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Minimum energy control of fractional positive continuous-time
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Abstract. The minimum energy control problem for the fractional positive continuous-time linear systems is formulated and solved. Sufficient

conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated

by a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive theory is given in the monographs [1,

2]. Variety of models having positive behavior can be found

in engineering, economics, social sciences, biology and medi-

cine, etc.

Mathematical fundamentals of the fractional calculus are

given in the monographs [3–5]. The positive fractional linear

systems have been investigated in [6–9]. Stability of fractional

linear 1D discrete-time and continuous-time systems has been

investigated in the papers [9, 10, 11] and of 2D fractional pos-

itive linear systems in [12]. The notion of practical stability

of positive fractional discrete-time linear systems has been in-

troduced in [13]. Some recent interesting results in fractional

systems theory and its applications can be found in [14–17].

The minimum energy control problem for standard linear sys-

tems has been formulated and solved by J. Klamka [18–20]

and for 2D linear systems with variable coefficient in [21].

The controllability and minimum energy control problem of

fractional discrete-time linear systems has been investigated

by Klamka in [22].

In this paper the minimum energy control problem for

the fractional positive continuous-time linear systems is for-

mulated and solved. Sufficient conditions for the existence of

solution to the problem are established and a procedure for

solving of the problem is proposed.

The paper is organized as follows. In Sec. 2 some defini-

tions and theorems concerning fractional positive continuous-

time linear systems are recalled. Necessary and sufficient con-

ditions for the reachability of the fractional positive systems

are established and the minimum energy control problem is

formulated in Sec. 3. The solution of the problem is given

in Sec. 4. A procedure for solving the minimum energy con-

trol problem and illustrating numerical example are given in

Sec. 5. Concluding remarks are given in Sec. 6.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set of

n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ , Mn

– the set of n × n Metzler matrices (real matrices with non-

negative off-diagonal entries), In – the n×n identity matrix.

2. Preliminaries

The following Caputo definition of the fractional derivative is

used [4, 5, 9]

Dαf(t) =
dα

dtα
f(t)

=
1

Γ(n − α)

t∫

0

f (n)

(t − τ)α+1−n
dτ ,

n − 1 < α ≤ n ∈ N = {1, 2, ...},

(1)

where α ∈ ℜ is the order of fractional derivative and

f (n)(τ) =
dnf(τ)

dτn
and Γ(x) =

∞∫

0

e−ttx−1dt is the gamma

function.

Consider the continuous-time fractional linear system de-

scribed by the state equation

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (2)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state and input vectors

and A ∈ ℜn×n, B ∈ ℜn×m.

Theorem 1. [9] The solution of Eq. (2) is given by

x(t) = Φ0(t)x0 +

t∫

0

Φ(t − τ)Bu(τ)dτ, x(0) = x0, (3)

where
Φ0(t) = Eα(Atα) =

∞∑

k=0

Aktkα

Γ(kα + 1)
(4)

Φ(t) =

∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
(5)

and Eα(Atα) is the Mittage-Leffler matrix function [13].

∗e-mail: kaczorek@isep.pw.edu.pl

803



T. Kaczorek

Definition 1. [9] The fractional system (2) is called the (in-

ternally) positive fractional system if and only if x(t) ∈ ℜn
+

and y(t) ∈ ℜp
+ fort ≥ 0 for any initial conditions x0 ∈ ℜn

+

and all inputs u(t) ∈ ℜm
+ , t ≥ 0.

Theorem 2. [9] The continuous-time fractional system (2) is

(internally) positive if and only if the matrix A is a Metzler

matrix and

A ∈ Mn, B ∈ ℜn×m
+ . (6)

Lemma 1. The Mittag-Leffler matrix function (4) satisfies the

equation

dαΦ0(t)

dtα
= AΦ0(t). (7)

Proof. From (2) and (3) for Bu(t) = 0 we have

dαΦ0(t)x0

dtα
= AΦ0(t)x0. (8)

Therefore, the equality (7) holds since the equation (8) is

satisfied for arbitrary x0 6= 0.

3. Reachability and problem formulation

Definition 2. The state xf ∈ ℜn
+ of the fractional system

(2) is called reachable in time tf if there exist an input

u(t) ∈ ℜm
+ , t ∈ [0, tf ] which steers the state of system

(2) from zero initial state x0 = 0 to the state xf . If every

state xf ∈ ℜn
+ is reachable in time tf the system is called

reachable in time tf . If for every state xf ∈ ℜn
+ there exist

a time tf such that the state is reachable in time tf then the

system (2) or positive pair (A, B) is called reachable.

A real square matrix is called monomial if each its row

and each its column contains only one positive entry and the

remaining entries are zero.

Theorem 3. The positive fractional system (2) is reachable in

time t ∈ [0, tf ] if and only if the matrix A ∈ Mn is diagonal

and the matrix B ∈ ℜn×m
+ is monomial.

Proof. Sufficiency. It is well-known [2, 9] that if A ∈ Mn is

diagonal then Φ(t) ∈ ℜn×n
+ is also diagonal and if B ∈ ℜn×m

+

is monomial then BBT ∈ ℜn×n
+ is also monomial. In this

case the matrix

Rf =

tf∫

0

Φ(τ)BBT ΦT (τ)dτ ∈ ℜn×n
+ (9)

is also monomial and R−1
f ∈ ℜn×n

+ . The input

u(t) = BT ΦT (tf − t)R−1
f xf (10)

steers the state of the system (2) from x0 = 0 to xf since

using (3) for x0 = 0 and (5) we obtain

x(tf ) =

tf∫

0

Φ(tf − τ)Bu(τ)dτ

=

tf∫

0

Φ(tf − τ)BBT ΦT (tf − τ)dτR−1
f xf

=

tf∫

0

Φ(τ)BBT ΦT (τ)dτR−1
f xf = xf .

(11)

Necessity. Let

p(s) = sn + an−1s
n−1 + ... + a1s + a0 (12)

be the characteristic polynomial of the matrix A ∈ Mn. Then

by the well-known [2] Cayley-Hamilton theorem we have

p(A) = An + an−1A
n−1 + ... + a1A + a0In = 0. (13)

Using (13) we may eliminate from (5) Ak for k = n, n+1, ...

and we obtain

Φ(t) =

n−1∑

k=0

ck(t)Ak, (14)

where ck(t), k = 0, 1, ..., n − 1 are some nonzero functions

of time depending on the matrix A.

Substitution of (14) into

tf∫

0

Φ(tf − τ)Bu(τ)dτ (15)

yields

xf = [ B AB ... An−1B ]





v0(tf )

v1(tf )
...

vn−1(tf )




, (16)

where

vk(tf ) =

tf∫

0

ck(τ)u(tf − τ)dτ , k = 0, 1, . . . , n − 1. (17)

For given xf ∈ ℜn
+ it is possible to find nonnegative vk(tf )

for k = 0, 1, . . . , n − 1 if and only if the matrix

[ B AB ... An−1B ] (18)

has n linearly independent monomial columns and this

takes place only if the matrix [B, A] contains n linearly in-

dependent columns [9]. Note that for the nonnegative vk(tf ),
k = 0, 1, . . . , n − 1 it is possible to find a nonnegative input

u(t) ∈ ℜm
+ , t ∈ [0, tf ] only if the matrix B ∈ ℜn×n

+ is

monomial and the matrix A ∈ Mn is diagonal.

Consider the fractional positive system (2) with A ∈ Mn

and B ∈ ℜn×m
+ monomial. If the system is reachable in time

t ∈ [0, tf ], then usually there exists many different inputs

u(t) ∈ ℜn
+ that steers the state of the system from x0 = 0
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to xf ∈ ℜn
+. Among these inputs we are looking for input

u(t) ∈ ℜn
+, t ∈ [0, tf ] that minimizes the performance index

I(u) =

tf∫

0

uT (τ)Qu(τ)dτ , (19)

where Q ∈ ℜn×n
+ is a symmetric positive defined matrix and

Q−1 ∈ ℜn×n
+ .

The minimum energy control problem for the fractional

positive continuous-time linear systems (2) can be stated as

follows.

Given the matrices A ∈ Mn, B ∈ ℜn×m
+ , α and Q ∈

ℜn×n
+ of the performance matrix (19), xf ∈ ℜn

+ and t > 0,

find an input u(t) ∈ ℜn
+ for t ∈ [0, tf ] that steers the state

vector of the system from x0 = 0 to xf ∈ ℜn
+ and minimizes

the performance index (19).

4. Problem solution

To solve the problem we define the matrix

W = W (tf , Q)

=

tf∫

0

Φ(tf − τ)BQ−1BT ΦT (tf − τ)dτ ,
(20)

where Φ(t) is defined by (5). From (20) and Theorem 1 it

follows that the matrix (20) is monomial if and only if the

fractional positive system (2) is reachable in time [0, tf ]. In

this case we may define the input

û(t) = Q−1BT ΦT (tf − t)W−1xf for ∈ [0, tf ]. (21)

Note that the input (21) satisfies the condition u(t) ∈ ℜn
+

for t ∈ [0, tf ] if

Q−1 ∈ ℜn×n
+ and W−1 ∈ ℜn×n

+ . (22)

Theorem 4. Let u(t) ∈ ℜn
+ for t ∈ [0, tf ] be an input that

steers the state of the fractional positive system (2) from

x0 = 0 to xf ∈ ℜn
+. Then the input (21) also steers the

state of the system from x0 = 0 to xf ∈ ℜn
+ and minimizes

the performance index (21), i.e. I(û) ≤ I(u).

The minimal value of the performance index (19) is

equal to

I(û) = xT
f W−1xf . (23)

Proof. If the conditions (22) are met then the input (21) is

well defined and û(t) ∈ ℜn
+ for t ∈ [0, tf ]. We shall show

that the input steers the state of the system from x0 = 0 to

xf ∈ ℜn
+. Substitution of (21) into (3) for t = tf and x0 = 0

yields

x(tf ) =

tf∫

0

Φ(tf − τ)Bû(τ)dτ

=

tf∫

0

Φ(tf − τ)BQ−1BT ΦT (tf − τ)dτW−1
f xf = xf

(24)

since (20) holds. By assumption the inputs u(t) and û(t),
t ∈ [0, tf ] steers the state of the system from x0 = 0 to

xf ∈ ℜn
+. Hence

xf =

tf∫

0

Φ(tf − τ)Bu(τ)dτ

=

tf∫

0

Φ(tf − τ)Bû(τ)dτ

(25a)

or
tf∫

0

Φ(tf − τ)B[u(τ) − û(τ)]dτ = 0. (25b)

By transposition of (25b) and postmultiplication by W−1xf

we obtain

tf∫

0

[u(τ) − û(τ)]T BT ΦT (tf − τ)dτW−1xf = 0. (26)

Substitution of (21) into (26) yields

tf∫

0

[u(τ) − û(τ)]T BT ΦT (tf − τ)dτW−1xf

=

tf∫

0

[u(τ) − û(τ)]T Qû(τ)dτ = 0.

(27)

Using (27) it is easy to verify that

tf∫

0

u(τ)T Qu(τ)dτ =

tf∫

0

û(τ)T Qû(τ)dτ

+

tf∫

0

[u(τ) − û(τ)]T Q[u(τ) − û(τ)]dτ .

(28)

From (28) it follows that I(û) < I(u) since the second term

in the right-hand side of the inequality is nonnegative. To find

the minimal value of the performance index (19) we substitute

(21) into (19) and we obtain

I(û) =

tf∫

0

ûT (τ)Qu(τ)dτ

= xT
f W−1

tf∫

0

Φ(tf − τ)BQ−1BT ΦT (tf − τ)dτW−1xf

= xT
f W−1xf

(29)

since (20) holds.

5. Procedure and example

Procedure.

Step 1. Using (5) compute the matrix Φ(t).
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Step 2. Knowing the matrices A, B, Q and α, tf using (20)

compute the matrix W .

Step 3. Using (21) compute û(t).

Step 4. Using (21) compute I(û).

Example. Consider the fractional positive system (2) with

A =

[
1 0

0 1

]
, B =

[
0 1

1 0

]
, α = 0.5 (30)

and the performance index (19) with

Q =

[
2 0

0 2

]
, tf = 1.

Compute the optimal input û(t), t ∈ [0, 1] that steers the

state of the system from x0 =

[
0

0

]
to xf =

[
1

1

]
and

minimize the performance index.

Using Procedure we obtain the following:

Step 1. Using (5) and (30) we obtain

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]

=

∞∑

k=0

[
1 0

0 1

]k

t0.5(k−1)

Γ[0.5(k + 1)]
.

(31)

Step 2. From (20), (31) and (30) we have

W =

1∫

0

Φ(tf − τ)BQ−1BT ΦT (tf − τ)dτ

=
1

2

1∫

0

Φ2(1 − τ)dτ

(32)

since

BQ−1BT =
1

2

[
1 0

0 1

]

and

Φ(tf − τ) = ΦT (tf − τ)

.

Step 3. Using (21) and (32) we obtain

û(t) = Q−1BT ΦT (tf − t)W−1xf

=
1

2

[
0 1

1 0

]
ΦT (1 − t)W−1

[
1

1

]
,

(33)

where W is given by (32).

Step 4. The minimal value of the performance index is

equal to

I(û) = xT
f W−1xf

= [ 1 1 ]



1

2

1∫

0

Φ2(1 − τ)dτ




−1 [

1

1

]

=

1∫

0

Φ2(τ)dτ .

(34)

6. Concluding remarks

The minimum energy control problem for the fractional posi-

tive continuous-time linear systems have been formulated and

solved. Sufficient conditions for the existence of solution to

the problem have been established (Theorem 4). A procedure

for solving of the problem have been proposed and its effec-

tiveness has been demonstrated on a numerical example. An

open problem is an extension of these considerations to frac-

tional positive descriptor continuous-time and discrete-time

linear systems.
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