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Discrete Fourier transform based pattern classifiers
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Abstract. A technique for pattern classification using the Fourier transform combined with the nearest neighbor classifier is proposed. The
multidimensional fast Fourier transform (FFT) is applied to the patterns in the data base. Then the magnitudes of the Fourier coefficients
are sorted in descending order and the first P coefficients with largest magnitudes are selected, where P is a design parameter. These
coefficients are then used in further processing rather than the original patterns. When a noisy pattern is presented for classification, the
pattern’s P Fourier coefficients with largest magnitude are extracted. The coefficients are arranged in a vector in the descending order of
their magnitudes. The obtained vector is referred to as the signature vector of the corresponding pattern. Then the distance between the
signature vector of the pattern to be classified and the signature vectors of the patterns in the data base are computed and the pattern to be
classified is matched with a pattern in the data base whose signature vector is closest to the signature vector of the pattern being classified.
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1. Introduction

An essential element of a quality pattern classifier is a fea-
ture extraction algorithm that is capable of extracting features
that are invariant to certain geometric transformations. In the
paper, we focus on classifying images that are transformed
from original prototype images by a group of planar transfor-
mations (see Subsec. 2.1). The Fourier transform possesses a
number properties that make it suitable for invariant feature
extraction for pattern recognition. Altmann and Reitböck [1]
and Reitboeck and Altmann [2] proposed a size and position-
invariant description of an image function via the absolute
value of the Mellin transform of its amplitude spectrum (the
absolute value of the Fourier transform.) Gardenier, McCal-
lum, and Bates [3] used the Fourier transform amplitudes in
pattern recognition applications. More recently, Chen, Bui,
and Krzyżak [4] employed the Radon transform and dual-
tree complex wavelets, in addition to Fourier transforms, in
the invariant pattern recognition. The well-known Fourier de-
scriptor method for the shape analysis and classification is
fundamentally different from the proposed method; see Sec. 6
for a discussion.

The method we are proposing uses the amplitude spec-
tra of the images. It is not immediately clear that the am-
plitude spectrum can uniquely determine the image. In other
words, different functions may have the same amplitude spec-
trum. However, it is well-known that functions that arise in
practice are uniquely determined by their amplitude spectra,
see Barakat and Newsam [5], and Van Hove, Lim, and Op-
penheim [6], and Taylor [7]. The study of the determination
of a function, either continuous or discrete, from its ampli-
tude spectrum has a long history, see for example, Akutow-
icz [8, 9], Barakat and Newsam [5], and Van Hove, Lim, and
Oppenheim [6]. Many of the studies also discuss the possi-

ble recovery of the function from its amplitude spectrum, see
for example, Hayes, Lim, and Oppenheim [10], Hayes [11],
Taylor [7], and Bates and McDonnell [12].

The feature of each image that we use in our method is
the decreasing rearrangement of the amplitude spectrum of
the image. There is no reason to believe that the decreasing
rearrangement of the amplitude spectrum of an image can
uniquely determine the image itself. However, it is our ex-
perience that the decreasing rearrangement of the amplitude
spectrum does determine the image in all cases we have stu-
died.

We propose an algorithm where P Fourier coefficients
with largest absolute values are extracted. The magnitudes of
coefficients are arranged in a vector in descending order. We
refer to the obtained vector as the signature vector of the cor-
responding pattern. The distance between the signature vector
of the pattern to be classified and the signature vectors of the
patterns in the data base are computed and the pattern to be
classified is matched with a pattern in the data base whose
signature vector is closest to the signature vector of the pattern
being classified.

The paper is organized as follows. In Sec. 2, we present
relevant background results related to the Fourier transform
and its properties that we use to extract pattern features for the
purpose of pattern classification. In Subsec. 3.2, we discuss
the use of discrete Fourier coefficients as signature vectors in
noisy environments. In Sec. 4, we propose a Fourier trans-
form based algorithm for pattern classification. In Sec. 5, we
present results of numerical experiments demonstrating the
effectiveness of the proposed pattern classifier. A brief dis-
cussion of the difference between the proposed technique and
the Fourier descriptor method is given in Sec. 6. Conclusions
are found in Sec. 7.
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2. Mathematical preliminaries

In this section, we collect the mathematical results that we
use in our discussion. First, recall that a standard rectan-
gular RGB image is represented by a 3D matrix x of size
M1 × M2 × 3. Each of the three M1 × M2 submatrices con-
tain the intensity values for red, green, and blue, respectively.
We allow the following operations on the images: rotation
through 90◦, 180◦, 270◦, and reflections through the horizon-
tal, median, the vertical median, and the two main diagonals
of the image. Let Γ denote the set of these operations. By
combining the operations in Γ, a total of 28 different images
can be generated from a single image. Note that the opera-
tions in Γ only affect the first two dimensions of an image.
For γ ∈ Γ, we use γ(x) to denote the image obtained from x
using the operation γ.

Let ℓ and m1, . . . , Mℓ be positive integers. For our appli-
cations, ℓ = 3 but we present the general case for notational
convenience. Let L ∈ Zℓ be the rectangular lattice

L = [0, . . . , M1 − 1] × · · · × [0, . . . , Mℓ − 1]

and let M = (M1, . . . , Mℓ) be the vector containing the di-
mensions of the lattice L. Then the image x can be viewed
as a complex-valued function on L, that is, x : L → C.

2.1. The Discrete Fourier Transform (DFT). We first recall
the following standard notation: Let m = (m1, . . . , mℓ) and
M = (M1, . . . , Mℓ). We denote the coordinate-wise division
of m by M by

m

M
=

(
m1

M1
, . . . ,

mℓ

Mℓ

)
.

The discrete Fourier transform (DFT) of x is defined by

x̂(n) =
∑

m∈L

x(m)e−2πj n· m

M (1)

for each n ∈ L. The basic properties of the Fourier transform
can be found in [13–15].

We make use of the following properties of the DFT. The
following theorem is well known:

Theorem 1. Let x : L → C. Then

‖x̂‖2 = |M |‖x‖2,

where |M | = M1 · · ·Mℓ.

We also need the following result on the values of x̂.
Its proof is elementary but it does not appear in the stan-
dard Fourier analysis books and so for the convenience of the
reader, we have included its proof. For x : L → C, let

A(x) = {|x̂(n)| : n ∈ L}

denote the set of values of the amplitude spectrum of x.

Theorem 2. For each x : L → C and each γ ∈ Γ,

A(x) = A(γ(x)).

Proof. Suppose x has dimension M1 × M2 × · · · × Mℓ. Let
τ(x) denote the vector obtained from x by transposing its

first two coordinates. Note that for an image x, τ(x) is the
same as reflecting x through its main diagonal. Then τ(x)
has dimension M2 ×M1 × · · · ×Mℓ and is a function on the
transposed lattice

L
′ = [0, . . . , M2 − 1] × [0, . . . , M1 − 1]

× · · · × [0, . . . , Mℓ − 1]

= [0, . . . , M2 − 1] × [0, . . . , M1 − 1] × L3,

where L3 = [0, . . . , M3−1]×· · ·× [0, . . . , Mℓ−1]. We have
for n ∈ L

′ thatdτ(x)(n) =
X

m′∈L
′

τ(x)(m
′
)e

−2πj n·
m
M

=
X

m′′∈L3

M2−1X
m′

1=0

M1−1X
m′

2=0

τ(x)(m′

1, m
′

2, m
′′)e

−2πj

 
m′

1n1
M1

+
m′

2n2
M2

+m′′
·
n′′

M

!
=

X
m′′∈L3

M2−1X
m′

1=0

M1−1X
m′

2=0

x(m′

2, m
′

1, m
′′)e

−2πj

 
m′

2n2
M2

+
m′

1n1
M1

+m′′
·
n′′

M

!
= x̂(n′),

where n
′ denotes the vector obtained from n by transposing

its first two coordinates. We conclude that the DFT commutes
with transposition. It follows that

A(x) = A(τ(x)).

Let φ denote the reflection of the first two coordinates through
the horizontal median. Then φ(x) has the same dimension as
x and for 0 ≤ m1 ≤ M1 − 1 and m = (m1, m2) ∈ L,

φ(x)(m1, m2) = x(M1 − m1 − 1, m2).

Factor the lattice L into L = [0, . . . , M1 − 1] × L2 and for
n ∈ L, let n = (n1, n2). Thendφ(x)(n) =

X
m∈L

φ(x)(m)e
−2πj n·

m
M

=
X

m2∈L2

M1−1X
m1=0

φ(x)(m1, m2)e
−2πj

 
m1n1

M1
+n2·

m2
M2

!
=

X
m2∈L2

M1−1X
m1=0

x(M1 − m1 − 1, m2)e
−2πj

 
m1n1

M1
+n2·

m2
M2

!
=

X
m2∈L2

M1−1X
m=0

x(m, m2)e
−2πj

 
(M1−m−1)n1

M1
+n2·

m2
M2

!
= e

−2πj
(M1−1)n1

M1
X

m2∈L2

M1−1X
m=0

x(m, m2)e
−2πj

 
−

mn1
M1

+n2·
m2
M2

!
= e

2πj
n1
M1

X
m2∈L2

M1−1X
m=0

x(m, m2)e
−2πj

 
m(M1−n1)

M1
+n2·

m2
M2

!
= e2πj

n1
M1 x̂(M1 − n1, n2).

The next to last equality is obtained using the fact that e2πjk =
1 for all integers k. It follows that for n = (n1, n2) ∈ L,

|φ̂(x)(n)| =

{
|x̂(0, n2)| if n1 = 0

|x̂(M1 − n1, n2)| if 1 ≤ n1 ≤ M1 − 1.

Thus the magnitude of the DFT commutes with reflection
through the horizontal median and so A(x) = A(φ(x)). The
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other operations in Γ can all be expressed as combinations of
τ and φ:

1. ρ = Counter-clockwise rotation by 90◦ = φ ◦ τ
2. ν = Reflection through vertical median = ρ3 ◦ φ ◦ ρ
3. Reflection through opposite diagonal = ν ◦ τ ◦ ν

It follows that A(x) is invariant under operations in Γ.

Theorem 2 shows that the magnitude of the DFT is invari-
ant under the operations in Γ. This property makes the magni-
tude of the DFT an attractive tool in the design of recognition
algorithms that are robust against the operations in Γ. How-
ever, we cannot use the magnitude of the DFT directly as it
is not invariant under the operations in Γ; only the unordered
values are. We show in Subsec. 3.2 that there are drawbacks
to using the entire DFT in noisy environments.

2.2. Rearrangement of vectors. In our algorithm, we
arrange the values of A(x) in decreasing order of magni-
tude. In this section, we state and prove two simple results
on rearranged vectors. The results are classical and we in-
clude their proofs since they do not seem to be widely known
outside of classical analysis.

Lemma 3. Suppose a and b are real vectors of the length
N . Then the maximum of the dot products of all possible re-
arrangements of a and b is achieved when the values in each
vector are arranged in decreasing order.

Proof. Let a and b be real vectors of length N . If a1 = · · · =
aN , then the claim is certainly true because all rearrangements
of b give the same dot product. We can assume without loss
of generality that a1 ≥ a2 ≥ · · · ≥ aN . and that not all ak’s
are the same. Let s be the maximum of the dot products.
Suppose

s = a1b
′
1 + · · · + aNb′N

for the rearrangement (b′1, . . . , b
′
N ) of (b1, . . . , bN). Suppose

j < k and aj > ak. Then we must have b′j ≥ b′k because
otherwise we have

ajb
′
k + akb′j − (ajb

′
j + akb′k) = (aj − ak)(b′k − b′j) > 0

and we can obtain a larger dot product by switching b′j and
b′k. The claim now follows by rearranging the bk’s in a range
where the ak’s are constant in decreasing order.

The following is now immediate.

Theorem 4. Let a and b be real vectors of length N and let
a

♯ and b
♯ be the rearrangements of a and b in decreasing

order. Then
‖a♯ − b

♯‖ ≤ ‖a − b‖.

Proof. Since ‖a♯‖2 = ‖a‖2, ‖b♯‖2 = ‖b‖2, and a
♯ ·b♯ ≥ a·b,

we have

‖a♯ − b
♯‖2 = ‖a♯‖2 − a

♯ · b♯ + ‖b♯‖2

≤ ‖a‖2 − a · b + ‖b‖2 = ‖a − b‖.

3. The pattern recognition algorithm

In this section, we give the motivation for the algorithm based
on the mathematical results given in Sec. 2 and the impact of
noise (see Subsec. 3.2).

3.1. Motivation. Let x1, . . . , xN : L → R be the pixel val-
ues of N distinct ℓ-dimensional prototype images. The origi-
nal image for a received noiseless y that has not been rotated
or reflected can be recovered exactly by solving

xest = arg min
k=1,...,N

‖y − xk‖2. (2)

However, if the image has been rotated or reflected, then this
method does not work. One approach would be to compare
the received image to all possible images obtainable from the
original set of prototype images. While this can be done, it
increases the computational load almost 30 fold, which makes
this approach less desirable.

Since the DFT is not invariant under rotation and reflec-
tion, using the DFT directly suffers the same problem as using
the original image values. However, as we proved in Theo-
rem 2, the set of values of the amplitude spectrum

A(x) = {|x̂(m)| : m ∈ L}

is invariant under operations in Γ. So we need to find a met-
ric on sets that measures the difference between A(x) and
A(y), and then use that to measure the difference between
the images x and y. The method we chose is based on The-
orem 4. Let A♯(x) denote the vector obtained from A(x) by
decreasing rearrangement. From Theorem 4 and Theorem 1,
we have

‖A♯(x) − A♯(y)‖ ≤ ‖x̂ − ŷ‖ =
√
|M |‖x − y‖. (3)

Let
d(x, y) = ‖A♯(x) − A♯(y)‖. (4)

Then it is easy to see that d is a semi-metric on the set of
prototype images but it is not a metric on the set of all pos-
sible images. It is not a metric because it is possible to have
A♯(x) = A♯(y) even if x 6= y, but this rarely happens in
practice for a finite set of images.

Remark 1. We can formalize the way images can be dis-
tinguished using the following equivalence relation. We say
that the images x and y are equivalent, denoted by x ∼ y, if
A(x) = A(y). It can easily be verified that ∼ is an equivalence
relation on the space I of images with the same number of
pixels. For each image x, let [x] denote the equivalence class
containing x. On the space I/∼ of equivalence classes, let

D([x], [y]) = d(x, y), (5)

where d is the semi-metric defined in Eq. (4). Then D is a
metric on I/∼.

We assume that our prototype images have distinct equiv-
alence classes. Then for x 6= y, d(x, y) = D([x], [y]) > 0 and
so d is a metric on the set of prototype images.

For a received image y, d(x, y) > 0 if x 6= y and the only
solution of

xest = arg min
k=1,...,N

d(xk, y). (6)
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is x = y, the original message. We have thus found a method
for recovering noiseless images that have been transformed by
the operations in Γ.

We next discuss the case when there is noise.

3.2. Noise considerations. Let x1, . . . , xN : L → R be the
pixel values of N ℓ-dimensional prototype images. Note that
standard color images are three-dimensional. The noisy ver-
sion of the k-th image has the form

yk = xk + ωk, (7)

where ωk a random variable with zero mean and finite vari-
ance σ2 per pixel. Furthermore, we assume that {ωk(m) :
k = 1, . . . , N, m ∈ L} are independent and identically dis-
tributed (iid) random variables. Note that other than the prop-
erties stated above, the iid random variables can have any
distribution. We will use zero mean Gaussian noise in the
simulations but the analysis applies to all distributions that
satisfy the above requirements.

The maximum likelihood estimator for a received noisy
image y is

xest = arg min
k=1,...,N

‖y − xk‖2. (8)

However, as we had seen before, the above estimator is not
robust against rotation or translation and we chose instead to
use

xest = arg min
k=1,...,N

d(xk, y), (9)

where d(x, y) = ‖A♯(x) − A♯(y)‖. If the noise is zero, then
the actual image is a solution to the above optimization prob-
lem, and would be the unique solution when d is a metric.
However, as we next demonstrate, there is drawback to this
approach in a noisy environment.

Let x be a prototype image and y = x+ω a noisy version
of the image. The n-th Fourier coefficient of y satisfies

|by(n)|2 =

������ X
m∈L

(x(m) + ω(m))e
−2πj n·

m
M

������2
=

X
k,m∈L

x(m)x(k)e
−2πj (m−k)· n

M

+2 Re

0B� X
k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M

1CA
+

X
k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M

= |bx(n)|2 + 2 Re

0B� X
k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M

1CA
+

X
k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M .

The expected value of |ŷ(n)|2 is

E
[
|ŷ(n)|2

]
= |x̂(n)|2

+E

2642 Re

0B� X
k,m∈L

x(m)ω(k)e
−2πj (m−k)· n

M

1CA
+

X
k,m∈L

ω(m)ω(k)e
−2πj (m−k)· n

M

375 .

Since ω(m) and ω(k) are independent with mean zero and
variance σ2, we have

E
[
|ŷ(n)|2

]
= |x̂(n)|

2

+
X

k=m∈L

E
h
ω(m)ω(k)

i
e
−2πj (m−k)· n

M

= |x̂(n)|2 + |M |σ2,

(10)

where |M | = M1 · · ·Mℓ is the number of pixels in the image.
In light of Eq. (10), we see that a particular Fourier coeffi-
cient x̂(n) is useful as a feature only if |x̂(n)|

2 is significantly
greater than Mσ2. For most practical images with a moderate
number of pixels, the number of Fourier coefficients whose
squared-amplitudes are greater than two or three times Mσ2

is quite small for any nontrivial noise variance σ2. Note this
observation comports with the Riemann-Lebesgue lemma, see
for example [13, p. 39]. We illustrate this crucial point with
a numerical example (Fig. 1).

Fig. 1. A plot of the magnitude squared of the Fourier coefficients
in Example 1.

Example 1. We generate a random zero-one vector x of length
1024 where each entry has probability 0.25 of being one.
We compute the Fourier coefficients of x and plot |x̂(n)|2

as a function of n. The three horizontal lines are at height
0.25×1024, 0.5×1024, and 1024, respectively. The plot was
generated by the following simple Matlab script:

x=rand([1 1024])>0.75;

x_hat=fft(x);

plot(abs(x_hat.^2),’r+’)
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axis([0 1024 0 2*10^3])

hold on

plot(1:1024,1024*0.25)

plot(1:1024,1024*0.5)

plot(1:1024,1024*1)

hold off

Note that the plot excludes the high DC component at fre-
quency 0. This is accomplished in the above script using the
command axis([0 1024 0 2*10^3]).

The significance of Eq. (10) is that it implies that most
of Fourier coefficients are not useful as features of an im-
age in a noisy environment. In fact, the difference d(xk, y)
in Eq. (9) may be overwhelmed by noise. It therefore makes
sense to only consider the Fourier coefficients with the largest
magnitudes. Note that using a scaled version of the DFT, for
example, bx(n) =

1

M

X
m∈L

x(m)e−
2πj m·n

M ,

does not alleviate the problem because all coefficients are
scaled the same and so the signal-to-noise ratio does not
change.

In light of the above discussion, we use only the largest
values in A♯(x). Let A♯

P (x) be the vector containing the first

P coordinates of A♯(x) and let dP (x, y) = ‖A♯
p(x)−A♯

P (y)‖.
In all practical situations, dP is a metric on the set of proto-
type images and we solve

xest = arg min
k=1,...,N

dP (xk, y) (11)

to find the most likely original image given the received im-
age y.

3.3. Error analysis. In this section, we analyze the effect of
noise on the proposed algorithm. Our main tool is Eq. (3). As
in Subsec. 3.2, we assume that the noisy version of the k-th
image has the form

yk = xk + ωk, (12)

where ωk a random variable with zero mean and finite vari-
ance σ2 per pixel. We have from Eq. (3) that

d2(x, x + ω) = ‖A♯(x) − A♯(x + ω)‖2 ≤ ‖ω̂‖2

= |M |‖ω‖2

and it follows that the expected value of the squared error for
the whole image satisfies

E
[
‖A♯(x) − A♯(x + ω)‖2

]
≤ |M |E

[
‖ω‖2

]

= |M |
∑

m∈L

E
[
|ω(m)|2

]

= |M |
∑

m∈L

σ2 = |M |2σ2.

(13)

In the above computation, we used the fact that σ2 =
E

[
|ω(m)|2

]
is the noise variance for each pixel. Since there

are |M | pixels in each image, the expected squared error per
pixel is

1

|M |
E[‖A♯(x) − A♯(x + ω)‖2] = |M |σ2.

When compared with the un-rearranged per pixel error given
in Eq. (10), we can see that rearrangement does not increase
the per pixel mean-square error of the DFT.

We have for a fixed image x and a noise sample ω that

‖A♯(x) − A♯(x + ω)‖2 ≤ |M |‖ω‖2

= |M |2


 1

|M |

∑

m∈L

|ω(m)|2


 .

4. Pattern recognition algorithm

The pattern recognition method we propose uses P leading
elements of the decreasing rearrangements of the magnitude
of the Fourier coefficients of the images as signatures. The
number P is a design parameter chosen on the basis of na-
ture of the prototype images and the expected range of noise
variance. The complete algorithm can be summarized as fol-
lows:

1. Prototype Image Signature Extraction

(a) Fix a design parameter P .

(b) For each image given by a function x defined on a
lattice L, compute its discrete Fourier transform x̂.

(c) Evaluate and sort {|x̂(n)|: n ∈ L} in descending
order.

(d) Store the P highest values in a vector as the signature
for the image.

2. Noisy Image Pattern Classification

(a) For a noisy image y to be classified, repeat steps 1b,
1c, and 1d described above.

(b) From the stored prototype signature vectors, find the
one with smallest distance from the signature vector
of y.

Note that one can use any metric on R
P as the distance func-

tion in step 2b. In our simulations, we use the ℓ1 norm, which
gives almost the same performance as the ℓ2 norm.

5. Simulations

For our simulations, we used 14 color images of stamps
from [16] that contain images of butterflies. Each image con-
tains 300 × 200 color pixels, which we treat as a function
on a 300 × 200 × 3 integer lattice. The original pixel values
were integers from 0 to 255, which we converted into floating
point real numbers with values between 0 and 1. We comput-
ed the three dimensional discrete Fourier transform of each
image and then sorted the magnitudes of the Fourier coeffi-
cients. We kept the top 30 magnitudes from each image as its
signature.
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For the simulations, one of the 14 prototype images was
randomly and uniformly selected. Zero mean Gaussian noise
was added independently to each pixel to the selected image;
see Fig. 2 for an illustration of a typical prototype image and
its noisy version for selected noise levels. We use the standard
definition of signal-to-noise ratio (SNR) for an image x:

SNR =

√√√√ 1

|M |σ2

∑

n∈L

[x(n) − x̄]
2

where σ2 is the variance of the noise per pixel and x =∑
n∈L x(n)/M is the average pixel value of the image x;

see for example Chen, Bui, and Krzyzak [4]. Note that the
above definition of SNR is independent of image size and
can be interpreted as the image SNR and as the average per
pixel SNR.

a) Sample image b) SNR = −0.5 dB

c) SNR = −3.5 dB d) SNR = −6.5 dB

Fig. 2. Original image and its noisy versions used in the numerical
experiment

The noisy image was rotated randomly and uniformly by
0◦, 90◦, 180◦, or 270◦; see Fig. 3 for an illustration of the
rotations of a typical image. The signature vector of the noisy
rotated image was extracted and the prototype image with the
closest signature vector in ℓ1 norm was selected as the best
estimate. The number of errors was recorded. Note that there
are a total of 56 possible images without noise.

We repeated the same experiment using compressed ver-
sions of the same images. Each of three color components of
an image was compressed by a two dimensional Daubechies
wavelet to have size 75 × 50. The three compressed color
components combine to form a compressed color image of

size 75 × 50 × 3; see Fig. 4 for a typical compressed image
and selected noisy versions.

a) Sample image b) 90◦

c) 180◦ d) 270◦

Fig. 3. Original image and its rotated versions used in the numerical
experiment

a) Sample image b) SNR = −0.5 dB

c) SNR = −3.5 dB d) SNR = −6.5 dB

Fig. 4. A compressed image and its noisy versions
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Table 1
Noise standard deviations used in simulation

Noise Std σ 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00

We chose the noise standard deviations given in Table 1
for our simulation. For each noise standard deviation, 12, 000
trials were conducted and the number of errors recorded. The
results are presented in Figs. 5, 6, and 7. In Fig. 5, the error
rate, which is the number of errors divided by the number of
trials, of the simulation using the original prototype images
is plotted against the SNR. In Fig. 6, we plot the error rate of
the simulation using the compressed images. A comparison
of the error rates for the original and compressed images is
given in Fig. 7. In the plots, the SNR is defined using the
average signal standard deviation σ = 0.45 of all prototype
images.

Fig. 5. A plot of the error rate versus signal-to-noise ratio – original
images

Fig. 6. Error rate versus signal-to-noise ratio – compressed images

Fig. 7. Error rate versus signal-to-noise ratio – comparison for the
compressed images and uncompressed images

Remark 2. We also performed the same experiments with
only rotation but no noise. The algorithm was able to identify
all presented images correctly and there were no errors. This
is exactly as the theory predicted and this also shows that dP

is indeed a metric on the set of prototype images.

6. Fourier descriptor

In this section, we discuss the difference between our pro-
posed method and the well-known Fourier descriptor tech-
nique, which also uses the coefficients of the DFT. The Fourier
descriptors are used for boundary curve and shape classifica-
tions, see, for example, Zahn and Roskies [17], Persoon and
Fu [18], and Krzyżak, Leung, and Suen [19]. To facilitate
the discussion, we briefly review the basic Fourier descriptor
method.

Let Ω denote a shape in R2 with a well-defined boundary
∂Ω. In the context of the Fourier descriptor method, R2 is
identified with the complex plane C via

(x, y) ↔ z = x + jy.

From ∂Ω, a finite number of points {z0, . . . , zN−1} are cho-
sen to give a good approximation of ∂Ω. The Fourier de-
scriptors of the boundary ∂Ω are the DFT coefficients of
{z0, . . . , zN−1}:

ẑn =
N−1∑

m=0

zme−2πjm n
N , n = 0, . . . , N − 1.

Note that some authors use the normalization factor 1/N in
the definition of the DFT but that clearly makes no difference.
The Fourier descriptors have a number of nice properties, in-
cluding translation invariance, proportional scaling, and rota-
tion and phase relation; the details can be found in the above
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references. Typically, the Fourier descriptors are compared to
prototypes for classification. The number of points used can
be reduced by omitting the high frequency components of the
DFT. This causes the loss of fine details but the overall shape
is retained. However, the order of the coefficients themselves
must be same.

The most fundamental difference between the Fourier de-
scriptor method and the method proposed in this paper is
that the input data {z0, . . . , zN−1} for the Fourier descriptor
method are the coordinates of chosen points on ∂Ω, which
means that the Fourier descriptors encode positional informa-
tion since they are the DFT coefficients of coordinates. On
the other hand, we use, in our method, the color and intensity
of each pixel of an image and the location of each pixel is
implicit in the lattice structure used in the DFT. Since the
input data used in the two methods are completely different
in nature, the methods are fundamentally different.

Since our proposed method does not use positional in-
formation, the question of scaling and rotation must be ad-
dressed differently and it is an interesting problem to find an
appropriate mathematical structure to answer these questions
in a practical manner. One possible approach is to embed the
various geometrically transformed images in a large lattice
structure.

Also, the order information is important in Fourier de-
scriptors while in our technique, we only use the magnitude
information of the DFT without using any order information.
Our technique can also be extended to work in higher dimen-
sions. For example, a two dimensional color image can be
consider as a three dimensional object.

7. Conclusions

We presented a Fourier transform based pattern recognition
algorithm. The algorithm uses the magnitudes of a small num-
ber of Fourier coefficients of an image as its signature vector.
We presented mathematical justifications as to why using a
small number of Fourier coefficients as a signature vector
may be better than using all Fourier coefficients in the pres-
ence of noise. Simulations were conducted to demonstrate the
effectiveness of the algorithm in noisy environments.
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