
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 62, No. 1, 2014

DOI: 10.2478/bpasts-2014-0014

A mixed integer program for cyclic scheduling of flexible flow lines

T. SAWIK∗

AGH University of Science & Technology, Department of Operations Research and Information Technology,

30 Mickiewicza Ave., 30-059 Kraków, Poland

Abstract. A new mixed integer programming formulation is presented for cyclic scheduling in flow lines with parallel machines and finite

in-process buffers, where a Minimal Part Set (MPS) in the same proportion as the overall production target is repetitively scheduled. The

cycle of parts in an MPS is not determined a priori, but is obtained along with the optimal schedule for all parts. In addition to the cyclic

scheduling, a cyclic-batch scheduling mode is introduced, where within the MPS the parts of one type are processed consecutively. Numerical

examples are included and some results of computational experiments are reported.

Key words: flexible flow line, cyclic scheduling, cyclic-batch scheduling, mixed integer programming.

1. Introduction

A flexible flow line (FFL) consists of several machines in se-

ries and/or in parallel, separated by finite in-process buffers

and connected with a conveyor system that transfers the parts

between the machines. The flow line is capable of processing

several different parts types and each part must be processed

by at most one machine in each stage. When a machine fin-

ishes to process a part and the downstream buffer is full the

machine is blocked, while if the upstream buffer is empty the

machine is starved. A common assumption is that there are al-

ways raw parts available at the input of the system, and hence

the first machine is never starved and that there is always a

space available at the output of the system and hence the last

machine is never blocked. Typical performance measures of

a FFL include the throughput or makespan for a mix of part

types.

Blocking scheduling has received considerable attention

from the study in [1], where a regular flow line with finite ca-

pacity buffers between machines is considered. Mixed integer

programs for the blocking scheduling in a FFL are present-

ed in [2–4]. A review of exact methods for flexible flow line

scheduling problem with parallel identical machines to mini-

mize makespan or total flow time is presented in [5], and the

most recent comprehensive review can be found in [6].

The cyclic scheduling is often used when set up times are

negligible and the demand for each part type remains constant

over the scheduling horizon. Otherwise, the batch scheduling

is applied, where it is more efficient to have long runs of

identical parts to minimize sequence dependent set up times.

Cyclic schedules reduce in-process inventory, are easy to keep

track of and impose a certain discipline, and allow a simple

shop floor control to be implemented. Therefore, the cyclic

scheduling is widely used in practice, e.g., [7, 9].

The purpose of this paper is to provide the reader with a

new mixed integer programming monolithic model for cyclic

scheduling in a FFL, where a Minimal Part Set (MPS) is

repetitively scheduled. MPS is the smallest possible set of

parts in the same proportion as the overall production target.

For example, if the production target is 100 units of part A,

300 units of part B and 500 units of part C, then MPS is 1

part A, 3 parts B, and 5 parts C, in total 9 parts, which is to

be repeated 100 times. In the cyclic scheduling the parts with-

in an MPS can be ordered as in the general scheduling, e.g.,

C,C,A,B,C,B,C,B,C or in batches as in the batch scheduling,

e.g., C,C,C,C,C,A,B,B,B. The latter scheduling mode can be

called cyclic-batch scheduling.

The literature on cyclic scheduling of MPS in flow lines

is concentrated on the study of unpaced (with no exogenous

limit on the cycle time) asynchronous (e.g., [1, 10]) or syn-

chronous (e.g., [11]) configurations. In contrast to a common

two-level approach proposed in the literature (e.g., [7]), based

on simple repetition of the optimal schedule for a single MPS,

which is determined independently on the overall production

target to be to fulfilled, in this paper the optimal cycle of

parts in an MPS is not determined a priori, but is obtained

along with the optimal schedule for all parts. In addition, the

cyclic-batch scheduling mode is modeled, that is, the con-

strained cyclic mode combined with batch processing of part

types in each run of an MPS.

The paper is organized as follows. Mixed integer program

for cyclic scheduling in FFL is presented in the next section.

Numerical examples are provided in Sec. 3, and conclusions

are given in the last section.

2. Problem formulation

In this section mixed integer programming model CFFL is

presented for cyclic or cyclic-batch scheduling in a FFL. The

flow line consists of m processing (machine or buffer) stages

i ∈ I = {1, . . . , m} in series. Buffers and machines are re-

ferred to as processors and each processing stage i ∈ I is

made up of mi ≥ 1 parallel identical processors. Let Ji be

the circular set of parallel processors in stage i, where ‘circu-

∗e-mail: ghsawik@cyf-kr.edu.pl

121



T. Sawik

lar” indicates that the set is ordered and wraps around, i.e., its

first member is the successor of its last, and its last member

is the predecessor of its first.

The buffers are viewed as special processors with zero

processing times but with blocking. As a result the schedul-

ing problem with finite in-process buffers can be converted

into one with no buffers but with blocking.

The FFL produces various part types with negligible set

up times, and each part must be processed without pre-

emption on exactly one processor in each of the stages se-

quentially.

Denote by G, K = {1, . . . , n}, and Kg =
{
∑

f∈G:f<=g−1 nf + 1, . . . ,
∑

f∈G:f<=g−1 nf + ng} the or-

dered sets of indices, respectively of all part types, all in-

dividual parts, and all parts of type g ∈ G, where ng and

n =
∑

g∈G ng are, respectively the number of parts type

g and the total number of parts in the schedule. Denote by

rig ≥ 0 the processing time in stage i of part type g ∈ G
and by pik ≥ 0 the processing time in stage i of part k ∈ K ,

(pik = rig∀k ∈ Kg), where all processing times are equal to

zero for a buffer stage.

The MPS is defined as {ng : g ∈ G}, where ng =
ng/S ∀ g ∈ G, and S is the greatest common divisor of

integers n1, n2, . . . n|G|, i.e., a total of S runs of an MPS

is required to meet the overall production target. Denote by

n =
∑

g∈G ng, the total number of parts in an MPS.

The problem objective is to assign parts to processors in

each stage and to schedule the parts cyclically so as to mini-

mize the makespan. The decision variables are:

cik – completion time of part k in stage i;
dik – departure time of part k from stage i;
xijk = 1, if part k is assigned to processor j ∈ Ji in stage

i ∈ I; otherwise xijk = 0;

ykl = 1, if part k precedes part l in the processing se-

quence; otherwise ykl = 0.

Model CFFL: Cyclic scheduling of a flexible flow line

Minimize makespan

Cmax (1)

subject to

Part assignment constraints:

– in every stage each part is assigned to exactly one

processor,

– in each multi-processor stage i, every ng-th part of each

type g is assigned to every n-th processor in the circular set

Ji of parallel processors,
∑

j∈Ji

xijk = 1; i ∈ I, k ∈ K, (2)

xi,next(j,Ji,n),next(k,Kg,ng) = xijk;

i ∈ I, j ∈ Ji, g ∈ G, k ∈ Kg :

k ≤ last(Kg) − ng, mi > 1,

(3)

where next(j, Ji, n) is the parallel processor in stage i, n po-

sitions after processor j in the circular set Ji, next(k, Kg, ng)

is the part type g, ng positions after part k in the ordered set

Kg, and last(Kg) is last part in the ordered set Kg of parts

type g.

Part completion constraints:

– each part must be processed in the first stage and suc-

cessively in all downstream stages,

c1k ≥ p1k; k ∈ K, (4)

cik − ci−1k ≥ pik; i ∈ I, k ∈ K : i > 1. (5)

Part departure constraints:

– each part cannot be departed from a stage until it is

completed in this stage,

– each part leaves the line as soon as it is completed in

the last stage,

cik ≤ dik; i ∈ I, k ∈ K : i < m, (6)

cmk = dmk; k ∈ K. (7)

No-buffering constraints:

– in every stage processing of each part starts immediately

after its departure from the previous stage,

cik − pik = di−1k; i ∈ I, k ∈ K : i > 1. (8)

Part non-interference constraints:

– no two parts assigned to the same processor can be

processed simultaneously,

cik + Q(2 + ykl − xijk − xijl) ≥ dil + pik;

i ∈ I, j ∈ Ji, k, l ∈ K : k < l,
(9)

cil + Q(3 − ykl − xijk − xijl) ≥ dik + pil;

i ∈ I, j ∈ Ji, k, l ∈ K : k < l,
(10)

where Q is a large positive constant not less than the schedule

length.

Maximum completion time constraints:

– the schedule length is determined by the latest comple-

tion time of some part in the last stage,

cmk ≤ Cmax; k ∈ K. (11)

Cyclic processing constraints:

– parts of one type are processed in the order of their

numbering,

– in each single-processor stage i (with mi = 1), every

ng-th part of each type g is processed periodically,

– in each multi-processor stage i (with mi > 1), every

ng-th part of each type g is processed periodically,

– in a single-processor stage i (with mi = 1), no part

of a new run of MPS can be started until all parts from the

previous run are departed,

ykl = 1; g ∈ G, k ∈ Kg, l ∈ Kg : k < l, (12)

ci,next(k,Kg ,ng) ≥ dik +
∑

f∈G

nfrif ;

i ∈ I, g ∈ G, k ∈ Kg :

k ≤ last(Kg) − ng, mi = 1,

(13)

122 Bull. Pol. Ac.: Tech. 62(1) 2014



A mixed integer program for cyclic scheduling of flexible flow lines

ci,next(k,Kg ,ng) ≥ cik − rig +
∑

f∈G

nfrif/mi;

i ∈ I, g ∈ G, k ∈ Kg :

k ≤ last(Kg) − ng, mi > 1,

(14)

cik ≥ dil + pik;

i ∈ I, f ∈ G, g ∈ G, k ∈ Kf , l ∈ Kg, 1 ≤ s ≤ S − 1 :

snf < ord(k, Kf ) ≤ (s + 1)nf ,

(s − 1)ng < ord(l, Kg) ≤ sng, mi = 1,

(15)

where ord(k, Kf ) denotes ordinal position of k in Kf .

Scheduling mode constraints:

– if cyclic mode is selected, then (16) ensures the same

sequence of processing parts in each run of MPS,

ykl = ynext(k,Kf ,sn
f
),next(l,Kg,sn

g
);

f ∈ G, g ∈ G, k ∈ Kf , l ∈ Kg, 1 ≤ s ≤ S − 1 :

f < g, 1 ≤ ord(k, Kf ) ≤ nf , 1 ≤ ord(l, Kg) ≤ ng,

(16)

– if cyclic-batch mode is selected, then (17) ensures the

same sequence of processing minimal batches of different part

types in each run of MPS,

ykl = ylast(Kf ),last(Kg);

f ∈ G, g ∈ G, k ∈ Kf , l ∈ Kg, 1 ≤ s ≤ S :

f < g, (s − 1)nf < ord(k, Kf ) ≤ snf ,

(s − 1)ng < ord(l, Kg) ≤ sng.

(17)

Variable nonnegativity and integrality conditions:

cik ≥ 0; i ∈ I, k ∈ K, (18)

dik ≥ 0; i ∈ I, k ∈ K, (19)

xijk ∈ {0, 1}; i ∈ I, j ∈ Ji, k ∈ K (20)

ykl ∈ {0, 1}; k, l ∈ K : k < l. (21)

Note that for a given sequence of parts at most one non-

interference constraint (9) or (10) is active, and only if in stage

i both parts k and l are assigned to the same processor j, that

is, only if xijk = xijl = 1. Otherwise, constraints (9) and (10)

are inactive and the two parts can be processed in parallel.

The assignment constraint (3) functions as a shuttle rout-

ing parts to successive processors in the circular set of parallel

processors. In every multi-processor stage, the corresponding

parts of one type in the consecutive MPSs (every ng-th part of

each type g) are assigned to every n-th parallel processor, i.e.,

successive parts in the input sequence are assigned to succes-

sive parallel machines. As a result the same order of process-

ing the parts is maintained in the successive multi-processor

stages, which is equivalent to the classical (single-processor)

permutation flowshop scheduling, [5, 6]. Thus, in addition to

the sequencing variables ykl that maintain the same processing

order in the single-processor stages, the assignment constraint

(3) ensures the same processing order in the multi-processor

stages. As a result, a permutation type schedule for a flexible

flow line is obtained.

The permutation type schedule eliminates overpassing

among the parts and by this implicitly reduces part flow time.

For example, in surface mount technology lines in the elec-

tronics manufacturing, the total flow time of each part (printed

wiring board) is limited by solder paste ’pop’ life time, e.g.,

[3, 8].

While the assignment constraint (3) cuts off many un-

promising permutation type schedules, model CFFL without

constraint (3) may produce a non-permutation type schedule,

with different orders of processing parts in the successive

multi-processor stages. In general, the schedule length of a

non-permutation type schedule can be shorter than that for

the corresponding permutation type schedule (cf. Fig. 2 vs.

Fig. 4 in Sec. 3). The CFFL model can be further strength-

ened by the addition of some valid inequalities, e.g., [9].

3. Computational examples

In this section numerical examples are presented to illustrate

application of the proposed model for the cyclic scheduling

of a surface mount technology line for printed wiring board

assembly in the electronics manufacturing (Fig. 1).

Table 1

Fig. 1. A surface mount technology line with parallel machines and finite in-process buffers

Bull. Pol. Ac.: Tech. 62(1) 2014 123



T. Sawik

Characteristics of CFFL model with constraint (3) and solution results

n, (S × MPS) Var. Bin. Cons. Nonz. Cmax CPU(a)

Cyclic scheduling

5, (MPS) 159 88 524 2037 280 <1

25, (5 × MPS) 951 600 12581 52707 900 4

50, (10 × MPS) 2301 1600 48031 206912 1660 90

75, (15 × MPS) 4051 3000 105921 461697 2450 867

100, (20 × MPS) 6201 4800 186311 817182 3210 1343

200, (40 × MPS) 18801 16000 733071 3271922 6310 11932

Cyclic-batch scheduling

5, (MPS) 159 88 539 2094 280 <1

25, (5 × MPS) 951 600 12671 53262 900 4

50, (10 × MPS) 2301 1600 48086 208572 1660 55

75, (15 × MPS) 4051 3000 106001 465382 2450 178

100, (20 × MPS) 6201 4800 186416 823692 3210 514

200, (40 × MPS) 18801 16000 733076 3271932 6310 11106
(a) CPU seconds for proving optimality on a MacBookPro, 2.8GHz Intel Core i7,

RAM 16GB/Gurobi 5.5.

Table 2

Characteristics of CFFL model without constraint (3) and solution results

n, (S × MPS) Var. Bin. Cons. Nonz. Cmax CPU or (GAP)(a)

Cyclic scheduling

5, (MPS) 159 88 534 2084 280 <1

25, (5 × MPS) 951 600 12026 51781 880 (1.14%)

50, (10 × MPS) 2301 1600 46641 205178 1660 (1.20%)

75, (15 × MPS) 4051 3000 103756 460108 2440 (0.82%)

100, (20 × MPS) 6201 4800 183371 816538 3220 (0.93%)

200, (40 × MPS) 18801 16000 726831 3257258 (b) –

Cyclic-batch scheduling

5, (MPS) 159 88 539 2094 280 <1

25, (5 × MPS) 951 600 12031 51758 880 (1.14%)

50, (10 × MPS) 2301 1600 46646 205188 1650 (0.61%)

75, (15 × MPS) 4051 3000 103761 460118 2430 (0.41%)

100, (20 × MPS) 6201 4800 183376 816548 3220 (0.93%)

200, (40 × MPS) 18801 16000 726836 3257268 (b) –
(a) CPU seconds for proving optimality (or GAP% after 3600 CPU seconds) on a MacBookPro,

2.8GHz Intel Core i7, RAM 16GB/Gurobi 5.5.
(b) no feasible solution found within 3600 CPU seconds.

The line consists of m = 7 stages, where stages i =
1, 3, 5, 7 are machine stages and i = 2, 4, 6 are buffer stages.

Stage i = 1 is a single machine for screen printing, each stage

i = 3, 5 consists of 2 parallel machines for automatic place-

ment of components, and stage i = 7 is a single machine for

vision inspection. The stages i = 2, 4, 6 are represented by

four, five, three buffers, respectively, including three shuttles

routing the parts to the next placement machine, cf., part as-

signment constraint (3). If a shuttle is used as a buffer for

some part waiting for its next machine and another part is

waiting on a machine for transfer by the shuttle, then the ma-

chine is blocked by the completed part until the shuttle is

available.

The production order consists of n = 25, 50, 75, 100
or 200 parts of three types, with MPS = {1, 2, 2}, and the

number of MPS runs required to meet the production target

is S = 5, 10, 15, 20 or 40, respectively. The processing

times rig of each part type g at each stage i are shown below

(for the buffer stages i = 2, 4, 6 all processing times are equal

to zero)

























30, 20, 10

0, 0, 0

50, 60, 70

0, 0, 0

70, 60, 50

0, 0, 0

10, 20, 30

























.

The computational experiments were performed using the

AMPL programming language and the Gurobi 5.5 solver (with

124 Bull. Pol. Ac.: Tech. 62(1) 2014



A mixed integer program for cyclic scheduling of flexible flow lines

the default settings) on a laptop MacBookPro with Intel Core

i7 processor running at 2.8GHz and with 16GB RAM. The

solution results for model CFFL with constraint (3) are sum-

marized in Table 1 and for model CFFL without constraint

(3), in Table 2. The size of CFFL model is represented by the

total number of variables, Var., number of binary variables,

Bin., number of constraints, Cons., and number of nonzero

coefficients, Nonz. The last two columns of Table 1 give the

makespan Cmax and CPU time in seconds required to find

proven optimal solutions, and in Table 2 the makespan Cmax

and GAP% after 3600 seconds of CPU time, respectively.

For the permutation type model CFFL with constraint (3),

the Gurobi solver was capable of finding proven optimal so-

lutions for all examples, with CPU time ranging from fraction

of a second to a few hours. However, the CPU time required to

find proven optimal solution using the non-permutation type

model CFFL without constraint (3) was much longer, from

a few hours to several hours. Comparison of the solution re-

sults presented in Tables 1 and 2 demonstrate that the assign-

ment constraint (3) is a very efficient cut off constraint, that

eliminates a large portion of unpromising permutation type

schedules for the flexible flow line.

Fig. 2. Examples of cyclic and cyclic-batch, permutation type schedule for n = 25 parts

Bull. Pol. Ac.: Tech. 62(1) 2014 125



T. Sawik

Table 1 shows that for both the cyclic and the cyclic-batch

scheduling modes, the optimal makespan Cmax is the same,

however the CPU time required to find proven optimal solu-

tion was shorter for cyclic-batch scheduling. The difference

in CPU times can be explained by a simpler structure of the

cyclic-batch mode constraints (17), than that of the cyclic

mode constraints (16).

Note that, because consecutive cycles overlap, for each

production order the schedule length is shorter than the

makespan of a cyclic schedule obtained by simple repetition

of S optimal schedules for a single MPS, e.g., for n = 200,

(40 × MPS), Cmax = 6310 < 11200 = 40 × 280. In addi-

tion, in the optimal cyclic schedules for different volumes of

production orders, different cycles of parts can be observed

within an MPS.

The optimal cyclic and cyclic-batch schedules for n = 25
and n = 100 parts are shown in Figs. 2 and 3, with different

shading of different part types and with narrow bars indicat-

ing processor blocking. For n = 25 parts, the optimal input

sequence of part types for a single MPS is (2,2,3,3,1) and

Fig. 3. Examples of cyclic and cyclic-batch, permutation type schedule for n = 100 parts

126 Bull. Pol. Ac.: Tech. 62(1) 2014



A mixed integer program for cyclic scheduling of flexible flow lines

Fig. 4. Examples of cyclic and cyclic-batch, non-permutation type schedule for n = 25 parts

(3,3,1,2,2), respectively for cyclic and cyclic-batch scheduling

mode, whereas for n = 100 parts, the corresponding optimal

input sequences of part types for a single MPS are (3,3,2,1,2)

and (3,3,2,2,1), respectively. The input sequence can be ob-

served on the first machine, M1, in Figures 2 and 3.

For comparison, Fig. 4 shows optimal cyclic and cyclic-

batch, non-permutation type schedules for n = 25 parts.

The optimal input sequence for a single MPS is (3,3,2,2,1)

for both cyclic and cyclic-batch scheduling modes. The non-

permutation type schedules, however, are shorter (Cmax =
880) than the corresponding permutation schedules (Cmax =
900) in Fig. 2. Unlike in the permutation type solution pre-

sented in Fig. 2, in which the order of processing parts

in the successive multi-processor stages is identical, in the

non-permutation type schedules shown in Fig. 4, parts are

processed in different orders.

Bull. Pol. Ac.: Tech. 62(1) 2014 127



T. Sawik

4. Conclusions

The proposed model for cyclic scheduling is capable of opti-

mizing throughput of a FFL. The computational experiments

indicate that for the proposed monolithic approach to cyclic

scheduling, the schedule length is shorter than the makespan

of a cyclic schedule obtained by simple repetition of optimal

schedules for a single MPS, to fulfill the overall production

target. Furthermore, in the optimal cyclic schedule for the en-

tire production target, the cycle of parts within each MPS does

not necessarily coincides with that obtained for a single MPS,

with no account on the total production volume.

In general, the size of the mixed integer program rapid-

ly increases with the size of production order, that is, with

the number S of cycles of an MPS, and so does the com-

putation time required to find proven optimal schedules. The

computational experiments prove a high efficiency of the as-

signment constraint (3) that is capable of cutting off a large

portion of unpromising permutation type schedules for a flex-

ible flow line. The future research should focus on a further

strengthening the CFFL model to reduce the computational

time required to find proven optimal solutions for large size

problems, e.g., [9].

Acknowledgements. The author is grateful to two anonymous

reviewers for reading the manuscript very carefully and pro-

viding constructive comments. This work has been partially

supported by the NCN research grant and by AGH.

REFERENCES

[1] S.T. McCormick, M.L. Pinedo, S. Shenker, and B. Wolf, “Se-

quencing in an assembly line with blocking to minimize cycle

time”, Operations Research 37, 925–936 (1989).

[2] T. Sawik, “Mixed integer programming for scheduling flexi-

ble flow lines with limited intermediate buffers”, Mathematical

and Computer Modelling 31 (13), 39–52 (2000).

[3] T. Sawik, “Mixed integer programming for scheduling surface

mount technology lines”, Int. J. Production Research 39 (14),

3219–3235 (2001).

[4] M. Magiera, “A relaxation heuristic for scheduling flowshops

with intermediate buffers”, Bull. Pol. Ac.: Tech. 61 (4), 929–

942 (2013).

[5] T. Kis and E. Pesch, “A review of exact solution methods for

the non-preemptive multiprocessor flowshop problem”, Eur. J.

Operational Research 164 (3), 592–608 (2005).

[6] I. Ribas, R. Leisten, and J.M. Framinan, “Review and classifi-

cation of hybrid flowshop scheduling problems from a produc-

tion system and a solutions procedure perspective”, Computers

and Operations Research 37, 1439–1454 (2010).

[7] E. Levner, V. Kats, D. Alcaide, and T.C.E. Cheng, “Com-

plexity of cyclic scheduling problems: a state-of-the-art sur-

vey”, Computers and Industrial Engineering 59, 352–361

(2010).

[8] T. Sawik, “Balancing and scheduling of surface mount tech-

nology lines”, Int. J. Production Research 40 (9), 1993–1991

(2002).

[9] T. Sawik, “Batch vs. cyclic scheduling in flexible flow shops

by mixed integer programming”, Int. J. Production Research

50 (18), 5017–5034 (2012).

[10] S. Karabati and P. Kouvelis, “Cycle scheduling in flow lines:

modeling observations, effective heuristics ad a cycle time min-

imization procedure”, Naval Research Logistics 43, 211–231

(1996).

[11] P. Kouvelis and S. Karabati, “Cyclic scheduling in synchro-

nous production lines”, IIE Transactions 31 (8), 709–719

(1999).

128 Bull. Pol. Ac.: Tech. 62(1) 2014


