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Quasi-analytic multidimensional signals
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Abstract. In a recent paper, the authors have presented the unified theory of n-dimensional (n-D) complex and hypercomplex analytic

signals with single-orthant spectra. This paper describes a specific form of these signals called quasi-analytic. A quasi-analytic signal is a

product of a n-D low-pass (base-band) real (in general non-separable) signal and a n-D complex or hypercomplex carrier. By a suitable

choice of the carrier frequency, the spectrum of a low-pass signal is shifted into a single orthant of the Fourier frequency space with a

negligible leakage into other orthants. A measure of this leakage is defined. Properties of quasi-analytic signals are studied. Problems of

polar representation of quasi-analytic signals and of its lower rank representation are discussed.
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1. Introduction

Within the last twenty years, the theory of multidimension-

al complex and hypercomplex analytic signals has been still

developing and have found various applications. For exam-

ple in image analysis, the 2-D quaternion analytic signal has

been used for envelope detection and feature extraction [1–3].

In [4–8], it has been shown that basing on an analytic (com-

plex or hypercomplex) representation of a grey-scale image, it

is possible to define its local amplitudes and phase functions.

Moreover in [7], the problem of reconstruction of a grey-scale

image from its polar representation has been studied. The

newest interesting application of 2-D complex analytic signals

with single-quadrant spectra is processing of SAFT (Synthetic

Aperture Focusing Technique)–reconstructed images in non-

destructive ultrasonic testing [9]. The hypercomplex approach

has proliferated also into color image processing, for example

in the domain of edge-detection filtering [10] or motion esti-

mation [11]. We see that practical applications appear mainly

in the domain of 2-D signals with spectra defined using com-

plex or hypercomplex Fourier transforms [12–13].

The idea of comparing the 2-D complex analytic signals

with quaternion analytic signals has appeared in [14], where

the authors have stated that both are completely equivalent

and the choice of a method is a matter of convention. Recent-

ly in [1], the theory of complex and hypercomplex analytic

signals with single-orthant spectra has been unified and the

problem of its extension for 3-D signals has been discussed. In

this paper, we go further in our research and define and study

properties of quasi-analytic energy signals, i.e., signals with

spectra limited to a single orthant of the frequency space with

a negligible leakage into other orthants. Let us remind that an

orthant is a strictly determined part of the n-dimensional (n-

D) Cartesian frequency space, e.g. in 1-D, it is a half-axe, in

2-D – a single quadrant, in 3-D – a single octant etc.

Let us recall the general frequency-domain definition of

an analytic signal with the single–orthant (1st orthant) spec-

trum [6–8]. Consider a real n-dimensional signal g(x), x =
(x1, x2, . . . , xn) ∈ Rn and its n-dimensional complex or hy-

percomplex Fourier transform G(f), f = (f1, f2, . . . , fn) ∈
Rn. The multiplication of the spectrum G (f ) by the n-

D unit-step 1 (f ) yields a single-orthant spectrum in the

1st orthant of the frequency space Rn. So, the n-D com-

plex/hypercomplex analytic signal ψ(1)(x) is defined by the

inverse complex / hypercomplex Fourier transform of the 1st

orthant spectrum (the superscript 1 denotes the orthant’s la-

bel):

ψ(1)(x) = F−1{1(f )G(f )}. (1)

Let us note that the spectrum support of (1) is limited to

the 1st orthant of the n-D frequency space. (Note: The term

“support” is commonly used by mathematicians to denote the

domain in which a given function is non zero. In this paper,

this notion is used in the same sense.)

The n − D quasi-analytic signal ψ1(x) is defined in the

signal domain (x-domain) as

ψ1 (x) = g (x) ee12π f10x1ee22π f20x2 . . . een2π fn0xn , (2)

i.e., the real signal low-pass signal g(x) is multiplied by the n-

D carrier ee12π f10x1ee22π f20x2 . . . een2π fn0xn and all fi0 ≥0,

i=0, 1,. . . , n for the 1st orthant quasi-analytic signals (denoted

with subscript 1). Note that the appropriate change of signs of

carrier frequencies fi0 yields quasi-analytic signals with spec-

tra in other orthants of the frequency space. The signal (2) is

called complex if e1 = e2 = . . . = en = j and j2 = −1. The

hypercomplex quasi-analytic signal is defined by a suitable

choice of the algebra of basis vectors e1, e2, . . . , en [1]. The

spectrum of (2) is shifted into the 1st orthant of the

n-D frequency space and has a general form

G1 (f ) = G (f1 − f10, f2 − f20, . . . , fn − fn0) . (3)

Let us note that all carrier frequencies fi0, i = 1, 2, . . ., n
should be positive and big enough to shift the spectrum into

the 1st orthant with a negligible leakage into adjacent or-
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thants. As a measure of such a leakage, we propose the coef-

ficient ε defined as

ε = 1 −

∫

R+

|G1|2 df

∫

Rn

|G|2 df

= 1 − Energy of (2) in the 1st orthant

Total energy of g(x)
.

(4)

It is observed that for quasi-analytic signals, ε is near 0. In

the case when the support of the spectrum G(f ) is finite, it

is possible to get ε = 0.

2. 2-D complex quasi-analytic signals

For n = 2, the formula (2) yields the 2 −D complex quasi-

analytic signal:

ψ1 (x1, x2) = g (x1, x2) e
e12π f10x1ee12π f20x2 (5)

that is equivalent to

ψ1 (x1, x2) = g (x1, x2) [c1c2 − s1s2 + e1 (s1c2 + s2c1)]

= Re + e1Im
(6)

Let us mention that in (6) and in the whole paper, we

apply the following shortened notation: ci = cos (αi),
si = sin (αi), αi = αi (xi) = 2πfi0xi, i = 1, 2.

It can be shown that Hilbert transforms (total and par-

tial [6–8]) of u (x1, x2) = g (x1, x2) c1c2 in (6) are

v (x1, x2) ∼= g (x1, x2) s1s2, v1 (x1, x2) ∼= g (x1, x2) s1c2
and v2 (x1, x2) ∼= g (x1, x2) c1s2, where the symbol “∼=”

means “equals approximately”. From (5), we get the spec-

trum of the 2-D quasi analytic signal:

G1 (f) = G (f1 − f10, f2 − f20) . (7)

Let us illustrate the definition of the 2-D quasi-analytic signal

and its spectrum with two examples of low-pass real signals:

a 2-D Gaussian function and a rotated cuboid.

Example 1. The 2-D Gaussian function (in a normalized

form) is given by

g (x1, x2) =
1

2πσ1σ2

√

1 − ρ2

· exp











−

(

x1

σ1

)2

+

(

x2

σ2

)2

+ 2ρ
x1x2

σ1σ2

2 (1 − ρ2)











,

(8)

where σ1, σ2 are responsible for the spread in x1 – and

x2 – domains and ρ is a correlation coefficient. General-

ly, (8) is a non-separable function of variables (x1, x2) but

if ρ = 0, we get a separable one (a product of 1-D signals:

g (x1, x2) = g1 (x1) g2 (x2)).
It is known that any 2-D signal can be represented as

a union of four terms with different even-odd parity with

respect to (w.r.t.) x1 and x2: g = gee + geo + goe + goo

(“e” denotes the even parity, “o” – the odd parity). However,

low-pass signals are unions of only two terms: g (x1, x2) =
gee (x1, x2) + goo (x1, x2). Moreover, if ρ = 0, the odd-odd

term vanishes. The Fourier spectrum of (8) is:

G (f1, f2) = exp
[

−0.5
(

ω2
1σ

2
1 + ω2

2σ
2
2 + 2ρω1ω2σ1σ2

)]

= Gee (f1, f2) +Goo (f1, f2) ,
(9)

where

Gee (f1, f2) = exp
[

−0.5
(

ω2
1σ

2
1 + ω2

2σ
2
2

)]

cosh (ω1ω2σ1σ2ρ) ,
(10)

Goo (f1, f2) = exp
[

−0.5
(

ω2
1σ

2
1 + ω2

2σ
2
2

)]

sinh (ω1ω2σ1σ2ρ) .
(11)

Figure 1a shows an even-even low-pass spectrum of the

Gaussian function with σ1 = σ2 = 0.5, ρ = 0 : G (f1, f2) =
Gee. Remark that lines x1 = 0 and x2 = 0 in all figures

should be treated as auxiliary. By an appropriate choice of

values of f10, f20 in (2) (here f10 = f20 = 1.25), we shift

the spectrum into the 1st quadrant (f1 > 0, f2 > 0) that is

illustrated in Fig. 1b. Since the value of the parameter ε is

near zero, the leakage of the spectrum into adjacent quadrants

is very small.

a)

b)

Fig. 1. (a) The spectrum G(f1, f2) of the Gaussian function

σ1 = σ2 = 0.5, ρ = 0; b) the shifted spectrum of (a):

G (f1 − 1.25, f2 − 1.25)
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a)

b)

Fig. 2. (a) The spectrum of the Gaussian function σ1= σ2= 0.7, ρ

= 0.9. (b) The shifted spectrum of (a): G (f1 − 1.25, f2 − 1.25)

a)

b)

Fig. 3. The spectrum of Fig. 2a, a) the even-even part, b) the odd-odd

part

Figure 2a shows the spectrum of the non-separable

Gaussian function with σ1 = σ2 = 0.7, ρ = 0.9. It is a

sum of even-even and odd-odd parts: G (f1, f2) = Gee +Goo

displayed respectively in Figs. 3a and b. In Fig. 2b we dis-

play the spectrum G(f1, f2) shifted by f10 = f20 = 1.25
into the 1st quadrant. The numerically calculated value of ε

is 0.00054 and from the practical point of view the observed

leakage of the spectrum is negligible.

Example 2. Let us present the next example of a rotated

cuboid, with a = b = 2 (see Appendix A, Eq. (A1)). The

support of this signal is displayed in Fig. 4a and its spectrum

in Figs. 4b and c. The spectrum of the corresponding quasi-

analytic signal given by (2), f10 = f20 = 1.5, is shown in

Fig. 5. Due to the sharp edges of the cuboid, the oscillatory

spectrum has a finite leakage into other quadrants with the

numerically calculated value of the parameter ε = 0.013.

a)

b)

c)

Fig. 4. A rotated cuboid: a) the support in x-domain, b) the 2-D

view of its spectrum, c) the 3-D view of the spectrum

Bull. Pol. Ac.: Tech. 61(4) 2013 1019
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Fig. 5. The spectrum of the quasi-analytic signal of the rotated cuboid

2.1. Polar representation of 2-D complex quasi-analytic

signals. Note that energies of low-pass signals in the non-

separable case, Fig. 2a, are different in the 1st (f1 > 0,

f2 > 0) and in the 3rd (f1 > 0, f2 < 0) quadrants. In con-

sequence, the inverse Fourier transform of these two single-

quadrant spectra defines two different analytic signals:

ψ1 (x1, x2) = F−1 {1 (f1, f2) G (f1, f2)}
= g − v + e1 (v1 + v2) ,

(12)

ψ3 (x1, x2) = F−1 {1 (f1,−f2) G (f1, f2)}
= g + v + e1 (v1 − v2) ,

(13)

where g(x1, x2) is a 2-D real signal, v(x1, x2) – its total

Hilbert transform, v1(x1, x2), v2(x1, x2) – its partial Hilbert

transforms w.r.t. x1 and x2 respectively [6–8]. The 1 (f1, f2)
is a 2-D unit step operator (as in (1)) yielding the single-

quadrant support of the spectrum in the 1st quadrant of R2.

It is known that polar forms of complex analytic signals

(12)–(13) uniquely define two different local amplitudes A1,

A2 and two different phase functions Φ1, Φ2 [6–8], i.e.,

ψ1 (x1, x2) = A1 (x1, x2) e
e1Φ1(x1,x2), (14)

ψ3 (x1, x2) = A2 (x1, x2) e
e1Φ2(x1,x2), (15)

where

A1 (x1, x2) =
√

ψ1ψ
∗

1 =

√

(g − v)
2

+ (v1 + v2)
2
, (16)

A2 (x1, x2) =
√

ψ3ψ
∗

3 =

√

(g + v)2 + (v1 − v2)
2
, (17)

Φ1 (x1, x2) = tan−1

(

v1 + v2

g − v

)

, (18)

Φ2 (x1, x2) = tan−1

(

v1 − v2

g + v

)

. (19)

However, if g(x1, x2) in (12)–(13) is a separable function,

g = g1 (x1) g2 (x2), its polar analytic form defines only one

2-D local amplitude: A1 = A2 = A =
√

g2 + v2 + v2
1 + v2

2

and two 2-D phase functions: Φ1 = α1 (x1) + α2 (x2),
Φ2 = α1 (x1) − α2 (x2). In this case, the quasi-analytic sig-

nal (5) is also a separable function and can be represented by

a single amplitude and two phase functions [6–8]:

ψ1 (x1, x2) = A (x1, x2) e
e1Φ(x1,x2)

= |g (x1, x2)| ee1Φ(x1,x2),
(20)

where

A (x1, x2) =
√

ψ1ψ
∗

1 =
√

Re2 + Im2 = |g (x1, x2)| (21)

and

tan (Φ) = tan

(

Im

Re

)

= tan (α1 + α2) . (22)

From (22), we immediately get Φ = α1 + α2. We observe

that (20) differs from (5) since g(x1, x2) has been replaced

by its absolute value. However, in the case of unipolar positive

baseband functions both functions are equal.

3. 2-D quaternion quasi-analytic signals

Differently to the real spectrum of the real signal g(x1, x2), as

e.g. that given by (8), the corresponding quaternion spectrum

is a complex function:

Gq (f1, f2) = Gee (f1, f2) + e3Goo (f1, f2) . (23)

Note that if we want to define the quaternion quasi-analytic

signal using (1) in a situation where both terms Gee and Goo

exist, the even-even and odd-odd terms should be shifted into

the 1st quadrant separately.

The 2-D quaternion quasi-analytic signal (2) has the form

ψ
q
1 (x1, x2) = g (x1, x2) e

e1α1ee2α2 , (24)

i.e., in comparison to (5), in the second exponent, e1 has

been replaced by e2. The superscript q means “quaternion”.

The developed form of (24) is

ψ
q
1 (x1, x2) = g (x1, x2)

· (c1c2 + e1s1c2 + e2c1s2 + e3s1s2) .
(25)

3.1. Polar representation of 2-D quaternion quasi-analytic

signals. Let us recall that the general polar representation of

the quaternion analytic signal derived in [5] is

ψ
q
1 (x1, x2) = A (x1, x2)

·ee1Φ1(x1,x2)ee3Φ3(x1,x2)ee2Φ2(x1,x2).
(26)

where the 2-D amplitude

A (x1, x2) =

√

ψ
q
1 (ψq

1)
∗

= |g (x1, x2)| (27)

is the same as in (21) and three phase functions Φi (x1, x2)
are defined by Euler angles and expressed as

tan (2Φ1) =
2 (uv1 + vv2)

u2 − v2
1 + v2

2 − v2

= 2
c1c2s1c2 + s1s2c1s2

c21c
2
2 − s21c

2
2 + c21s

2
2 − s21s

2
2

=
2 tan (α1)

1 − tan2 (α1)
= tan (2α1) ,

(28)

tan (2Φ2) =
2 (uv2 + vv1)

u2 − v2
1 + v2

2 − v2

= 2
c1c2c1s2 + s1s2s1s2

c21c
2
2 + s21c

2
2 − c21s

2
2 − s21s

2
2

=
2 tan (α2)

1 − tan2 (α2)
= tan (2α2)

(29)
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sin (Φ3) =
uv − v1v2

A2
=
c1c2s1s2 − s1s2c1s2

A2
= 0. (30)

As a result, we obtain Φ1 = α1, Φ2 = α2, Φ3 = 0 and finally

ψ
q
1 (x1, x2) ≈ |g (x1, x2)| ee12πf10x1ee22πf20x2 , (31)

that is, similarly to the complex case, we have only two phase

functions expressed by Euler angles. We can easily show that

the same result could be derived directly by comparison of

(24) and (31).

4. Lower rank 2-D signals

The notion of the lower rank 2-D signal has been introduced

in [1] in the form of a union of two signals (of rank 2) with

single-quadrant spectra in the adjacent quadrants. For exam-

ple, the 2-D signal of rank 1 has the spectrum limited to the

half plane (HP) f1 > 0 and is defined as the average of two

signals with spectra in the 1st and 3rd quadrants respectively:

ψHP (x1, x2) =
ψ1 + ψ3

2
=
ψ

q
1 + ψ

q
3

2

= u (x1, x2) + e1v1 (x1, x2) = AHP e
e1ΦHP .

(32)

where ψ1 and ψ3 are given by (14) and (15) and ψ
q
1 =

u + e1v1 + e2v2 + e3v and ψ
q
3 = u + e1v1 − e2v2 − e3v

[1]. So, the 2-D signals of rank 1 have the same form for

complex and hypercomplex (quaternion) signals. Their am-

plitude is AHP =
√
Re2 + Im2 = |g (x1, x2)| |cos (α2)| and

the phase is ΦHP (x1, x2) = α1.

5. 3-D complex quasi-analytic signals

Similarly to the 2-D case, a 3-D quasi-analytic signal is de-

fined by the inverse Fourier transform (1) of a low-pass spec-

trum of a real signal shifted into a single octant. The complex

quasi-analytic signal with single octant spectrum in the 1st

octant has the form

ψ1 (x1, x2, x3) = g (x1, x2, x3) e
e1α1ee1α2ee1α3 , (33)

where αi = 2πfi0xi, i = 1, 2, 3 and fi0 are three shift fre-

quencies of the carrier. The developed form of (33) is

ψ1 (x1, x2, x3)

= g (x1, x2, x3) [c1c2c3 − s1s2c3 − s1c2s3 − c1s2s3

+e1 (s1c2c3 + c1s2c3 + c1c2s3 − s1s2s3)] .

(34)

Consider the example with a 3-D non-separable Gaussian

function defined by three variances σ1, σ2, σ3 and three cor-

relation coefficients ρ12, ρ13, ρ23. A specific example of the

Gauss function spectrum presented in Figs. 7a and b shows

the cross-section of the spectrum of Fig. 5a shifted into the

1st octant (Remark: we present only a chosen cross-section

of a 3-D spectrum).

Let us recall that a 3-D signal g(x1, x2, x3) may be repre-

sented as a sum of eight terms with different parity (even/odd).

However, for low-pass real signals g, we have a sum of four

terms only [1]:

g (x1, x2, x3) = geee + geoo + goeo + gooe (35)

with the spectrum given by

G (f1, f2, f3) = Geee −Geoo −Goeo −Gooe. (36)

a)

b)

Fig. 6. a) The cross-section G(f1, f2, f3 = 0) of the spectrum

of the low-pass 3-D Gaussian function σ1 = σ2 = σ3 = 0.7,

ρ12 = ρ13 = ρ23 = 0.9, b) the shifted spectrum of (a): G(f1−1.25,

f2 − 1.25, f3 = 0), leakage ε = 0.0000

First, let us compare the 3-D analytic and quasi-analytic

signals in the complex case. It is evident that the half-space

f1 > 0 is divided into four octants labeled 1, 3, 5 and 7 [6].

Their energies in successive octants may differ. In conse-

quence, a real signal g is represented by four different analytic

signals with single-octant spectra denoted ψ1, ψ3, ψ5 and ψ7

(of different energies). For example, the signal ψ1 with the

spectrum limited to the 1st octant is

ψ1 (x1, x2, x3) = g − v12 − v13 − v23

+ e1 (v1 + v2 + v3 − v) ,
(37)

where notations are similar as in the 2-D case: vi denotes the

first-order partial Hilbert transforms of g w.r.t. a single vari-

able xi and vij , the second-order partial Hilbert transform

w.r.t. two corresponding variables xi and xj The signals ψ3,

ψ5 and ψ7 differ only by signs of the sum [6–8]. In con-

sequence, their definitions differ from (37) only by signs in

exponents. They are defined by the same local amplitude.

Polar Representation of 3-D Complex Quasi-Analytic Sig-

nals. The polar forms of four complex analytic signal define

four amplitudes and four phase functions. For separable sig-

Bull. Pol. Ac.: Tech. 61(4) 2013 1021
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nals, all four amplitudes are equal:

A (x1, x2, x3) =
√

ψ1ψ
∗

1

=
√

Re2 + Im2 = |g (x1, x2, x3)|
(38)

and the four phase functions are [6]

Φ1 = α1 + α2 + α3, (39)

Φ3 = α1 − α2 + α3, (40)

Φ5 = α1 + α2 − α3, (41)

Φ7 = α1 − α2 − α3 (42)

where Φ1 is defined by

tan (Φ1) =
s1c2c3 + c1s2c3 + c1c2s3 − s1s2s3

c1c2c3 − s1s2c3 − s1c2s3 − c1s2s3

= tan (α1 + α2 + α3) .
(43)

Analogously,

tan (Φ3) =
s1c2c3 − c1s2c3 + c1c2s3 + s1s2s3

c1c2c3 + s1s2c3 − s1c2s3 + c1s2s3

= tan (α1 − α2 + α3) ,
(44)

tan (Φ5) =
s1c2c3 + c1s2c3 − c1c2s3 + s1s2s3

c1c2c3 − s1s2c3 + s1c2s3 + c1s2s3

= tan (α1 + α2 − α3)
(45)

and

tan (Φ7) =
s1c2c3 − c1s2c3 − c1c2s3 − s1s2s3

c1c2c3 + s1s2c3 + s1c2s3 − c1s2s3

= tan (α1 + α2 + α3) .
(46)

6. 3-D hypercomplex quasi-analytic signals

6.1. Cayley-Dickson algebra. The 3-D quasi-analytic hyper-

complex signal [1] defined by the Cayley-Dickson (CD) alge-

bra of unit vectors (see Appendix B) is

ψCD
1 (x1, x2, x3) = g (x1, x2, x3) e

e1α1ee2α2ee4α3 . (47)

Note the special order of imaginary units in (47): e1, e2, e4.

The developed form of (47) is

ψCD
1 (x1, x2, x3)

= g (x1, x2, x3) (c1c2c3 + e1s1c2c3 + e2c1s2c3 + e3s1s2c3

+e4c1c2s3 + e5s1c2s3 + e6c1s2s3 ± e7s1s2s3) .
(48)

Remark. The sign of e7 depends on the order of multiplica-

tion.

6.2. Clifford algebra. The 3-D quasi-analytic signal defined

by the Clifford (Cl) algebra of unit vectors (see Appendix C)

is

ψCl
1 (x1, x2, x3) = g (x1, x2, x3) e

e1α1ee2α2ee3α3 . (49)

In comparison to (47), the order is e1, e2, e3 and the devel-

oped form of (49) is

ψCl
1 (x1, x2, x3) = g (x1, x2, x3)

· [c1c2c3 + e1s1c2c3 + e2c1s2c3 + (e1e2) s1s2c3

+e3c1c2s3 + (e1e3) s1c2s3

+ (e2e3) c1s2s3 + ωs1s2s3] ,

(50)

where ω = e1e2e3 and in the Clifford algebra ω2 =
+1 (and not −1) (see Appendix C). Assuming that the

amplitude should be a unipolar positive function, the

polar form of (50) is undefined, since ψCl
1

(

ψCl
1

)

∗

=

g2 (x1, x2, x3)
(

1 − 2s21s
2
2s

2
3

)

is a bipolar function.

6.3. Polar representation of 3-D hypercomplex quasi-

analytic signals. The problem of the polar representation of

3-D hypercomplex analytic signals has been discussed in [1].

In principle, the 3-D hypercomplex signal with a single-octant

spectrum is represented by a single amplitude and seven phase

functions. However, if the signal is a separable function, we

have only three phase functions. Since quasi-analytic signals

are separable functions, the signal (47) is represented by three

phase functions. Its amplitude is

A (x1, x2, x3) =
√

ψCD
1

(

ψCD
1

)

∗

= |g (x1, x2, x3)| (51)

and the three phase angles, as shown in [1], are α1, α2, α3.

Therefore, finally we have

ψCD
1 (x1, x2, x3) = |g (x1, x2, x3)| ee1α1ee2α2ee4α3 . (52)

7. Lower rank 3-D signals

The above described 3-D signals have the rank equal 3. Let

us derive the formulae defining signals of rank 2.

Complex case: The complex signal (33) has the spectral sup-

port in the 1st octant. Let us write signals with spectral sup-

ports in the octants No. 3, 5 and 7: ψ3 = gee1α1e−e1α2ee1α3 ,

ψ5 = gee1α1ee1α2e−e1α3 and ψ7 = gee1α1e−e1α2e−e1α3 . The

signals of rank 2 are given by

ψ1+5 (x1, x2, x3) =
ψ1 + ψ5

2

= gee1α1ee1α2 cos (α3) = A1+5e
e1Φ1+5 ,

(53)

ψ3+7 (x1, x2, x3) =
ψ3 + ψ7

2

= gee1α1e−e1α2 cos (α3) = A3+7e
e1Φ3+7 .

(54)

Their amplitudes are the same: A1+5 = A3+7 =
|g| |cos (α3)| and the phase functions respectively are Φ1+5 =
α1+α2, Φ3+7 = α1−α2. The rank-1 signal with the spectrum

support in the half space (HS) f1 > 0 is

ψHS (x1, x2, x3) =
ψ1+5 + ψ3+7

2

= g cos (α2) cos (α3) e
e1α1 = AHSe

e1ΦHS .

(55)

Its amplitude AHS = |g| |cos (α2)| |cos (α3)| and the

phase function is ΦHS = α1.

Octonion case (Cayley-Dickson algebra). The hypercomplex

signal (44) has the spectral support in the 1st octant. Let us

recall the general forms of signals with spectral supports in

the octants No. 3, 5, 7: ψCD
3 = gee1α1e−e2α2ee4α3 , ψCD

5 =
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gee1α1ee2α2e−e4α3 and ψCD
7 = gee1α1e−e2α2e−e4α3 . The

signals of rank 2 are defined by

ψCD
1+5 (x1, x2, x3) =

ψCD
1 + ψCD

5

2

= gee1α1ee2α2 cos (α3) = A1+5e
e1φ

(1)
1+5ee2φ

(2)
1+5 ,

(56)

ψCD
3+7 (x1, x2, x3) =

ψCD
3 + ψCD

7

2

= gee1α1e−e2α2 cos (α3) = A3+7e
e1φ

(1)
3+7e−e2φ

(2)
3+7 .

(57)

Their amplitudes are the same as in (53) and (54) and the

phase functions expressed by Euler angles given by (28)–

(30) are φ
(1)
1+5 (x1, x2, x3) = φ

(1)
3+7 = α1, φ

(2)
1+5 (x1, x2, x3) =

−φ(2)
3+7 = α2. Of course, the phase angles are defined directly

by the comparison of exponents in (53) and (54). However,

using the Euler angles (28)–(30) we can show that the same

formulae apply for quaternions with 3-D terms. The rank-1

signals are again the same for complex and octonion signals.

We have

ψHS (x1, x2, x3) =
ψCD

1+5 + ψCD
3+7

2

= g cos (α2) cos (α3) e
e1α1 = AHSe

e1ΦHS .

(58)

The amplitude is AHS = |g| |cos (α2)| |cos (α3)| and the

phase ΦHS = α1.

8. Conclusions

Quasi-analytic signals with single-orthant spectra have been

defined by multiplication of a low-pass (baseband) – n-D sig-

nal g(x1, x2, . . ., xn) by a multidimensional carrier (complex

or hypercomplex). This operation should shift the low-pass

spectrum of g into a single-orthant. The leakage of the ener-

gy of the modulated signal into other orthants of the frequency

space should be negligible. The measure of this leakage has

been introduced.

From the point of view of the polar representation, the

2-D and 3-D quasi-analytic signals of non-separable low-pass

signals have the analogous polar representation as separable

functions: We have a single amplitude and two (in 2-D) or

three (in 3-D) phase functions.

Appendix A. The spectrum of the rotated cuboid

The spectrum of the cuboid is well known. For convenience,

let us recall the definition of a cuboid. The symmetric cuboid

(non-rotated) is defined as a product of two rectangles

g (x1, x2) = Πa (x1)Πb (x2) , (A1)

where

Πa (x1) =











1, |x1| < a

0.5, |x1| = ±a
0, |x1| > a

,

Πb (x2) =











1, |x2| < b

0.5, |x2| = ±b
0, |x2| > b

.

The Fourier spectrum of (A1) is

G (f1, f2) = 2a
sin (2πf1a)

2πf1a
2b

sin (2πf2b)

2πf2b
. (A2)

Of course, gand G are separable 2-D functions. The rotated

cuboid defined in a coordinate system rotated by the angle γ

is non-separable. As well, the spectrum of the rotated cuboid

defined by rotation of the frequency domain coordinate system

is also a non-separable function.

Appendix B. The Cayley-Dickson algebra

The Cayley-Dickson multiplication rules of unit vectors are

presented in Table 1. Details concerning the Cayley-Dickson

algebra are presented in [1] or in many other sources. Note

that the part of the table for e1, e2 and e3 presents multipli-

cation rules of quaternions.

Table 1

Multiplication rules in the algebra of octonions

× 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Appendix C. The Clifford algebra Cl0,3 (P )

The rules of multiplication of unit vectors of the Clifford al-

gebra Cl0,3 (P ) are given in Table 2. Details can be found in

[1] or in other sources.

Table 2

Multiplication rules In Cl0,3 (P )

× 1 e1 e2 e3 e1e2 e1e3 e2e3 ω

1 1 e1 e2 e3 e1e2 e1e3 e2e3 ω

e1 e1 −1 e1e2 e1e3 −e2 −e3 ω −e2e3

e2 e2 −e1e2 −1 e2e3 e1 −ω −e3 e1e3

e3 e3 −e1e3 −e2e3 −1 −ω e1 e2 e1e2

e1e2 e1e2 e2 −e1 ω −1 e2e3 −e1e3 −e3

e1e3 e1e3 e3 ω −e1 −e2e3 −1 e1e2 −e2

e2e3 e2e3 −ω e3 −e2 e1e3 −e1e2 −1 e1

ω ω e2e3 −e1e3 −e1e2 e3 e2 −e1 1

REFERENCES

[1] K.M. Snopek and S.L. Hahn, “The unified theory of n-

dimensional complex and hypercomplex analytic signals”, Bull.

Polish Ac.: Tech. 59 (2), 167–181 (2011).

[2] S.J. Sangwine and N. Le Bihan, Hypercomplex Analytic Sig-

nals: Extension of the Analytic Signal Concept to Complex

Signals, EUSIPCO, Poznań, 2007.

[3] C. Wachinger, T. Klein, and N. Navab, “The 2D analytic sig-

nal for envelope detection and feature extraction on ultrasound

images”, Medical Image Analysis 16, 1073–1084 (2012).

Bull. Pol. Ac.: Tech. 61(4) 2013 1023



S.L. Hahn and K.M. Snopek
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