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Abstract. Motion tracking algorithms are widely used in computer vision related research. However, the new video standards, especially those

in high resolutions, cause that current implementations, even running on modern hardware, no longer meet the needs of real-time processing.

To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have recently been proposed. Although they

present a great potential of a GPU platform, hardly any is able to process high definition video sequences efficiently. Thus, a need arose to

develop a tool being able to address the outlined problem.

In this paper we present software that implements optical flow motion tracking using the Lucas-Kanade algorithm. It is also integrated

with the Harris corner detector and therefore the algorithm may perform sparse tracking, i.e. tracking of the meaningful pixels only. This

allows to substantially lower the computational burden of the method. Moreover, both parts of the algorithm, i.e. corner selection and

tracking, are implemented on GPU and, as a result, the software is immensely fast, allowing for real-time motion tracking on videos in Full

HD or even 4K format. In order to deliver the highest performance, it also supports multiple GPU systems, where it scales up very well.

Key words: the Lucas-Kanade method, sparse optical flow, multiple GPU computations.

1. Introduction

Motion estimation algorithms have been at the core of vari-

ous methods used in computer vision for many years. Object

tracking, depth estimation, robot navigation [1] or even visual

odometry [2] are only a few practical applications that have

been developed owing to accurate motion estimation methods.

They have been also used in surveillance systems tracking hu-

mans in public places, such as metro or airports, to identify

possible abnormal behaviours and threats [3]. Motion estima-

tion algorithms serve therefore as a common building block

of some more complex routines and systems.

One of the most commonly used methods for the appar-

ent motion estimation is the optical flow, initially described

in 1950 by J.J. Gibson [4]. Since then a number of methods

based on this technique have been developed, e.g. Horn and

Schunck [5] or Lucas and Kanade [6] with the latter being

regarded as more robust to the noise and capable of tracking

even small motions. The high accuracy is, however, achieved

at the expense of high computational complexity. Moreover,

modern surveillance systems are nowadays more commonly

equipped with high resolution cameras, but despite the in-

creased computational burden are still expected to work in

real-time. As a result, a need arose for high performance im-

plementations of motion estimation algorithms.

In recent years, a lot of attention has been given to mod-

ern computational architectures, such as GPUs, that turned

out to be very efficient in various fields of science, not neces-

sarily related to computer graphics. They have been success-

fully used as accelerators for example in gas and oil indus-

try [7, 8], medical imaging [9–11], bioinformatics [12–14],

metaheuristics [15], or stencil-based computations [16, 17].

Nevertheless, the primary application of GPUs is still the im-

age and video processing [18–21]. Yet, even though several

approaches to the problem of motion estimation have been

published lately, including those taking advantage of modern

GPUs [22–25], they are either unable to handle high defini-

tion video streams or are limited to a single GPU and thus do

not scale up well. Therefore, in response to presented needs

we decided to implement a highly parallel multi-GPU version

of the Lucas-Kanade algorithm for motion estimation. Exper-

imental results show that our implementation is capable of

handling video streams in Full HD or even 4K standard in

real-time.

The remainder of the paper is organized as follows: the

background of features detection and motion tracking methods

is presented in Sec. 2. Related works are discussed in the third

section. Section 4 describes the proposed algorithm for motion

tracking using the optical flow. The fifth section presents our

GPU and multi-GPU implementations of the method. Then,

experimental results are given in Sec. 6 showing time compar-

isons and the overall performance of CPU, GPU and multi-

GPU implementations. Finally, conclusions and future works

may be found in Sec. 7.

2. Background

There are two main approaches to tracking algorithms that

may be applied to a video stream. The first way it to com-

pute the motion of each pixel within the video, which is often

referred to as dense tracking. The other way is to apply the

algorithm for selected pixels only, which in turn is known as
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sparse tracking. The former method provides more detailed

information about the image but is also more computational-

ly intensive, and hence is not suitable to be considered for a

high resolution stream processed in real-time. The latter ap-

proach tries to reduce the computational burden by tracking

only the meaningful features of the video, e.g. corners, and

thus allowing for easier interpretation of the results. This sec-

tion outlines some of the key methods used for both corner

detection and motion tracking.

2.1. Corner detection methods. Likewise contour detection,

corner extraction presents a preliminary step of several com-

puter vision methods. A corner is defined as an area that ex-

hibits a high gradient value in multiple directions simultane-

ously. In literature, one can find three categories of corner de-

tection methods, namely: contour, intensity and model based.

Contour based methods extract edges before searching for

the maximum curvature points along the contours. In some

cases, they apply a polygonal approximation before selecting

the intersection points [26]. In this category, Asada et al. [27]

proposed an approach to detect corners for 2D objects from

planar curves. The changes in curvatures are considered as

points of interest. Mokhtarian et al. [28] developed a sim-

ilar approach using inflexion points of a planar curve. The

authors in [29] proposed to extract line segments from the

image contours. The intersections of these segments present

points of interest.

Intensity methods are based on computing the intensity

function which represents the gray value variations between

pixels of an image. In this category, Harris and Stephens [30]

developed a corner detector which demonstrates a strong in-

variance to rotation, scaling, illumination variation, and image

noise. It is based on the local auto-correlation function which

measures the local changes of the signal with patches shift-

ed by a small amount in different directions. Bouguet [31]

proposed an efficient and simple implementation of Harris

detector using several steps. A discrete predecessor of the

Harris detector was described by Moravec [32], where the

discreteness refers to the shifting of the patches.

Model based methods propose to fit a parametric intensi-

ty model to the image. They offer a high sub-pixel accuracy,

but are limited to specific types of interest points such as L

corners. In this category, Rohr et al. [33] described a junc-

tion model combined with a Gaussian filter. Parameters in this

model (angle between the L corner and the x axis, the gray

values, etc.) are adjusted to the image in order to detect L

corners. This method was improved by Deriche and Blaszka

in [34] by applying a new method for Gaussian smoothing in

order to obtain better noise elimination. They presented also a

faster convergence by the use of large image regions. Authors

in [35] presented an approach to extract junctions using an

optimal description of the signal.

The intensity based methods are the most widely used

for corner detection since they do not require any informa-

tion about contours nor types of points of interest. The work

in [36] presents a comparison of classical techniques, and ac-

cording to the presented results, the Harris corner detector,

proposed in [30], has better performance than other detectors.

This technique presents also a well-known robust solution for

detecting points to track in a video stream, and therefore we

exploit it in our implementation.

2.2. Motion tracking methods. Motion tracking methods try

to estimate the displacement and velocity of features in a giv-

en video frame with respect to the previous one. They are

considered necessary for several applications such as human

behavior understanding, event detection or video indexation.

These methods usually exploit different algorithms such as op-

tical flow estimation [5], SIFT descriptors [37], block match-

ing technique [38], etc. In this work we are more focused on

the optical flow methods since they present a promising so-

lution for human or car tracking even in noisy and crowded

scenes or in case of small motions.

The optical flow represents a distribution of apparent ve-

locities of movement of brightness pattern in an image. The

method computes the spatial displacements of image pixels

based on the constant light hypothesis which assumes that the

properties of consecutive images are similar in a small region

as shown in Eq. (1):

I(x, y, t) = I(x + δx, y + δy, t + 1), (1)

where δx, δy are displacements along horizontal and vertical

axes, respectively; I(x, y, t) is the gray level of the pixel (x, y)

at moment t; I(x + δx, y + δy, t + 1) is the gray level of the

pixel (x + u, y + v) at moment t + 1.

Based on this hypothesis (Eq. (1)), we obtain the follo-

wing constraints:
dI

dt
= 0, (2)

⇐⇒
δI

δx

dx

dt

+
δI

δy

dy

dt

+
δI

δt
= 0, (3)

⇐⇒ Ix.u + Iy.v + It = 0, (4)

where u =
dx

dt

, v =
dy

dt

.

Equation (4) presents the optical flow constraint with re-

spect to movement. However, this is only one equation and

the method needs to determine two unknown values (the two

components of the movement vector for a given point). There-

fore, in order to detect the displacement coordinates (x and

y) for each pixel some additional hypotheses are introduced.

In this context, Horn and Schunck [5] introduced a glob-

al constraint of smoothness to estimate the optical flow over

the whole image. It tries to minimize distortions in the flow

and prefers solutions showing more smoothness. Indeed, this

method supposes that the neighboring pixels should have sim-

ilar velocities which means that the optical flow has a progres-

sive variation. However, this method is hampered by its low

efficiency in case of small motions. Lucas and Kanade [39]

developed a robust local method for the optical flow estima-

tion assuming that the flow is constant in a local neighborhood

which enables to solve the basic optical flow Eq. (4) for all

pixels in that neighborhood. The Lucas-Kanade method is al-

so less sensitive to image noise than the point-wise methods.
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However, in the case of uniform regions, it may provide in-

accurate results (in terms of the optical flow). Authors in [40,

41] proposed a block matching algorithm for motion estima-

tion in video sequences. The purpose of the latter method is

to detect motion between two consecutive images in a block-

wise sense. Each block (or region) from the current frame

is matched with a corresponding block in the next image by

shifting the current block over a neighborhood of pixels in

the next frame. The matching is based on computing the dis-

tances between the gray values of two successive blocks, and

the shift having the smallest total sum of distances represents

the best match.

The Lucas-Kanade method is the most widely used vari-

ant of the optical flow estimation since it presents a local ap-

proach providing accurate results in many cases. It is also less

sensitive to image noise, and allows for tracking even small

motions. Due to these properties, we propose to exploit the

Lucas-Kanade method in our work. In the literature, several

optical flow based techniques may be found applied to differ-

ent problems. In [42], for instance, the authors estimate veloci-

ty of ground vehicles. The objective is to compute this estima-

tion automatically from video sequences acquired with a fixed

camera. The vehicle motion is detected and tracked over the

frames using the Horn and Schunck optical flow method [5].

Andrade et al. [43] developed a method for modeling nor-

mal behavior in order to detect abnormal events. This solu-

tion combines the optical flow vectors, Hidden Markov Mod-

els (HMM) [44], spectral clustering and principal component

analysis for detecting crowd emergency scenarios. Authors

in [45] proposed a method for human face tracking in uncon-

strained videos, based on TLD (Tracking-Learning-Detection)

approach, while [46] presented some tracking techniques us-

ing multiple cameras. There are also some works in [47] for

detecting abnormal situations in crowded scenes by analyzing

the motion aspect instead of tracking subjects one by one.

These works present only a small fraction of possible ap-

plications for the optical flow methods, and we may certainly

conclude here that there is a real need for this kind of efficient

implementations in the market.

3. Related works

Most of the image and video processing algorithms apply

similar or even the same computations to many pixels. This

fact makes these algorithms well adapted for acceleration on

GPU by exploiting its processing units in parallel. In the

case of GPU-accelerated optical flow motion tracking algo-

rithms, we may distinguish two categories of related works.

The first presents so called dense optical flow which tracks

all frame pixels without selecting any features. In this con-

text, [25] proposed a GPU implementation of the Lucas-

Kanade method for the optical flow estimation. The software

was programmed using the CUDA library (Compute Unified

Device Architecture) to compute dense and accurate veloci-

ty field at about 15 frames per second (FPS) for the image

resolution of 640×480. Authors in [23] presented the CU-

DA implementation of the Lucas-Kanade optical flow method

with a real-time processing (25 FPS) of low resolution videos

(316×252). This method produces dense displacement field

based on a straightforward processing procedure.

The second category includes software tools tracking se-

lected image features only. Sinha et al. [22] developed a GPU

implementations of the popular KLT feature tracker [48] and

the SIFT feature extraction algorithm [37]. This was devel-

oped with the OpenGL/Cg libraries allowing to extract about

800 features from 640×480 video at 10 FPS which is approxi-

mately 10 times faster than the corresponding CPU implemen-

tation. Their software may also track a thousand features in

real-time (30 FPS) in a video of resolution 1024×768, which

is around 20 times faster than in the case of its CPU ver-

sion. In [49] the authors proposed a GPU-based block match-

ing technique using OpenGL. This implementation offered a

real-time processing of 640×480 video with a speedup of 3

compared to its CPU version. Sundaram et al. [50] devel-

oped a method for computing point trajectories based on a

fast GPU implementation of the optical flow algorithm that

tolerates fast motion. This parallel implementation runs at

about 22 fps, which is 78 times faster faster than its CPU

version.

However, despite their great speedups, none of the above-

mentioned GPU-based software tools can provide real-time

processing of high definition videos (HD/Full HD). Moreover,

they are not well adapted for exploiting multiple GPUs simul-

taneously. Our contribution focuses on the development of a

real-time motion tracking method using the optical flow on

multiple GPUs. The proposed method includes both feature

detection and motion tracking steps which are implemented

entirely on GPU. We contribute also by exploiting effective-

ly multiple GPUs, with an efficient management of different

kinds of GPU memory to obtain fast access to frame pixels.

As a result, our implementation is able to perform a real-time

motion tracking on Full HD or even 4K standard videos.

4. Motion tracking algorithm

Before presenting the implementation details of our GPU-

based software tool for the optical flow motion tracking, we

describe in this section the consecutive steps of the developed

algorithm. The approach consists of three main steps: features

detection, the optical flow based features tracking and static

features removing.

4.1. Features detection. The first step of the proposed

method is to detect features that are good to track, i.e. corners.

To achieve this, we have exploited the Bouguet’s corner ex-

traction technique [31], based on the Harris detector [30]. This

is a very efficient method thanks to its invariance to rotation,

scaling, brightness and noise. It is based on five steps: spatial

derivatives computation, eigenvalues computation, maximum

eigenvalue selection, small eigenvalues removing and eigen-

values selection, all of them briefly described below.

1. Spatial derivatives computation: this step consists of

computing the matrix G of spatial derivatives for each pixel
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using the Eq. (6). This 4-element matrix (2×2) is calculat-

ed with the spatial derivatives Ix, Iy computed using the

Eq. (5).

Ix(x, y) =
I(x + 1, y) − I(x − 1, y)

2
,

Iy(x, y) =
I(x, y + 1) − I(x, y − 1)

2
,

(5)

G =

(

I2
x IxIy

IxIy I2
y

)

. (6)

2. Eigenvalues computation: based on the matrix G, for

each pixel we calculate two eigenvalues of which only the

greater is kept.

3. Maximum eigenvalue selection: once all the eigenvalues

are calculated, the algorithm retrieves the maximum value.

4. Small eigenvalues removing: the search for small eigen-

values is performed by comparing the eigenvalue of each

pixel with the maximum eigenvalue. If this absolute val-

ue is lower that 5% of the maximum value, the pixel is

excluded.

5. Corner selection: for each image area (of predefined size)

the algorithm extracts one pixel having the largest eigen-

value. The selected pixels represent points of interest (the

final corners).

4.2. Optical flow feature tracking. Once the corners are se-

lected, we track them within the next frame using the optical

flow technique. We exploit the Lucas-Kanade [31] algorithm

for the optical flow estimation. As pointed out in the Back-

ground section, this method is well-known for its high effi-

ciency, accuracy and robustness. The algorithm consists of

seven steps that are briefly described below.

• Step 1: Pyramid construction: in the first step, the al-

gorithm computes a pyramid representation of images I

and J which represent two consecutive images from the

video. A conversion to grayscale level is applied to these

two images representing the pyramid level 0. The rest of

pyramid levels are built in a recursive fashion by applying

a Gaussian filter. Each pyramid level is represented by the

same image as in the previous level, but with a reduced

resolution (half). The image resolution for each level L is

calculated with Eqs. (7) and (8).

WidthL =
WidthL−1 + 1

2
, (7)

HeightL =
HeightL−1 + 1

2
. (8)

Once the pyramid is constructed, a loop is launched that

starts from the smallest image (the highest pyramid lev-

el) and ends with the original image (level 0). Its goal is

to propagate the displacement vector between the pyramid

levels. Note that this vector is initialized with 0 values, and

will be calculated during next steps.

• Step 2: Pixels matching over levels: for each pyramid lev-

el (described in the previous step), the new coordinates of

previously detected corners (see Subsec. 4.1) are calculat-

ed. This computation is performed with Eq. (9).

xL =
x

2L
, yL =

y

2L
. (9)

As an example, the pixel having the coordinates (204, 100)

at level 0 has the coordinates (102, 50) at level 1, and (51,

25) at level 2.

• Step 3: Local gradient computation: in this step, the

matrix of spatial gradient G is computed for each corner

(point of interest) of the image I , using Eq. (12). This

matrix of four elements (2×2) is calculated based on the

spatial derivatives Ix and Iy computed using Eqs. (10)

and (11).

Ix(x, y) =
IL(x + 1, y) − IL(x − 1, y)

2
, (10)

Iy(x, y) =
IL(x, y + 1) − IL(x, y − 1)

2
. (11)

The computation of the gradient matrix takes into account

the area (window) of pixels which is centered on the point

to analyze (track). The size of the window depends on im-

age type and size. Generally, size of 7 × 7 or 9 × 9 is a

commonplace.

G =

xL
+w
∑

xi=xL
−w

yL
+w
∑

yi=yL
−w

·





I2
x(xi, yi) Ix(xi, yi)Iy(xi, yi)

Ix(xi, yi)Iy(xi, yi) I2
y (xi, yi)



 .

(12)

In Eq. (12), the size of the window is: (2w+1)×(2w+1).
• Step 4: Iterative loop launch and temporal derivative

computation: in this step, a loop is launched and iterat-

ed until the difference between the two successive optical

flow measures (calculated in the next step), or iterations, is

higher than a defined threshold.

Once the loop is launched, the computation of the temporal

derivatives is performed using the image J (second image)

based on Eq. (13).

It(x, y) = IL(x, y)

−JL(x + gx + vx, y + gy + vy).

(13)

This derivative is obtained by the subtraction of each point

(corner) of the image I (first image) and its corresponding

corner in the image J (second image). The values of gx

and gy , initialized to zero, present the displacement estima-

tion which is then propagated between successive pyramid

levels. The values of vx and vy present the corrections of

displacement estimation computed and propagated within

the iterative loop in Step 6.

• Step 5: Optical flow computation: the optical flow mea-

sure is calculated using the gradient matrix (cf. Step 3) and
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the shift vector b. This vector represents the sum of tem-

poral derivatives (in a window of size 2w + 1) as shown

in Eq. (14).

b̄ =

xL
+w
∑

xi=xL
−w

yL
+w
∑

yi=yL
−w

·





It(xi, yi) Ix(xi, yi)

It(xi, yi) Iy(xi, yi)



 .

(14)

Then, the measure of optical flow n is calculated by mul-

tiplying the inverse of the gradient matrix G by the shift

vector b (Eq. (15)).

n = G−1b̄. (15)

• Step 6: Estimation correction and end of the iterative

loop: during this step, a correction of estimation Eq. (16)

is applied before the results are propagated to the next it-

eration of the iterative loop. vx and vy are initialized to

zero.

vx = vx + nx, vy = vy + ny. (16)

We may distinguish two ways of the iterative loop termina-

tion (launched in Step 4). The first is when the algorithm

reaches the last iteration (the maximum number of itera-

tions). The second case occurs when the measured correc-

tion is smaller than the defined threshold.

• Step 7: Result propagation and end of the pyramid loop:

In this step the current results are propagated to the lower

level using Eq. (17).

gx = 2(gx + vx), gy = 2(gy + vy). (17)

Once the algorithm reaches the lowest pyramid level (the

original image), the pyramid loop (launched in the first

step) is stopped. The vector ḡ represents the final optical

flow value of the analyzed corner.

Finally, the result of tracking n features (corners) is a set

of n vectors as shown in Eq. (18):

Ω = {ω1 ... ωn | ωi = (xi, yi, vi, αi)} , (18)

where xi is the x coordinate of the feature i; yi is the y coor-

dinate of the feature i; vi represents the velocity of the feature

i; αi denotes motion direction of the feature i.

4.3. Static features removing. The final step removes the

static and noisy features. Features (points of interest) having

the velocity equal to zero (i.e., vi = 0) are considered as static.

Noisy features are the isolated features that have a relatively

large difference in angle αi and velocity vi values compared

to their nearest neighbors due to tracking calculation errors.

5. Implementation of the algorithm

As pointed out in the previous sections, a graphics processing

unit makes an effective tool for improving the performance of

image and video processing algorithms. This section presents

our proposed GPU and multi-GPU versions of the optical

flow based feature tracking method in three parts. The first

describes our development scheme for the video processing

on GPU. The second part presents the GPU implementation

of the proposed feature tracking method. The multi-GPU im-

plementation is described in the last part.

5.1. Development scheme for the video processing on

GPU. The proposed scheme is based upon CUDA for par-

allel computing and OpenGL for visualization. It consists of

three steps: loading video frames on GPU, CUDA parallel

processing and OpenGL visualization (see Fig. 1).

1. Loading video frames on GPU: we start with reading and

decoding the video frames using the OpenCV library1. We

copy the current frame on a device (GPU) that processes

it in the next step.

2. CUDA parallel processing: before launching the paral-

lel processing of the current frame, the number of GPU

threads in the so called blocks and grid has to be defined,

so that each thread can perform its processing on one or

a group of pixels in parallel. This enables the program to

process the image pixels in parallel. Note that the number

of threads depends on the number of pixels. Once the num-

ber and the layout of threads is defined, different CUDA

functions (kernels) are executed sequentially, but each of

them in parallel using multiple CUDA threads.

3. OpenGL visualization: the current image (result) can be

directly visualized on the screen through the video output

of GPU. Therefore, we use the OpenGL graphics library

that allows for fast visualization, as it can operate on the

already existing buffers on GPU, and thus requires less data

transfer between host and device memories. Once the vi-

sualization of the current image is completed, the program

goes back to the first step in order to load and process the

next frames of the video.

Fig. 1. Development scheme for the video processing on GPU (N de-

notes the total number of frames)

1OpenCV Computer Vision Library: http://opencv.org
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5.2. GPU-based motion tracking using the optical flow.

Based on the aforementioned scheme, we proposed the GPU

implementation of the motion tracking method using both the

Harris corner detection and the Lucas-Kanade algorithm for

the optical flow. This solution offers efficient processing in

terms of the quality of motion tracking and also improved

performance thanks to the exploitation of GPU computing

units in parallel. Our GPU implementation can be described

in two main steps: corner detection and corner tracking, both

performed on GPU.

Corner detection. We developed a GPU implementation of

the Bouguet’s corner extraction method [31], which in turn is

based on the Harris detector [30]. Our approach parallelizes

its five steps on GPU (Fig. 2). The GPU implementation of

the first step (spatial derivatives computation) is based on the

parallel processing of pixels using the GPU grid of threads

with the number of threads equal to the number of pixels.

Each thread computes the spatial derivatives of one pixel us-

ing Eq. (5). Then, each thread calculates the matrix G for each

image pixel by applying Eq. (6). The values of the neighbor-

ing pixels (left, right, top and bottom) of each image point

are loaded into the GPU shared memory since these values

(neighbors) are required for the computation of spatial deriva-

tives. In the second step (eigenvalues computation), the algo-

rithm computes the eigenvalues in parallel over image pixels

based on the G matrix. In this case, we also use the GPU grid

of threads with the number of threads equal to the number of

pixels.

Once the eigenvalues are calculated, the algorithm extracts

the maximum value (the third step), which is computed on

GPU using the CUBLAS library2. The fourth step of the cor-

ner detection method, that is the search for small eigenval-

ues, is performed in the way that each GPU thread compares

the eigenvalue of its corresponding pixel with the maximum

eigenvalue. If this value is less than 5% of the maximum

value, the pixel is excluded. In the last step, we proposed to

assign a GPU thread to a group of pixels representing an area

(with adjustable size, by default 10×10 pixels). This enables

each thread to detect the maximum eigenvalue in its region.

The pixels having these values extracted represent the detected

corners.

Fig. 2. GPU implementation of the corner detection phase

2NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library: https://developer.nvidia.com/cuBLAS
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Corner tracking. Once the corners are detected, the algo-

rithm tracks them using the optical flow estimation based

on the Lucas-Kanade approach. Thus, we calculate the op-

tical flow vectors for previously selected corners only, and

not for all frame pixels. The parallel implementation of this

method uses a similar technique as for the corner detection.

The steps described in Subsec. 4.2 are executed in parallel

using the CUDA library such that each GPU thread applies

its instructions (among the seven steps) on one previously de-

tected frame corner. Therefore, the number of selected GPU

threads is equal to the number of corners. Since the algo-

rithm looks at the neighboring pixels, for a given corner, the

images, or pyramid levels to be more precise, are kept in

the texture memory. This allows for faster access within the

2-dimensional spatial data. Other data, e.g. the arrays with

computed displacements, are kept in the global memory, and

are cached in the shared memory if needed. The software was

optimized for the Fermi architecture and many low-level op-

timizations, like the number of threads within a block or the

actual location of different variables, were selected empirical-

ly. Moreover, the great advantage of the Fermi architecture is

the L1/L2 cache that allows for an efficient data fetch in case

of recurring reads of consecutive elements from a cache line.

This feature also contributed to the acceleration of parts of

the code.

Figure 3 summarizes the GPU implementation of the

Lucas-Kanade algorithm applied to a set of points of interest.

An example output from the algorithm is presented in Fig. 4.

Fig. 3. A GPU implementation of the Lukas-Kanade tracking method (N denotes the number of video frames)

Bull. Pol. Ac.: Tech. 62(1) 2014 145



S.A. Mahmoudi, M. Kierzynka, P. Manneback, K. Kurowski

Fig. 4. An example part of the Full HD video frame with character-

istic points detected with the Harris corner detector and then tracked

with the Lucas-Kanade method. Displacements are marked with ar-

rows. Note that the arrows located on the static objects like trees or

a building are there as a result of moving camera

5.3. Multiple GPU implementation. The nature of the video

processing algorithms is usually highly parallel. This also ap-

plies to the problem of corner detection as well as motion

tracking. Therefore, apart from implementing described meth-

ods on a single GPU, we also prepared a version that takes

advantage of multiple GPU systems that nowadays are becom-

ing commonplace. The program, once launched, first detects

the number of GPUs available in the system, and initializes

all of them. In the corner detection phase, the input image

frame is first uploaded to each GPU. Although it seems to be

redundant to have the whole image on each GPU, the data is

needed there in a later phase. Nevertheless, the frame is virtu-

ally divided into equally-sized subframes along y dimension.

Once the image data is available, each GPU is responsible

for detecting corners within its part of the frame. In the next

phase, that is in the Lucas-Kanade method, each GPU com-

putes the pyramid. This is to ensure, that each unit has then

access to the whole pyramid, which is relatively easy to com-

pute, comparing to the potential burden of copying its struc-

ture via PCI-E connection. Once the pyramid is computed,

each GPU tracks previously detected corners according to the

Lucas-Kanade algorithm. If visualization is enabled, then at

the end of the computations for a given frame, all the results,

namely tracked points together with corresponding displace-

ments, need to be copied to the GPU which is in charge of

displaying. This, however, is a fast operation since contiguous

memory space is always transferred.

6. Results

6.1. Time comparisons of the Lucas-Kanade implementa-

tions. In order to evaluate the performance of our software

we decided to compare it to the very recent and up to our best

knowledge the fastest implementation of the Lucas-Kanade al-

gorithm, i.e. this available in OpenCV 2.4. It is worth noting

that OpenCV provides both CPU and GPU versions of the

algorithm, so additional insight into the difference in perfor-

mance between these two is presented as well. The optical

flow method has three primary parameters, which define how

much computational burden is actually imposed. These are:

the number of pyramid levels, the number of iterations within

each pyramid level and finally the window size. To make the

comparison clear and fair we measured the performance of

the methods by changing the value of parameters one by one.

This was applied to all the parameters in turn. The standard

values were as follows: the number of pyramid levels – 4,

the number of iterations – 3 and the window size – 5 × 5.

The video sequence used in the test had 4850 frames, each of

resolution 1920×1080 pixels. The results present the time in

seconds needed by each program to perform the optical flow

algorithm solely, that is excluding the time spent for video de-

coding, its conversion to the grayscale, corner detection and

results visualization. It is worth noting that in order to en-

sure each implementation tracked the same points, our own

implementation of Harris corner detector was used in each

case.

The tests were run on the following hardware:

• CPU: Intel Core 2 Quad Q8200, 2.33GHz,

• GPU: 2×NVIDIA GeForce GTX 580 with 1.5GB of RAM,

• RAM: 8GB,

• OS: 64-bit Linux.

Figure 5 presents the time needed by each implementation

of the Lucas-Kanade method to process an example movie in

the Full HD standard. The results depend here on the num-

ber of algorithm’s refining iterations at each pyramid level.

The OpenCV CPU-based method is the slowest one, whereas

our own implementation running on two GPUs is the fastest.

One may notice that the time used by OpenCV does not grow

as fast as in case of our implementation. The reason is that

OpenCV checks whether additional iteration improves the so-

lution and exits if not, while our application does not include

this feature. However, for the most commonly used value of

this parameter in practice, i.e. 3, our implementation outper-

forms those from OpenCV.

Fig. 5. Time needed to perform the optical flow algorithm depending

on the number of iterations within each pyramid level

Figure 6 depicts how the window size parameter influ-

ences the computational time of different implementations.

For small windows our method is the fastest one. Yet, when

large windows are used for computations the GPU-based

OpenCV is faster. Moreover, this method seems to be almost
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invariant to the window size. This is not an entirely clear result

to us as the number of computations with a growing window

is simply higher. We suspect that the authors must have intro-

duced some advanced caching techniques, which give them

the advantage here. Figure 7, in turn, presents the impact of

growing number of pyramid levels on the performance of the

algorithm. In case of both OpenCV implementations, espe-

cially CPU-based, the performance drop is more visible than

in our implementation. Moreover, we may conclude that our

method outperforms OpenCV here as it is more efficient re-

gardless of the number of pyramid levels.

Fig. 6. Time needed to perform the optical flow algorithm depending

on the window size parameter. Windows are always square, e.g. 9

corresponds to a window of size 9× 9

Fig. 7. Time needed to perform the optical flow algorithm depending

on the number of pyramid levels

Summing up, there is no implementation that clearly out-

performs all the others. While the GPU version of OpenCV’s

Lucas-Kanade is more robust when it comes to large windows,

our implementation performs better for growing number of

pyramid levels, which is especially desired when processing

videos of high resolution. However, we certainly may con-

clude that GPU is well suited for the problem as all the

GPU-based implementations were faster than the CPU one.

Ultimately, the performance of the tested methods still does

strongly depend on specific values of parameters, and there-

fore on a given real-life use case.

6.2. Multiple GPU test. One of the features of our imple-

mentation is the multiple GPU support. Therefore, to see how

the algorithm may benefit from such systems we performed

two tests. In the first one we measured the speedup obtained

by the Harris corner detector, whereas in the second – the

speedup observed in the Lucas-Kanade routine. Likewise in

the previous test, computations were performed on a Full HD

movie (1920×1080) consisting of 4850 frames. The present-

ed speedup always refer to a single GPU runtime. Note that in

this test we do not compare our software to any other existing

implementation, since none of them supports multiple GPU

configurations.

The tests were run on the following hardware:

• CPU: 2×Intel Xeon E5405, 2.00GHz,

• GPU: NVIDIA Tesla S1070 containing 4 GPUs,

• RAM: 16GB,

• OS: 64-bit Linux.

Figure 8 reveals that the speedup of the Harris corner de-

tection routine is almost linear up to three GPUs. The use of

additional fourth GPU does not improve its execution time as

much. The reason is that the amount of work per single GPU

is becoming too small to properly load the chip with compu-

tations. Figure 9, in turn, presents the speedup that was ob-

served in our implementation of the Lucas-Kanade algorithm

depending not only on the number of GPUs, but also on the

number of pixels being tracked, which directly correlates with

the amount of computations that needs to be performed. In

order to carry out this kind of test we set a given number of

pixels to track for each run. As we can see, the general trend

is that with growing number of pixels to track the speedup ob-

tained on the multiple GPU system improves. The maximum

speedup was reached for the highest number of pixels tracked

and was 3.28, 2.65 and 1.8 for 4, 3 and 2 GPUs, respectively.

Hence, we may conclude that multiple GPU support indeed

does influence the execution time of presented methods which

are therefore perfectly suited for any system where the time

is a precious resource.

Fig. 8. The speedup of the Harris corner detector depending on the

number of GPUs used. The speedup is always given as relative to a

single GPU runtime
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Fig. 9. The speedup of the Lucas-Kanade implementation depending

on the number of GPUs used and the number of points tracked. The

speedup is always given as relative to a single GPU runtime

6.3. Overall performance. To investigate which of the pre-

viously tested implementations of the optical flow algorithm

is the fastest in real-life scenarios, we propose to measure

their overall performance. In this test we compute the number

of video frames that can be processed in a single second by

each method. The measurement includes the total time spend

on all the procedures, i.e.: reading the video, video decoding,

conversion to grayscale, corner detection and finally applica-

tion of the Lucas-Kanade method. Tests were conducted on

two video sequences: one in Full HD format (4850 frames in

resolution 1920 × 1080) and one in 4K format (1924 frames

in resolution 3840×2160). It is worth noting that while in our

software we used our own implementation of Harris corner

detector, both CPU and GPU OpenCV runs used GPU-based

corner detection from OpenCV. Therefore, the difference be-

tween the two runs of OpenCV lies only in the Lucas-Kanade

method, which is executed either on CPU or GPU. Present-

ed results are meant to compare the two complete solutions:

our own and the one that may be built upon state-of-the-art

OpenCV library. Obviously, in order to make the comparison

fair, all the applicable parameters were set equal, in particular:

the number of pyramid levels – 4, the number of iterations

within each pyramid level – 3 and the window size – 7 × 7.

The tests were run on the following hardware:

• CPU: Intel Core 2 Quad Q8200, 2.33GHz,

• GPU: NVIDIA GeForce GTX 580 with 1.5GB of RAM,

• RAM: 8GB,

• OS: 64-bit Linux.

Figure 10 presents the overall performance of the tested

implementations in terms of the number of frames processed

per second. We can clearly see that the slowest solution is the

CPU-based OpenCV. The GPU-based OpenCV, in turn, is on-

ly some 1.9–2.3 times faster. Therefore, we may suspect that

a lot from its speedup presented in Subsec. 6.1 is actually lost

by the amount of time it needs to spend on the CPU routines.

Our implementation turned out to be the fastest, and at the

same time the only one that achieved real-time video process-

ing for both Full HD and 4K standards. In order to investigate

this in more detail, we present Figs. 11 and 12 showing the

percentage distribution of time spent on different routines for

the Full HD and the 4K video, respectively. First of all, we

see that the CPU Lucas-Kanade implementation is the most

time-consuming routine. Therefore, it stands to reason that

its parallelization is worthwhile. We can also see that both

GPU-based implementations share almost identical time dis-

tribution. As a consequence, in case of GPU-based OpenCV

all its three parts, namely corner detection, the Lucas-Kanade

algorithm and the rest of CPU computations, were performed

slower correspondingly to our solution. While the first two

routines differ by definition, the time spent on CPU, mainly

for video reading and decoding, should be the same. Presum-

ably, one of the main reasons it is not so is the fact that

OpenCV operates on Mat data type, which due to its specific

behaviour requires an additional frame copy at every itera-

tion resulting in some extra time spent on CPU. Although our

solution uses OpenCV for video reading as well, it does not

use Mat data type and therefore its overall performance is not

laden with this overhead.

Fig. 10. The number of frames processed per second by each im-

plementation. Two example videos were used: in Full HD and 4K

resolutions

Fig. 11. The amount of time spent by each implementation on dif-

ferent routines. The test was carried out on a Full HD video

Fig. 12. The amount of time spent by each implementation on dif-

ferent routines. The test was carried out on a 4K video
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7. Conclusions

In this work, we proposed an efficient implementation of the

optical flow algorithm for the sparse motion tracking. More

precisely, we developed a GPU-based software that applies

the Lucas-Kanade tracking method to the previously selected

video pixels. These, in turn, are selected by our implementa-

tion of the Harris corner detector. Such a combination makes

it possible to track only the meaningful elements of the im-

age, and also to apply the algorithm to high definition video

sequences as the overall computational burden is much low-

er than in the case of dense motion tracking. Moreover, the

method is optimized for the Fermi architecture, especially in

the context of the memory access. Performed tests show that

the proposed tool is comparable to the GPU-based OpenCV

implementation, and for some values of parameters is sub-

stantially faster. Moreover, the multiple GPU support with its

good scalability makes the method even faster. The software

clearly outperforms the corresponding OpenCV implementa-

tion in terms of the number of video frames processed per

second. It is also able to perform the motion tracking on Full

HD and even 4K videos in real-time.

As future work, we are planning to apply our method for

detecting and tracking more specific objects such as people

or vehicles using both static and mobile cameras. An efficient

motion tracking method should be of great value in many

practical use-cases, e.g. camera motion estimation, event de-

tection, motions classification etc. We are also planning to ex-

ploit the SDI capture cards3 that allow for direct video stream

capture into the GPU memory without any use of the CPU

memory, which enables the software to decrease the amount

of PCI-E bandwidth used for the video transmission.
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