote respectively the filter resistance,

inductance and capacitance, u(t) is the control signal for the

PWM modulator and iload(t) stands for the disturbance (i.e.

current drawn by the loads). The superscript m in (6) indicates

that the state variables are represented by the measured sig-

nals. Physical values of the choke current iL and the capacitor

voltage uC can be obtained from
{

imL = kiiL

um
C = kuuC

(7)

where ki and ku denote gains introduced by the current an

voltage sensors. The PWM converter is assumed here to be

an ideal amplifier with the zero delay and the overall gain

equal to kc, which simplification is used only for controller

gain determination. The final verification is made for the sys-

tem with a PWM converter discontinuous model depicted in

Fig. 1.

In many applications, a digital implementation is required

and most ILC designs assume that this is done by direct digital

control, that is, the process dynamics have been sampled by

using the zero-order hold discretization method at a uniform

rate Ts to obtain a discrete state-space model
{

xk (p + 1) = Axk (p) + Buk (p) , 0 ≤ p ≤ α − 1,

yk (p) = Cxk (p),
(8)

where

A = eAcontTs , (9)

B =

Ts∫

0

eAconttBcontdt (10)

and k denotes the finite length (α) trial number. The initial

condition for the trial k is taken as the final state of the pre-

vious trial.

Note also that the load current representing a disturbance

input has been omitted here to simplify an ILC scheme to be

solved. However, presence of this disturbance can even desta-

bilize an ILC scheme and further work is required. One of the

possible approaches to attenuate a disturbance influence to the

process dynamics are based on the H∞ norm minimization,

which is the subject of ongoing work. Also, additional filter-

ing can be used, which can help in avoidance of such negative

effects. The simplified description (8) is employed only to de-

rive the control law whereas the influence of the load current

is tested in the drag-and-drop model from Fig. 1.

Fig. 1. Schematic diagram of a single-phase inverter with an LC output filter, measurement interface (signal conditioning) and loads
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(disturbance)

Fig. 2. Simplified model of the single-phase inverter with an LC

output filter

A control law under consideration (see [11]) has the

form of

∆uk+1 (p) = K1ηk+1 (p + 1) + K2ek (p + 1) , (11)

where

∆uk+1 (p) = uk+1 (p) − uk (p) (12)

and

ηk+1 (p + 1) = xk+1 (p) − xk (p) =

=

[
imL (k + 1, p)

um
C (k + 1, p)

]
−

[
imL (k, p)

um
C (k, p)

]
,

(13)

ek (p + 1) = u
ref
C (k, p + 1) − um

C (k, p + 1) , (14)

K1 =
[

k11 k12

]
, (15)

K2 = [k2] (16)

with u
ref
C being the reference output voltage multiplied by the

measurement gain ku. This yields the following model




ηk+1 (p + 1) = Âηk+1 (p) + B̂0ek (p)

ek+1 (p) = Ĉηk+1 (p) + D̂0ek (p)
, (17)

where

Â = A + BK1, (18)

B̂0 = BK2, (19)

Ĉ = −C (A + BK1) , (20)

D̂0 = 1− CBK2 (21)

and hence the closed-loop system dynamics can be investigat-

ed using the repetitive process stability theory [11]. Topology

of the derived system is sketched schematically in Fig. 3. Note

also that the control law (11) has the ability to influence the

pass to pass error dynamics only if the first Markov parameter

CB is non-zero (in the SISO case) [13]. In the real system this

condition is even stronger because it should be tested under

uncertainties of the system parameters and noise. Key para-

meters of the model are listed in Table 1, where also a first

Markov parameter in relation to maximal absolute value of

all Markov parameters is included.

Table 1

Key features and parameters of the model

Parameter
Symbol
across

the paper

Value for filter A

(case scenario A)

Value for filter B

(case scenario B)

Filter inductance Lf 600 µH 300 µH

Filter capacitance Cf 80 µF 160 µF

Resonant frequency – 726 Hz 726 Hz

Choke resistance Rf 200 mΩ 100 mΩ

Capacitor series resistance (omitted in the state matrix (2)) – 5 mΩ 10 mΩ

Reference signal frequency fref 50 Hz 50 Hz

PWM frequency and controller sample time fPWM = 1

Ts
10 kHz 10 kHz

Midpoint in log scale between reference signal frequency and carrier frequency – 707 Hz 707 Hz

IGBT blanking (dead) time – 2 µs 2 µs

DC-link voltage kc 450 V 450 V

Measurement noise –

1% and 2%
of max. signal value
(case scenarios A1

and A2 respectively)

1%

Voltage measurement gain ku 1/325 [1/V] 1/325 [1/V]

Current measurement gain ki 1/200 [1/A] 1/200 [1/A]

Measurement signal conditioning (measurement interface in Figs. 1 and 4) –
First order
lag element
τm = 50 µs

First order
lag element

τm = 50 µs

First Markow parameter in relation to the biggest one – 24% 24%
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Fig. 3. Schematic diagram of the system

It should be emphasized that the practical implementa-

tion of the control law (11), when the mathematical model

has been simplified, parameter uncertainty occurs and distur-

bance are present, requires additional filtering in (14) due to

known issue of possible error building-up in long horizon in

k-direction [16]. The disturbance input has been intentionally

omitted in (8) because its inclusion would complicate signifi-

cantly the model to be considered. However, it has been veri-

fied experimentally that an appropriately designed zero-phase

lag low pass filter can stabilize the system for nonlinear pe-

riodic disturbances. Thus, in the robust version of (11) the

control error is calculated as follows

ek (p + 1) = u
ref
C (k, p + 1) − Q(z) (um

C (k, p + 1)) , (22)

where a Q-filter spectral characteristic has been set by using

the guess and check procedure. Filter coefficients have been

calculated using cheby2 method of the Matlab filter design

toolbox and are given in Table 2.

Table 2

Parameters of the zero-phase lag filter

Parameter Value

Sampling frequency 10 kHz

Passband frequency 500 Hz

Stopband frequency 1000 Hz

Passband ripple 1 dB

Stopband attenuation 20 dB

Design method Cheby2 with exact matching of the stopband

Implementation filtfilt() Matlab function

Window width 200 samples

Window center exactly at um
C

(k, p + 1)

A controller gain triple {k11, k12, k2} can be designed,

see [10], by solving relevant LMI problem. This requires,

however, that the system is simplified to the LTI (linear time-

invariant) form and all imperfections of measurement inter-

faces (e.g. noise, delays) are neglected. Also, there is no

straightforward way to tune the controller to obtain particu-

lar desired dynamics of the closed-loop system. In this paper

the whole tuning procedure is redesigned to become a very

straightforward optimization task. The controller gain triple

{k11, k12, k2} aimed to obtain the desired dynamics is found

by means of the constricted PSO algorithm with appropriate

choice of the cost function. It turns out that a very basic non-

parametric performance index like the ISE (integral square

error)

I1 =

tSTOP∫

0

(
u

ref
C (t) − um

C (t)
)2

dt (23)

with a normalized reference signal

u
ref
C (t) =

(
1 − e

−t
τref

)
sin (2πfref t) , (24)

where tSTOP , τref and fref denote a simulation stop time, a

time constant for reference voltage envelope and a reference

frequency respectively, is sufficient to produce satisfactory set

of controller gains. The advantage of such a performance in-

dex is lack of subjective parameters as it is a non-parametric

index. To have more influence on the control signal u(t) it is

advisable to use a combined performance index, for example,

I2 =

tST OP∫

0

((
u

ref
C (t) − um

C (t)
)2

+ βu̇2 (t)

)
dt, (25)

where β is a weighting factor. Note that the index I1 is a spe-

cial case of the index I2 with β = 0. Such an index introduces

a subjective choice of the weighting factor. Both approaches

has been tested in this paper. In the discrete form of (25)

a scaling factor or a composition with a monotonic function

can be introduced to make the result physical interpretation

easier. Often the reciprocal of the positive-defined cost func-

tion is called a fitness function. These transformations do not

influence the behavior of the employed here gradientless op-

timization method. For the discrete simulations the following

fitness function has been chosen:

Ffit =

0BBB� tST OP
TsX

n=1

�
u

ref
C

(n)−um
C

(n)
�2

+
β

f2

ref

(u(n)−u(n−1))2

tSTOP

Ts

1CCCA−0.5

,

(26)

where n denotes an integer time index. It should be strong-

ly stressed that the plant model should include plant natural

features as nonlinearities, delays, system and measurement

noise. Resulting gains are then determined according to the

given performance index for certain level of noise and mea-
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Fig. 4. Schematic diagram of a simplified model of the converter

surement signal conditioning (antialiasing filters, noise can-

cellation filters). However, this approach has a drawback in

that the number of required simulation runs is proportional

to the number of particles and to the number of search iter-

ations. Usually it takes several hundred runs to complete the

search with a fairy good result. That is why we have decided

to approximate the pulse width modulated converter with an

ideal gain. The effect of the system noise has been modeled by

adding a 0.5% noise to the control signal as in Fig. 4. This sig-

nificantly reduces computational burden of the method used.

The original model with PWM requires at least 1 µs simu-

lation step size to give trustworthy numerical results whereas

its simplified version can be run with the frequency of the

control system, i.e. 10 kHz. The tSTOP time in (26) also has

to be carefully chosen, as too small value results in poor reli-

ability of the assessment of the performance, whereas too big

slows down the optimization process. Taking into account the

dynamics of the discussed system (Table 1) together with a

number of the test loads (Table 3), tSTOP = 10 s turns out

to be reasonable.

3. Particle swarm optimization (PSO)

Evolutionary algorithms are often used in multidimension-

al and multiobjective nonlinear optimization problems. Nu-

merous examples include mechanical design [17] and signal

processing [18] tasks. In particular, PSO is a stochastic op-

timization algorithm. An optimizer is initialized with a set

called swarm of random candidate solutions called particles.

Particles travel through the space of the problem solutions and

are rated in each iteration according to the selected objective

function. Their movements are influenced by the global best

solution and the particle’s best solution found so far. Note

that a search path for each particle is not deterministic. There

is a random factor that modifies the strength of individual

and social behaviour for each particle in each iteration as the

fixed coefficients c1 and c2 of the velocity update rule (27) are

multiplied by a random number. Thus, the core of the basic

algorithm, under the assumption that the global best solution

is the only information shared among particles, can be written

as [19]:

vi (n + 1) = c1vi (n) + c2rand()
(
x

pbest
i − xi (n)

)

+ c3rand()
(
xgbest − xi (n)

)
,

(27)

xi (n + 1) = xi (n) + vi (n + 1) , (28)

where the following notations were used:

i – particle identification number,

n – iteration number,

vi – speed of the i-th particle,

xi – position of the i-th particle,

x
pbest
i – best solution proposed so far by i-th particle (pbest),

xgbest – best solution found so far by the swarm (gbest),

c1 – explorative factor (inertia weight),

c2 – individuality factor,

c3 – sociality factor,

rand() – uniformly distributed between 0 and 1 random num-

ber.

If the rule (27) manifests unsatisfactory convergence speed

or limited ability to find the optimum or acceptable subopti-

mum, numerous modifications are described in the literature,

see e.g. [20]. However, it has been tested that the original PSO

scheme is effective for the ILC application considered here.

Hence, no modifications regarding information flow have been

made. Constant factors present in the rule are set according

to so called constricted PSO algorithm [21]:

vi (n + 1) = χ
[
vi (n) +

ϕ

2
rand()

(
x

pbest
i − xi (n)

)

+
ϕ

2
rand()

(
xgbest − xi (n)

)]
,

(29)

where ϕ is chosen to be equal to 4.1 and the resulting χ is

then 0.73 as in [21].

For the discussed ILC control law design, each particle is

a vector

xi =
[

k11 k12 k2

]
(30)

of candidate settings for the controller gains. All search direc-

tions are assumed to be unconstrained. It is common practice

to set limits (walls for the particles) if clear physical bound-

aries are identifiable. Here no additional analysis of (11) is

assumed, e.g. regarding acceptable signs of the gains. A nu-

merical model of the system can be run with any set of real

valued gains. Unstable solutions have lower fitness than the

stable ones and they do not attract particles. A schematic di-

agram of the control system connected to the PSO optimizer

is shown in Fig. 5.
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Fig. 5. Schematic diagram of the system connected to the PSO optimizer

4. Numerical experiment

The detailed numerical model of the power electronic con-

verter has been prepared in Matlab/Simulink/PLECS envi-

ronment. The PWM controlled inverter is one of the sources

of a system noise. To accommodate this phenomenon in the

linear model of the inverter a white noise is added to the

control signal (Fig. 4). Peak-to-peak white noise levels stated

in Table 1 are given in reference to the peak-to-peak value

of a measured variable. A practical peak-to-peak value of the

white noise is calculated using the crest factor equal to 4 (this

threshold is not crossed around 98% of the time). This reflects

a common practice to the Gaussian noise peak-to-peak value

approximation, where rare peaks are omitted [22].

The electrical part of the system together with the modula-

tor are implemented in the PLECS subsystem, where the rest

of the model is implemented in Simulink mainly by means

of S-Function Builder. All models are simulated using fixed

step solver at 10 kHz for linear approximation of the inverter

and at 1MHz for discontinuous description of the inverter (i.e.

with the transistor switches and the pulse width modulator).

The test scenario includes switching (see switches S1, S2 and

S3 in Fig. 1) between different loads summarized in Table 3.

Table 3

Test loads

Load no. 1 Load no. 2 Load no. 3

Diode rectifier Linear resistive load Diode rectifier

L1 = 250µH L3 = 500µH

C1 = 3mF C3 = 3mF

R1 = 20Ω R2 = 5Ω R3 = 7Ω

Approx. P1= 5kW Approx. P2= 10kW Approx. P3= 15kW

S1 is on from 0.5s to 3s S2 is on from 3s to 5s S3 is on from 5s

The PSO function is coded in the M-file and calls the mod-

el of the converter to calculate value of the fitness function.

Several performance indices have been taken into account in-

cluding IAE, ISE and IGSE. The fitness function (26) has been

selected by trial and error method, which leads to the satis-

factory behavior of the system and lack of subjective penalty

factors (if the derivative term is skipped). However, it is ad-

visable to set β > 0 to get the possibility to influence the

dynamics of the control signal, which is important in a real

noisy system case. Key features of PSO used here are listed

in Table 4.

Table 4

Key parameters of the swarm

Particle [k11 k12 k2] controller gains

Swarm size 27 particles

Number of iterations max. 45

Boundary conditions None

Algorithm modifications None (standard constricted PSO)

No assumptions are made regarding a search space when

the swarm is initialized. However, to make an optimization

process reasonable in terms of the wall clock time, the start-

ing positions of the particles should form a cloud that em-

braces regions of possible good solutions. Hence, input and

output signals of the controller have been normalized to the

range of −1 to 1. Then, the swarm has been initialized to

uniformly cover a cube with edge length equal to 1000 cen-

tered at (0,0,0) and it has been tested that the vast majority

of solutions returned during the first 10 iterations are unsta-

ble. Thereafter, the cube has been reduced to 100×100×100

and still the majority of solutions during the first 10 iterations

are unstable. The starting distribution of the particles for all

following optimization experiments is bounded to 10x10x10

cubic space. Although the search space is unbounded, in none

of the cases indicated in Table 1 particles tend to move outside

this cube. Usually, no more than 30 iterations are required to

obtain a satisfactory implementable solution. The swarm is

kept alive until 45-th iteration just for better assessment of

its convergence. The color of the particle refers to its best

solution found so far. Specific values are provided in Table 5.

Table 5

Colors according to particle’s best solution

Fitness function Ffit value threshold Color of a particle

>20 magenta

>10 blue

>5 cyan

>2 green

below all thresholds red

654 Bull. Pol. Ac.: Tech. 61(3) 2013
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In all mentioned here scenarios the swarm converges to-

wards zero speed and optimization results are repeatable. This

suggests that the problem is well-conditioned. Several other

LC filters, noise levels and load types have been also tested

and results of all of them confirm effectiveness of the tuning

procedure. Robustness of the control system has been also

verified by testing several hypothetical load currents drawn

by controlled current sources. This includes triangular and

square currents. The gains found in the scenarios A1, A2,

B1, B2 and B3 are collated in Table 6. The reference signal

for all experiments is taken as in (24) with τref = 0.5 s

(A1, A2, B1, B3) or τref = 0.3 s (B2). A change of τref

clearly influences the dynamics of the resulting closed-loop

system. It is also to note that the modification of a reference

signal amplitude, which is not present in the target system of

Fig. 3, becomes essential during the optimization procedure

illustrated in Fig. 5. This enables to specify dynamics of the

system by setting desired rise time for the output voltage en-

velope. To illustrate this, the envelopes of the output voltage

waveform in B1 and B2 are shown in Figs. 6 and 7 respec-

tively. These results have been obtained using the reference

signal not modified by the first-order lag element (Fig. 3).

This means that the rise time of the envelope is shaped solely

by the controller dynamics and not by modification of the

reference signal. It is also possible to influence the dynamics

of the system by changing in (26) the penalty factor β. For

comparison purposes the MSE (mean square error) evolu-

tion for the scenarios B1 and B3 has been shown in Figs. 8

and 9 respectively. The derivative term in the experiment B3

Table 6

Controller gains optimized according to the Ffit performance index

Case scenario

k2

(related
to control

error)

k11

(related
to change

in choke current)

k12

(related to change
in capacitor

voltage)

A1: 1% noise

Lf = 600 µH

Cf = 80 µF 0.325 −3.87 −6.74

Rf = 200 mΩ

τref = 0.5 s

β = 10−4

A2: 2% noise

Lf = 600 µH

Cf = 80 µF 0.267 −3.30 −5.22

Rf = 200 mΩ

τref = 0.5 s

β = 10−4

B1: 1% noise

Lf = 300 µH

Cf = 160 µF 0.262 −1.93 −5.93

Rf = 100 mΩ

τref = 0.5 s

β = 10−4

B2 as in B1

yet different en-

velope dynamics

τref = 0.3 s

0.326 −1.38 −3.88

B3 as in B1 but

different penalty

factor β = 10−3

0.211 −1.64 −4.23

Fig. 6. The envelope of the output voltage waveform if optimized

using τref = 0.5 s (case B1)

Fig. 7. The envelope of the output voltage waveform if optimized

using τref = 0.3 s (case B2)

Fig. 8. The evolution of the mean squared error in system optimized

using a relatively small penalty factor for control signal dynamics

(case B1, β = 10−4)
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Fig. 9. The evolution of the mean squared error in system optimized

using a moderate penalty factor for control signal dynamics (case

B3, β = 10−3)

contributes in approximately 50% to the sum of squares in

(26) for gbest solution. It is clear that τref as well as β can

be used to shape the response. The former affects mainly a

tracking dynamics whereas the latter influences a disturbance

rejection dynamics. However, these effects are convoluted and

one cannot shape them independently.

For illustrative purposes some graphs obtained during the

B3 test are also presented. The position of the swarm after 1,

10, 25 and 45 iterations is depicted in Figs. 10 to 13. The

variances of all controller gains versus number of the itera-

tion are presented in Figs. 14, 15 and 16. The evolution of

variances is a reliable indicator of the swarm behavior. If the

variance crosses a specific threshold resulting from measure-

ment noise there is no justification for further search and the

procedure should be stopped. Performance of the system with

gains found by the PSO is then investigated in the model

with PWM converter (as shown in Fig. 1). The plots of the

measured (thus corrupted by the noise) output voltage and the

control signal along with the disturbance current are shown in

Figs. 17, 18 and 19. The MSE in Fig. 9 comes from the same

experiment and shows that the learning occurs and after the

error increase caused by a change of the load it goes down

again over the consecutive trials. The instantaneous control

error is depicted in Fig. 20. This error is huge at the start

of the system due to zero initial conditions for the LC fil-

ter. The output voltage quality under load 3 (see Table 3)

at 10 s, i.e. 5 s after switching this load on, is presented in

Fig. 21. The choke current ripples are as in Fig. 22. For com-

parison purposes the open-loop performance is illustrated in

Fig. 23.

Fig. 10. Initial particles position: gbest = [−2.51, −7.42, 1.80], fit-

ness = 11.1

Fig. 11. Particles position after 10 iterations (case B3): gbest =

[−1.38, −4.83, 0.254], fitness = 33.4

Fig. 12. Particles position after 25 iterations (case B3): gbest =

[−2.13, −4.80, 0.087], fitness = 38.5
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Fig. 13. Particles position after 45 iterations (case B3): gbest =

[−1.64, −4.23, 0.211], fitness = 39.7

Fig. 14. The variance of the controller k11 gain versus optimization

iteration (case B3)

Fig. 15. The variance of the controller k12 gain versus optimization

iteration (case B3)

Fig. 16. The variance of the controller k2 gain versus optimization

iteration (case B3)

Fig. 17. The evolution of the output voltage over consecutive passes

(case B3)

Fig. 18. The evolution of the control signal u over consecutive passes

(case B3)
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Fig. 19. The shape of the test load current (case B3)

Fig. 20. The evolution of the control error over consecutive passes

(case B3)

Fig. 21. The shape of the output voltage 5s from switching the diode

rectifier on (load no. 3, case B3)

Fig. 22. The shape of the choke current 5s from switching the diode

rectifier (load no. 3, case B3)

Fig. 23. The shape of the output voltage if load no. 3 is on and the

controller is off (open-loop operation)

5. Stability issues

Due to that there exist disturbance and parameter uncertain-

ties affected by unpredictable and variable loads the analytical

proof of the stability for the obtained closed-loop system is

very difficult or even impossible to perform. It should be not-

ed that the LMI approach used in [10] can be helpful for

producing such a proof but only for the case with no dis-

turbance (load current) which, as shown before, is in fact an

intrinsic part of the considered system and any, even the lin-

ear, load can cause instability. One of the approaches to obey

these problems relies on applying robust ILC schemes, e.g.

with filtering action as in (22). It has been already identified

that the periodic nonlinear load current can cause instability

if no zero-phase lag filtering is applied to the output volt-

age measurement signal (as in (14)). One can also test gains

found by means of the PSO analytically by checking relevant

LMI problem or graphically by drawing the Nyquist plot [23]
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but this only proves that the linear system without the dis-

turbance is stable. Hence, the numerical simulation with the

fairy accurate model that includes, inter alia, the PWM, the

modulator dead-time, the measurement noise, the 0-phase lag

filter and the disturbance is currently the only way to identify

overall stability issues. It has been tested that for all sets of

gains found by the use of the PSO algorithm (with fitness

assessed in the window of 10s) the system with nonlinear

loads turns out to be stable in long horizon and the control

signal does not display any abnormalities even after tens of

minutes.

6. Conclusions

The PSO procedure has been employed to tune the ILC

gains for the true sine wave converter. It has been shown

that the LMI approach commonly used in the class of ILC

schemes can be replaced with a very straightforward opti-

mization procedure. Moreover, several limitations entailed by

the LMI approach (i.e. noiseless LTI description) are easy

to evade if evolutionary approach is chosen. Evaluation of

the controller during the optimization procedure can be per-

formed using a nonlinear model of the plant with all fil-

ters needed in a practical realization. The system can be

tested during the optimization process against specific dis-

turbances, e.g. specific nonlinear loads. Typical imperfec-

tions and parasitic effects including noise, delays, parame-

ters variations can be taken into account. Obtained results

indicate that the problem is well-conditioned and the popu-

lation based stochastic optimization process is fully repeat-

able and insensitive, in terms of its convergence, to reason-

able levels of system and measurement noise. Numerical ex-

periments assuming a nonlinear model of the inverter man-

ifest a stable operation over a long time horizon. A phys-

ical experimental converter is currently under the develop-

ment.
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